Shack-Hartmann Type Laser Wavefront Sensor for Measuring Electron Density in Low Current Arc

Yuki Inada a, Shigeyasu Matsuoka a, Akiko Kumada a, Hisatoshi Ikeda a and Kunihiko Hidaka a

a Department of Electrical Engineering and Information Systems, Tokyo University, 3-1, Hongo, 7-chome, Bunkyo-ku, Tokyo, Japan

inada@hvg.t.u-tokyo.ac.jp

Abstract — A Shack-Hartmann type laser wavefront sensor was developed for achieving electron density distributions over an arc channel in an extinguishing phase by only a single measurement with high temporal and spatial resolutions. The sensor was applied to pulsed arcs in 3-mm air gap between rod-to-rod tungsten electrodes with a diameter of 1mm. Electron densities in the arc discharges with currents of several tens of amperes were lower around the gap centre than near the anode and cathode. The behaviour of the electron densities was consistent with the intensity of emission light from arc discharges.

Keywords — Shack-Hartmann, arc discharge, electron density

I. INTRODUCTION

A fundamental understanding of the behaviour of arc discharges under high pressure is important for the development of highly reliable SF6 gas circuit breakers, stable arc welding processes and effective decomposition of toxic waste [1-3]. In general, the characteristics of discharges are described by several physical quantities. Particle densities in atmospheric arcs, for example, have been extensively measured by various optical techniques [4-6]. Further, numerical simulation of arc modeling has been a powerful tool for studying transient particle compositions and electrical parameters in arc discharges [7, 8]. However, there has never been a particle density distribution over an arc channel obtained by only a single measurement.

Recently, a Shack-Hartmann type laser wavefront sensor has been demonstrated to be a novel method for determining an overall electron density distribution at one time with considerable accuracy [11].

In this paper, we report on electron density distributions over atmospheric arc channels in an extinguishing phase with low currents of several amperes. The experimental results obtained by a single measurement using Shack-Hartmann sensor demonstrate the feasibility of fully understanding the unstable extinguishing process of atmospheric arcs.

II. GENERAL INSTRUCTIONS

A. Shack-Hartmann type laser wavefront sensor

Figure 1 illustrates the main components of the Shack-Hartmann type laser wavefront sensor in this study. The sensor employed commercially available two microlens arrays (SUSS Micro Tec 11-1511-100-000; diameter of microlens=150µm; focal length=38.4mm), two continuous-wave diode lasers (TOPTICA Photonics AG iBEAM-SMART-785-S; wavelength=784nm, Melles Griot 561CS325; wavelength=408nm) and two ICCD (Intensified Charge-Coupled Device) cameras (Andor Co., Ltd DH734-18F-73; minimum shutter speed=2ns; pixel size=13µm×13µm; pixel number=1024×1024, Andor Co., Ltd DH734-18U-03; pixel size=13µm×13µm; pixel number=1024×1024). A detailed description of the optical setup and characteristics of a Shack-Hartmann type laser wavefront sensor was published elsewhere [9-12].

The temporal resolution of the sensor is determined by the time taken for the shutters to operate. Here, the shutter speed was set to 1µs. Further, the shortest time interval of continual ICCD operations is more than 2s, thus electron density measurement was carried out at a certain time in an arc discharge by controlling trigger-signal timings.

Electron densities in arc discharges are achieved by performing Abel transformation to line-integral electron densities. A line-integral electron density \(N_{el}(x,y) \) is expressed by the following equation [9]:

\[
N_{el}(x,y)L = \sum_{k} P \frac{\int T_j(\lambda_k) - T_j(\lambda_1)}{8(\lambda_k^2 - \lambda_1^2)} \int N_{el}(x,y)dz
\]

where:
- \(x \) = Radial direction of arc discharge (m)
- \(y \) = Axial direction of arc discharge (m)
- \(z \) = Optical path direction (m)
- \(L \) = Length of discharge area along \(z \) (m)
- \(N_{el} \) = Electron density at \(k \)th microlens (m\(^{-3}\))
- \(P \) = Diameter of microlens (m)
- \(f \) = Focal length of microlens (m) = \(4.47 \times 10^{-6} \) (m)
- \(\lambda \) = Wavelength of laser (m)

[1] Yuki Inada, Shigeyasu Matsuoka, Akiko Kumada, Hisatoshi Ikeda and Kunihiko Hidaka, “Shack-Hartmann Type Laser Wavefront Sensor for Measuring Electron Density in Low Current Arc,” Department of Electrical Engineering and Information Systems, Tokyo University, 3-1, Hongo, 7-chome, Bunkyo-ku, Tokyo, Japan, inada@hvg.t.u-tokyo.ac.jp

[2] SUSS Micro Tec 11-1511-100-000; diameter of microlens=150µm; focal length=38.4mm.

[3] TOPTICA Photonics AG iBEAM-SMART-785-S; wavelength=784nm, Melles Griot 561CS325; wavelength=408nm.

[4] Andor Co., Ltd DH734-18F-73; minimum shutter speed=2ns; pixel size=13µm×13µm; pixel number=1024×1024.

[6] A detailed description of the optical setup and characteristics of a Shack-Hartmann type laser wavefront sensor was published elsewhere [9-12].
\(T(\lambda) = \text{Spot shift in } x \text{ direction for wavelength } \lambda \) (m)

A detailed description of analytical process has been previously reported [11].

III. RESULTS

Figure 3(a) and (b) show typical spot shift vectors of 784- and 408-nm lights, respectively. The measurements were carried out at \(t=90\mu s \). The spot shift vectors exemplified by the green solid lines were averaged along the \(y \) direction. Displacing the exemplified regions in the axial direction provided the moving average from the anode to cathode. The axial spatial resolution was 450\(\mu m \) due to the average among three spot shift vectors along the \(y \) direction. The radial spatial resolution, on the other hand, was 150\(\mu m \), which is equal to the diameter of the microlenses.

Figure 4 shows the radial components of the averaged spot shift vectors indicated by the green solid lines in Figure 3. As shown in Figure 4, the presence of the electrons was confirmed by the difference between the spot shifts of the two lasers. Figure 5 represents the line-integral electron density given by using the spot shifts in Figure 4 and equation (1). The line-integral electron density was approximated by a Gauss function. Figure 6 shows the electron density acquired by performing Abel transformation to the Gauss function. In the same manner, overall electron density distributions in arc channels were achieved. Figure 7(a) and (b) show the overall electron density distributions at \(t=70 \) and 90\(\mu s \), respectively. The red and blue regions indicate the highest and lowest electron densities in arc channels.

Figure 8(a) and (b) show emission light from arc discharges observed using the framing camera at \(t=70 \) and 90\(\mu s \), respectively. The light intensity in Figure 8 increases from blue to red regions. The white regions represent the saturation of the light intensity.
(b) 408-nm laser light

Fig. 3. Spot shift vectors

Fig. 4. The radial components of the averaged spot shift vectors

Fig. 5. The line-integral electron density

Fig. 6. The electron density

Fig. 7. The overall electron density distributions
IV. DISCUSSION

The electron densities in an extinguishing phase shown in Figure 7 were lower around the gap centre than near the anode and cathode. The same values of electron densities were not acquired among different arc discharges, but higher electron densities around both electrodes were reproducibly achieved. The behaviour of the electron densities around the anode is direct evidence supporting theoretical studies that have predicted an increase in electron densities with contaminating metallic vapour from an anode [13]. On the other hand, one of the most reasonable supports for higher electron densities around the cathode is the electron emission from the cathode due to the collision of positively charged ions.

The electron density distributions in Figure 7 are consistent with the images of emission light in Figure 8 because the regions representing stronger light intensity tend to have higher plasma densities including greater number densities of excited species and electrons.

V. CONCLUSION

We reported on an electron density distribution over an atmospheric arc channel obtained by a single measurement using a Shack-Hartmann type laser wavefront sensor. Electron densities in an extinguishing phase with currents of several tens of amperes were lower around the gap centre than near the anode and cathode. Shack-Hartmann sensor was demonstrated to be a valuable instrument for the quantitative observation of electron density distributions in unstable atmospheric arcs.

REFERENCES

Fig. 8. Emission light from arc discharges