Electric Power Supply System for Automobile

M1 : Pakorn Sukprasert
Hori-Fujimoto Lab.
Outline

- Introduction
- Electrical System in Internal Combustion Vehicle (ICVs)
- Electrical System in Electric Vehicles (EVs)
- Electrical System in Fuel-Cell Electric Vehicles (FCEVs)
- Conclusion
Introduction

Automotive

- ICVs
- EVs
- FCEVs

Electric system
- Usage
- Supply
- Storage
Electrical System in ICVs

- Circuit diagram
Electrical System in ICVs

- Usage
 - Starting System
 - Ignition System
 - Engine management

Engine needs an initial rotation speed to start its own operation.

“Automobile electrical and electronic systems”, Tom Denton, 2004
Need electricity to make a combustion

Electric power for
- Starting System
- Ignition System
- Engine management

https://en.wikipedia.org/wiki/Ignition_system
Electrical System in ICVs

- Electric power for
 - Starting System
 - Ignition System
 - Engine management

“Automobile electrical and electronic systems”, Tom Denton, 2004
Electrical System in ICVs

- Electric power supply
 - Alternator
 - = Generator + Rectifier

“Automobile electrical and electronic systems”, Tom Denton, 2004
Electrical System in ICVs

- Electric storage: battery

- Supply enough power for starting
- Supply enough energy for other accessories when not running

http://en.wikipedia.org/wiki/Automotive_battery
Electrical System in EVs

Usage

- Motor drive
- Control unit and accessory

http://techon.nikkeibp.co.jp/english/NEWS_EN/20090729/173547/?SS=imgview_e&FD=91980885&ad_q
Electrical System in EVs

http://www.semicon.toshiba.co.jp/eng/application/automotive/ecology/power_train/evs/
Electrical System in EVs: Charging storage

- **Battery**
 - Long time charging
 - Long range

- **Capacitor**
 - Quick charge
 - Short range

Li-ion battery
Electrical System in EVs: Charging

- Charging requirements
 - Charging electricity as fast as battery allows
 - Battery type
 - Monitoring charging process to avoid damage
 - Voltage
 - Current
 - Temperature
- Controlled by battery management unit

http://auto.howstuffworks.com/electric-car5.htm
Electrical System in EVs: Charging

Electric Vehicle Batteries Charging System

- **Electrical Grid**
- **AC-DC Converter**
- **DC-DC Converter**
- **Batteries**

Digital Control System

- V_i, i_i
- V_{cc}
- V_o, i_o

[Image: Diagram of an Electric Vehicle Batteries Charging System]

Electrical System in EVs: Charging source

- Charging station

http://en.wikipedia.org/wiki/Charging_station
Electrical System in EVs : Charging source

- Household charging
 - Convenience
 - Long charging time

[Image of a car charging at a household outlet]

http://auto.howstuffworks.com/electric-car5.htm
Electrical System in EVs: Charging source

- Inductive charging

Electrical System in FCEVs

- **Power Control Unit**: Governs the flow of electricity.
- **Electric Motor**: Propels the vehicle much more quietly, smoothly, and efficiently than an internal combustion engine and requires less maintenance.
- **Fuel Cell Stack**: Converts hydrogen gas and oxygen into electricity to power the electric motor.
- **High-Output Battery**: Stores energy generated from regenerative braking and provides supplemental power to the electric motor.
- **Hydrogen Storage Tank**: Stores hydrogen gas compressed at extremely high pressure to increase driving range.

Vehicle image courtesy of American Honda Motor Co., Inc.

Electrical System in FCEVs

- **Fuel Cell Stack**
- **DC/DC Conv**
- **Battery**
- **Inv**
- **Motor**
- **Auxiliary Devices**

- **Regeneration, Recharge Bat when needed**
- **Assist fuel cell when needed**
- **Power vehicle at high battery SOC**

Cycle requirement
Conclusion

- Electric system is necessary in every car.

- Control unit is important for many processes.
Design of a Battery Charger and Charging Management System for an Electric Vehicle

Aaron W. Cousland, Richard J. Ciaravolo, Gary Blieden and Dr. Nasser Hosseinzadeh
Faculty of Engineering and Industrial Sciences
Swinburne University of Technology
Hawthorn, VIC, Australia

Published in: Universities Power Engineering Conference (AUPEC), 2010 20th Australasian
Outline

- Introduction
- System Design Overview
- Power Module Design
- “Per-Cell” Circuit Design
- Charging Management System Design
- Conclusion
Introduction

- Swinburne University of Technology’s EV
 - A string of 80, 4.2V, 31 Ah rechargeable Li-ion battery

- Li-ion cells accept constant-current/constant-voltage (CC/CV) charging scheme

- Monitor and Equalize cell
System Design Overview

- **Power module**
 - Automatic controlled
 - Vary voltage from 216 V to 336 V, while current = 6 A

- **Per-cell monitoring system**
 - Li-ion requires careful monitoring each cell to avoid damage

- **Charging management system (CMS)**
 - Overall system integration
 - Control logic
System Design Overview

- Communicate via Two-wire interface (TWI)
- PIC microcontroller for each subsystem

Fig. 1 System Overview
Power Module Design

- 2 Choices
 - Buck Converter Approach
 - Digitally Controlled, Motorised VARIAC Approach

- Buck Converter Approach
 - Input 400 V
 - Control voltage from 216 V to 336 V
 - PIC monitors output and sends PWM to control duty-cycle
 - Get instruction from CMS
Power Module Design

- Digitally Controlled, Motorised VARIAC Approach
 - Use motor to move a contactor
 - Motor is controlled by PIC
 - Use rectifier to produce DC voltage
Power Module Design

- **Selected Approach**
 - Power delivered per cost
 - At the same price
 - \(\text{VARIAC} \rightarrow 7A \)
 - Buck converter \(\rightarrow 3A \)

- **Feedback Control**
 - Measure
 - Current using hall-effect sensor
 - Output voltage
 - Control
 - Modify output voltage to achieve constant current
 - Maintain constant voltage before complete
“Per-Cell” Circuit Design

- Monitor Voltage and Temperature not to exceed the limit
- Two-cell-per-circuit
- Measurement send to CMS
- Get instruction from CMS to equalize cell

“Per-Cell” Block Diagram
“Per-Cell” Circuit Design

- **Design Philosophy**
 - Scalable for flexibility in battery size
 - Replaceable in case of failure

- **Measurement**
 - Battery voltage \rightarrow voltage divider \rightarrow ADC
 - Temperature \rightarrow thermistor \rightarrow ADC
“Per-Cell” Circuit Design

- Capacity Balancing Load Circuit.
 - Equalization of state of charge (SOC)
 - Optimize capacity
 - Reduce risk of over voltage
“Per-Cell” Circuit Design

- Communication
 - Slave node on TWI bus
 - Get instruction from CMS
 - Photo coupler for electrical isolation
Charging Management System Design

- CMS Features
 - Master node on TWI communication bus
 - Receive data to change control logic
 - Control a relay for quickly termination
 - Display a process and collect detailed statistics
Charging Management System Design

- **Applied charging profile**
 - CC/CV cannot be applied all the time because of:
 - Too low voltage after discharge
 - Damaged cell
 - Trickle-charge must be applied:
 - To reach minimum required voltage
 - If it cannot reach, the cell was damaged

- **Algorithm**
 - $V < V_{\text{threshold}} \Rightarrow I_{\text{trickle}}$
 - $V > V_{\text{threshold}} \Rightarrow I_{\text{cc}}$
 - $V = V_h \Rightarrow \text{reduce current}$
Conclusion

- Three components: a power module, per-cell unit, CMS
- Motorised VARIAC for varying voltage
- CMS is a center controller
- Communication system: TWI bus