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Abstract— This paper presents a visual servoing of 6 degree-
of-freedom (DOF) manipulator based on intersample distur-
bance rejection with switching scheme. In the controller, mul-
tirate intersample disturbance rejection algorithm is utilized,
which was proposed by authors for general digital control
system with restricted sampling frequency. The proposed feed-
forward scheme with open-loop estimation and switching func-
tion enables the disturbance rejection without any sacrifice of
the closed-loop characteristics. A new precise formulation of
delay problems in visual servoing is established as the image
processing latency, the difference between sampling period
of camera signal and control period of joint servo system,
and delay of inner-loop joint servo system. By introducing
novel multi-loop control schemes and depth identification, the
proposed intersample disturbance rejection controller becomes
applicable to the complicated visual servoing problem of 6 DOF
manipulator with moving object points. Finally, the advantages
of the proposed control system are verified through simulations
using 6 DOF robot manipulator with multiple feature points.

I. INTRODUCTION

Visual servoing plays very important role for robot manip-
ulators to deal with objects in unknown environment. In the
study of image-based visual servoing [1], recent important
topics are 1) global instability on image-based method [2],
2) selection of features [3], and 3) problem about sensor
latency. This paper deals with the 3rd topic by separating
this latency into two problems. The first problem is that the
vision sensor requires long time for image processing, and
this delay works as dead-time to feedback control system.
The second problem is that the sampling period of vision
sensor such as a CCD camera is comparatively long (over
33 [ms]) while the control period of joint servo is short (less
than 1 [ms]).

For the first problem of time delay modeled as e−sTd ,
many prediction methods such as Kalman filter [4], [5],
AR model [6], α − β − γ filter [7], generalized predictive
controller (GPC) [8], and nonlinear observer [9] have already
been proposed. In this paper, the movement of object is
modeled as output disturbance, and it is estimated and
predicted by full-order disturbance observer.

For the second problem about difference between sampling
period and control period which is expressed as Ty > Tu

in the notation of section II, several approaches have also
been proposed based on interpolation [9], [10] and sampled-
data optimal control [11]. Especially in [9], the intersample
estimation method of object movement was proposed based
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Fig. 1. Perspective model

on the motion model and its observer. However, these pre-
vious papers [4]–[11] simply deal with the delay as slow
sensor problem, and they do not clearly distinguish the image
processing delay (e−sTd) from the sampling period difference
(Ty > Tu). On the other hand, this paper formulates this issue
explicitly by establishing novel precise model of the delay
problem. Moreover, this paper makes first attempt to reject
the tracking error completely on image plane at intersample
points.

In [12], authors applied the proposed intersample distur-
bance rejection to a simple visual servo system of 2 DOF
manipulator with single feature point, and it was verified in
experiments. This paper applies the intersample disturbance
rejection algorithm to more general and complicated case of 6
DOF manipulator with multiple feature points by introducing
new control schemes such as velocity screw controller in
camera coordinates and depth identification method.

II. MODELING OF VISUAL SERVO SYSTEM

In this section, the visual servo problem is considered [1],
in which the camera mounted on the robot manipulator tracks
a moving object. Assume the m feature points are selected,
and they are defined as ξ := [ξT

1 , · · · , ξT
m]T and ξi :=

[ξxi, ξyi]T (i = 1, · · · ,m). Let the positions and orientations
of camera and object be xc ∈ R6 and xo ∈ R6, respectively.
The camera is modeled by a mapping ι : R6 × R6 → R2m

as

ξ = ι(xc,xo). (1)

The derivative of (1) is calculated by

ξ̇ =
∂ι

∂xc
ẋc +

∂ι

∂xo
ẋo (2)

:= J(ξ,z)vc + d1(t) (3)
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Fig. 2. Inner-loop velocity controller.

where J := [JT
1 , · · · ,JT

m]T is the image Jacobian [1],
z := [z1, · · · , zm]T , zi is the distance between the i–
th object and camera shown in Fig. 1, vc = ẋc :=
[Tx, Ty, Tz, ωx, ωy, ωz]T is the velocity screw of the camera
frame expressed in the camera coordinates, d1(t) is the
disturbance caused by the motion of object, and J i is defined
as

J i :=

[
− f
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zi
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f − ξ2
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f ξyi

0 − f
zi
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zi
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]
,(4)

where f is the focus distance.
By using the error of feature points, the controlled variable

ec is defined as

ec(t) := J+
n (ξref − ξ(t)), (5)

where Jn is the model of image Jacobian. In this paper, it
is fixed to a constant matrix Jn := J(ξref ,zn) with the
constant desired feature ξref and nominal depth zn in order
to reduce the on-line calculation cost. The modeling error is
defined as ∆ := J+(ξ,z)−J+

n (ξref ,zn). To guarantee the
full rank of J , the number of feature points is assumed to be
m ≥ 4 [3]. Thus, J+

n is calculated by J+
n = (JT

nJn)−1JT
n .

From (3), the derivative of (5) is given by

ėc(t) = −(J+ − ∆)(Jvc(t) + d1(t)) (6)

:= −vc(t) + d2(t) (7)

where d2(t) := ∆(Jvc(t) + d1(t)) − J+d1(t).

III. INNER-LOOP CONTROLLER DESIGN

In this section, the velocity controller is designed as inner-
loop system in order to control the camera velocity vc, as
shown in Fig. 2. While the workspace position controller is
designed in the simple case of 2 DOF manipulator [12], the
velocity screw should be controlled in the camera coordinates
to obtain linear diagonal plant of the 6 DOF system.

Because this inner-loop controller employs the robust
disturbance observer (DOB) in the joint space, it is possible
to assume that each joint axis is decoupled under the cut-
off frequency of DOB [13]. Therefore, if the non-singularity
of Jacobian Jaco is assured, the transfer function from
the acceleration command v̇ref

c to the velocity vc can be
regarded as a integrator system in the frequency region below
the cut-off frequency [13]. In this 6 DOF manipulator case,
Jaco is the manipulator Jacobian in camera coordinates.
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Because this inner-loop controller needs only encoder
information as sensor output, the sampling time can be
set very shortly compared with outer-loop visual controller
which requires camera information. The typical sampling
time of inner-loop system is 0.2 ∼ 1 [ms], and the typical
cut-off frequency of DOB is 150 ∼ 300 [rad/s] [12], [13].

If the velocity controller Kv is simply selected as diagonal
gain matrix Kv = diag{Kv, · · · ,Kv}, the inner-loop system
can be expressed in the frequency region below the cut-off
frequency of DOB as

vc(s) =
Kv

s+Kv
I6u(s), (8)

where the velocity reference vref
c is selected as the control

input from the outer-loop visual servo controller (u = vref
c ).

Because the cut-off frequency of DOB is much higher than
the target frequency region of the outer-loop system, this
model (8) is very good approximation in the design of the
visual servo controller.

IV. OUTER-LOOP CONTROLLER DESIGN

From (8), the Laplace transformation of (7) is given by

ec(s) = −vc(s)
s

+
d2(s) + ec(t = 0)

s
(9)

= P (s)u(s) + d(s). (10)

where P (s) = − Kv

s(s+Kv)I6 and d(s) = d2(s)+ec(t=0)
s .

Because the linear diagonal plant model P (s) is obtained,
the multirate controller proposed in [12] is applicable and
it can be implemented as shown in Fig. 3. Thus, the
controllers can be designed independently in each axis of
vc(= [Tx, Ty, Tz, ωx, ωy, ωz]T ). Since the movement of the
object is expressed as d1(t), it can be regarded as the output
disturbance d(t) in (9). Therefore, the proposed method can
achieve high tracking performance.

In the intersample disturbance rejection which was pro-
posed by authors in [12], the disturbance is modeled as

ẋd(t) = Acdxd(t), d(t) = ccdxd(t), (11)

where Acd and ccd are known parameters, and xd(t) is un-
known state variable. For example, the step-type disturbance
with unknown amplitude can be modeled by Acd = 0, ccd =
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Fig. 4. Feedback disturbance rejection.

1, and sinusoidal type disturbance with known frequency ωd

and unknown amplitude and phase can be modeled by

Acd = Aω(ωd) :=
[

0 1
−ω2

d 0

]
, ccd = [1, 0]. (12)

The disturbance model (11) covers wide class of typical
object movement such as constant velocity motion, constant
acceleration motion, parabolic motion, circular motion, and
repetitive motion. Moreover, the motion unknown parameters
xd(t) are allowed to be changed during the motion because
the observer estimates xd(t) in real-time. For instance, in
the constant velocity motion which is modeled by (12) with
ωd = 0, the initial position and velocity are represented
as xd(0) ∈ R2. If the velocity is suddenly changed, it
can be estimated immediately by the observer. Moreover, if
some parameters in Acd and ccd are unknown, they can be
adaptively identified by nonlinear observer [9].

In Fig. 3, Ty is the sampling period of camera, Tu :=
Ty/N is the control period to inner-loop, and e−sTd repre-
sents time delay caused by image processing, which nor-
mally requires one sampling time (Td = Ty). Because
this delay generates difficulty in feedback system, the full
order observer is utilized in order to predict one-step ahead
state variable and compensate the time delay. Moreover, the
proposed intersample disturbance rejection is assured not
only for the one sampling-time delay but also for the non-
integer sampling-time delay [12].

V. SIMULATIONS OF FB DISTURBANCE REJECTION

In this section, the feedback disturbance rejection (Fig. 4)
proposed in [12] is verified through simulation. The vertices
of a square 40 centimeters on a side are selected as feature
points (m = 4). Fig. 5 shows the initial poses of 6 DOF
manipulator of puma 560 and the object. The object points
are moved on circles in y-z plane at x = 2[m] with angular
velocity fobj = 0.5 [Hz] as shown Fig. 10. The simulation
is performed by MATLAB/Simulink with Robotics Toolbox
[14]. This Toolbox offers useful functions such as kinematics,
dynamics, and camera model, and it enables us to check
the motions both of manipulator and image features through
animation. The camera parameters are shown in Table I1.

1The simulation conditions such as camera parameters and object size are
decided to refer the visual servoing example in Robotics Toolbox [14].
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TABLE I

CAMERA PARAMETERS IN SIMULATIONS.

dimension 512 × 512 [pixel]
focus length 8 [mm]
pixel pitch 80,000 [pixel/m]
center point (256, 256) [pixel]

The sampling period of the image and the control period
of the velocity command vref

c are set to Ty = 100 [ms] and
Tu = 25 [ms], respectively2. Because the input multiplicity is
N = 4 and the order of plant (9) is n = 2, perfect disturbance
rejection is assured at 2(= N/n) intersample points [12].

The multirate feedback controller is designed with step
and fobj = 0.5 [Hz] sinusoidal disturbance model Acd =
diag{0,Aω(2πfobj)} because d1 has strong spectrum at fobj

and d(s) has 1/s in (9). Fig. 6 shows the comparison results
between the proposed method and well-known inverse image
Jacobian method, in which the control law is described as
vref

c [i] = γJ+(ξ[i],zn)(ξref − ξ[i]). The gain γ is tuned
to minimize the steady-state error and γ = 10 is obtained.
While the inverse Jacobian method has large steady-state
error caused by object movement, the proposed method
converges to zero feature error.

Fig. 7 and 8 show the camera pose of the proposed
method. It is shown that the camera approaches toward the
object in x-direction and moves on circle in y, z-direction
to obtain the desired feature. While the initial orientation
is given as (φ, θ, ψ) = (−0.3, π/2 + 0.1, 0.2) in Z-Y-Z
Euler angles, it successfully converges to (0, π/2, 0) by the
proposed scheme.

While the nominal depth is given by zn = [1.5, · · · , 1.5]T ,
the true value is z = [1.28, · · · , 1.28]T at the steady-state.
Although the modeling error ∆ is generated by the depth
mismatch even in the steady-state, the feature error converges
to zero as shown in Fig. 6 and Fig. 11. The convergence is
theoretically assured by internal model principle because the
controller has the disturbance model of Aω(2πfobj) in the
case of FB disturbance rejection.

Fig. 9 and 10 show the trajectories of image feature points
and camera position. Because the image Jacobian is fixed to
the constant matrix Jn in the control law, the trajectories
overshoot the desired points against the moving object. In
spite of that, the features converge to desired image points
in steady-state.

Fig. 11 shows the comparison results of steady-state
feature error between the proposed multirate control and
conventional single-rate control with the same disturbance
model. In Fig. 11, the object speed is set to faster value
fobj = 1.5[Hz] to show the difference clearly. Although the
feature error becomes zero at every sampling point (Ts =
0.1[s]), the inter-sample error of single-rate system is larger
than the multirate system. On the other hand, in the proposed
method, the error ec(t) and its derivative ėc(t) are regulated
to zero at M(= 2) intersample points because the plant state
is selected as xp = [ec, ėc]T .

2The sampling time 100 [ms] is set to be longer than the normal video-
rate 33 [ms] so that the inter-sample response can be evaluated in the future
experiments.
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VI. SIMULATIONS OF FF DISTURBANCE REJECTION

In this section, the feedforward disturbance rejection of
Fig. 12 [12] is verified for the high speed movement of
fobj = 1.5[Hz]. In this scheme, the disturbance state variable
in (11) is estimated by the open-loop disturbance observer.
When the estimation converges to the steady state, the
switch turns on at t = t0. After that, the switch turns off
immediately. The disturbance can be calculated by the model
from the initial value x̂d[t0]. The disturbance feedforward
F d obtained from [12] guarantees perfect intersample dis-
turbance rejection at M inter-sample points.

Fig. 13 shows the sensitivity and complementary sensitiv-
ity functions S[z] and T [z] both of the feedback (Fig. 4) and
the feedforward (Fig. 12) disturbance rejection control. Fig.
13(a) indicates the disadvantages of the feedback approach,
where the closed-loop characteristics worsen and it becomes
difficult to assure stability robustness. On the other hand,
in the proposed feedforward approach (Fig. 12), the closed-
loop characteristics depend only on C2[z] which does not
need to have the internal model of disturbance. Therefore, the
feedback characteristics are better than those of the feedback
approach.

However, the performance robustness of feedforward dis-
turbance rejection is determined by the feedback controller
C2[z]. Because the variation of feedforward performance
under the variation of plant is decided by sensitivity function
S[z], the robustness of disturbance rejection performance
depends on C2[z]. Thus, if the disturbance frequency is over
the cut-off frequency of S[z], the performance is worsen by
plant variation.

Fig. 14 shows the simulation results for high speed object
fobj = 1.5[Hz] with the constant nominal depth zn =
[1.5, · · · , 1.5]T . Because the image Jacobian is fixed to
constant matrix J(ξref ,zn), the depth mismatch causes the
plant variation ∆ even in the steady-state. Moreover, the
disturbance frequency 1.5[Hz] is much higher than the cut-
off frequency of S[z], as shown in Fig. 13(b). Thus, Fig. 14
has steady-state error after the switching-time t0 = 5[s].

Therefore, the depth information is estimated by recursive
least-squares (RLS) algorithm [15]. From (3), the regression
model of unknown parameter θi := 1

zi
(i = 1, · · · ,m) is
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Fig. 13. Frequency responses (S[z] and T [z]).

obtained by

yi = ϕT
i θi + d1i, (13)

where

yi :=
[ ˙ξxi

˙ξyi

]
−

[
ξxiξyi

f ωx − ξ2
xi+f2

f ωy + ξyiωz

ξ2
yi+f2

f ωx − ξxiξyi

f ωy − ξxiωz

]
, (14)

ϕT
i :=

[ −fTx + ξxiTz

−fTy + ξyiTz

]
. (15)

Fig. 15 shows the estimated depth ẑ1. The implemented
algorithm is RLS with exponential forgetting and conditional
updating [16]. To remove the disturbance effect, the both
signals of yi and ϕi are filtered by band blocking filter. The
updating condition is selected as ϕiϕ

T
i > ε(:= 10−10).

Because this condition is not satisfied after t = 3.5[s],
the estimation update is stopped to avoid the divergence of
estimator state by the poor persistent excitation (PE).

Fig. 16 shows the feature error of feedforward distur-
bance rejection with estimated depth. The depth z in J+

n

is switched from the nominal value 1.5 to estimated value
at t = 4[s]. The high frequency disturbance is rejected
completely after the switching time t0 = 5[s].

By above discussion, the problem of the proposed feed-
forward disturbance rejection is founded, and it is overcome
by adaptive scheme. Next, the advantage of this method
is mentioned. Fig. 17 shows the x-axis camera position in
world coordinates which corresponds the Tz direction of
camera coordinates in the steady-state. While the transient
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response of FB disturbance rejection is oscillated by the high
frequency internal model shown in Fig. 13(a), that of the
FF method is smooth and stable. Moreover, the FB method
could become unstable when many disturbance components
are considered [17]. On the other hand, the FF method can
preserve the good stability robustness.

VII. CONCLUSION

In this paper, novel multirate controller was applied to
the visual servo system of 6 DOF manipulator. Because the
proposed control system assured the perfect disturbance re-
jection at M intersample points, the control system achieved
high tracking performance.

The advantages and drawbacks both of feedback and feed-
forward disturbance rejection algorithm were demonstrated.
The feedback approach has strong robust performance against
the plant uncertainty because of the internal model principle.
However, the internal model of high frequency disturbance
damages the closed-loop characteristics, which causes poor
stability robustness. On the other hand, the feedforward ap-
proach preserves the excellent closed-loop characteristics and
stability robustness. However, if the disturbance components
is over the closed-loop cut-off frequency, the adaptive scheme
is required to reduce the modeling error.

Because this method is based on inverse Jacobian J+
n , the

global stability is not assured as pointed out in [2]. In order
to assure the global stability, specific approach such as [18]
and [19] should be combined into the proposed method. It
will be one of the future works.

However, this paper established new formulation of the
delay problems in visual servoing as the difference between
Ty and Tu, the image processing delay e−sTd , and inner-
loop delay P (s). Moreover, the novel control methods were
proposed to overcome these problems. Finally, the author
would like to note that part of this research is carried out
with a subsidy of the FANUC FA and Robot Foundation.
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