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Abstract

In this paper, novel multirate sampling controllers
are proposed for digital control systems, where the
speed of the A/D converters is restricted to be slower
than that of the D/A converters. The proposed feed-
back controller assures perfect disturbance rejection
(PDR) at M intersample points in the steady state.
The proposed method is extended to systems with time
delay, and the compensation method is proposed based
on the observer including time delay model. Next, the
novel scheme of repetitive control is proposed based on
the open-loop estimation and switching function, which
enables the rejection of periodical disturbance without
any sacrifice of the closed-loop characteristics. Finally,
the proposed controllers are applied to visual servo sys-
tem by introducing the workspace controller and non-
linear perspective transformation. The advantages of
these approaches are demonstrated by simulations and
experiments using a robot manipulator.

1 Introduction

A generalized digital control system is shown in Fig.
1, where Pc(s) is a continuous-time plant to be con-
trolled, C[z] is a discrete-time controller implemented
in digital computer. Because the discrete-time con-
troller has to deal with continuous-time signals, it needs
to have two samplers S for the reference signal r(t) and
the output y(t), and one holder H on the input u(t).
Therefore, there exist three time periods Tr , Ty, and
Tu which represent the periods of r(t), y(t), and u(t),
respectively. The input period Tu is generally decided
by the speed of the actuator, D/A converter, or the
calculation on the CPU. The output period Ty is also
determined by the speed of the sensor or the A/D con-
verter.

Actual control systems usually hold hardware restric-
tions on these periods (Tu and/or Ty). Moreover, in
case of multivariable systems, there exist many time
periods. However, the conventional digital control sys-
tems often make all periods equal to the longest period
for simplification. On the other hand, the multirate
sampling control systems have been studied from the
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Figure 1: Digital control system.

point of view both of control theories and practical ap-
plications [1, 2].

Authors have developed a novel multirate feedfor-
ward controller, in which the control input is changed
several times during Tr [3, 4]. In this paper, new mul-
tirate feedback controller is considered. Historically,
many multirate feedback control theories have been
developed as surveyed in [1]. These theoretical ap-
proaches have reached the negative result that feed-
back characteristics such as disturbance rejection per-
formance and stability robustness are never improved
by the multirate control [5, 6].

However, this theoretical result is limited to the case
where there is no hardware restriction on the sampling
scheme (Ty = Tu). On the other hand, many indus-
trial systems have hardware restrictions in their sam-
pling mechanisms. Thus, in this paper, digital control
systems where the sampling periods of plant output
are longer than the control periods (Tu < Ty) are con-
sidered. For these systems, novel multirate feedback
controller is proposed which improves intersample dis-
turbance rejection performance.

The restriction of Tu < Ty may be general because
D/A converters are usually faster than the A/D con-
verters. In particular, head-positioning systems of hard
disk drives [4] and visual servo systems of robot manip-
ulators belong to this category, because the sampling
rates of the measurement are relatively slow. In this pa-
per, the proposed controllers are applied to the visual
servo system, and the advantages are verified through
simulations and experiments using a robot manipula-
tor.
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Figure 2: Multirate sampling control.

2 Perfect Disturbance Rejection Control

For the restriction of Tu < Ty, the frame period Tf

is defined as Tf = Ty, and the dynamics of the con-
troller is described by Tf [1]. For simplification, the
continuous-time plant is assumed to be a SISO system
in this paper. The proposed methods, however, can be
extended to deal with the MIMO system [2, 7].

In the proposed multirate scheme, the plant input
is changed N times during Tf and the plant state is
evaluated M times in this interval, as shown in Fig. 2.
The positive integers M and N are referred to as input
and state multiplicities, respectively. N is determined
by the hardware restriction, and M is defined as M =
N/n, where n is the plant order.

In Fig. 2, µj(j = 0, 1, · · · , N ) and νk(k = 1, · · · , M )
are parameters for the timing of input changing and
state evaluation, which satisfy the following conditions.

0 = µ0 < µ1 < µ2 < ... < µN = 1 (1)

0 < ν1 < ν2 < ... < νM = 1 (2)

If Ty is divided at equal intervals, the parameters are
set to µj = j/N and νk = k/M .

2.1 Plant Discretization by Multirate Sampling
Consider the continuous-time plant described by

ẋ(t) = Acx(t) + bcu(t) , y(t) = ccx(t). (3)

The discrete-time plant discretized by the multirate
sampling control of Fig. 2 becomes

x[i + 1] = Ax[i] + Bu[i] , y[i] = Cx[i], (4)

where x[i] = x(iT ), and where matrices A, B, C, and
vector u[i] are given by[

A B
C O

]
:=

[
eAcTf b1 · · · bN

cc 0 · · · 0

]
, (5)

bj :=
∫ (1−µ(j−1))Tf

(1−µj)Tf

eAcτbcdτ , u[i] := [u1[i], · · · , uN [i]]T .

(6)
The intersample plant state at t = (i + νk)Tf is repre-
sented by

x̃[i] = Ãx[i] + B̃u[i], (7)
where x̃[i] is a vector composed of the intersample plant
state xk[i] := x((i + νk)Tf ) 1.

x̃[i] := [xT
1 [i], · · · , xT

M [i]]T

= [xT
1 ((i + ν1)Tf ), · · · , xT

M ((i + 1)Tf )]T (8)
1The operation of (8) is called “discrete-time lifting” in ad-

vanced sampled-data control theory [8] .
335
The coefficient matrices of (7) are given by

[
Ã B̃

]
:=




Ã1 b̃11 · · · b̃1N

...
...

...
ÃM b̃M1 · · · b̃MN


 , (9)

Ãk := eAcνkTf , (10)

b̃kj :=




µj < νk :
∫ (νk−µ(j−1))Tf

(νk−µj)Tf
eAcτbcdτ

µ(j−1) < νk ≤ µj :
∫ (νk−µ(j−1))Tf

0 eAcτbcdτ
νk ≤ µ(j−1) : 0

.

2.2 Design of Perfect Disturbance Rejection
Controller

In this section, a new multirate feedback controller
is proposed based on the state-space design method of
disturbance observer.

Consider the continuous-time plant described by

ẋp(t) = Acpxp(t) + bcp(u(t) − d(t)) (11)

y(t) = ccpxp(t), (12)

where d(t) is the disturbance input. Let the distur-
bance model be

ẋd(t) = Acdxd(t), d(t) = ccdxd(t). (13)

For example, the step type disturbance can be modeled
by Acd = 0, ccd = 1, and sinusoidal type disturbance
with frequency ωd can be modeled by

Acd =
[

0 1
−ω2

d 0

]
, ccd = [1, 0]. (14)

The continuous-time augmented system consisting of
(11) and (13) is represented by

ẋ(t) = Acx(t) + bcu(t) (15)
y(t) = ccx(t) (16)

Ac :=
[

Acp −bcpccd

O Acd

]
, bc :=

[
bcp

0

]
, x :=

[
xp

xd

]
,

cc := [ccp,0].

Discretizing (15) using multirate sampling control, the
intersample plant state at t = (i + νk)Tf can be calcu-
lated from the kth row of (7) as

x[i + νk] = Ãkx[i] + B̃ku[i] (17)

Ãk =
[

Ãpk Ãpdk

O Ãdk

]
, B̃k =

[
B̃pk

O

]
.

For the plant discretized by (4) from (15), the discrete-
time observer at the sampling points is obtained from
Gopinath’s method by

v̂[i + 1] = Âv̂[i] + b̂y[i] + Ĵu[i] (18)
x̂[i] = Ĉv̂[i] + d̂y[i]. (19)
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Figure 3: Multirate control with disturbance observer.

As shown in Fig. 3, let the feedback control law be

u[i] = up[i]+ud[i] = F px̂p[i]+F dx̂d[i] = F x̂[i], (20)

where F := [F p, F d]. Letting ev[i] be the estimation
error of the observer (ev[i] = v̂[i] − v[i]), the following
equation is obtained.

x̂[i] = x[i] + Ĉev[i]. (21)

From (17) to (21), the closed-loop system is represented
by
 xp[i + νk]

xd[i + νk]
ev[i + 1]


 =


 Ãpk + B̃pkF p Ãpdk + B̃pkF d B̃pkFĈ

O Ãdk O

O O Â





 xp[i]

xd[i]
ev[i]




(22)
Because full row rank of the matrix B̃pk can be assured
by [9], F d can be selected such that the (1,2) element of
the above equation becomes zero for all k = 1, · · · , M .

Ãpdk + B̃pkF d = O (23)

The simultaneous equation of (23) for all k becomes

Ãpd + B̃pF d = O, (24)

[
Ãpd B̃p

]
:=




Ãpd1 B̃p1

...
...

ÃpdM B̃pM


 . (25)

From (24), F d is obtained by

F d = −B̃
−1

p Ãpd. (26)

In (22) and (23), the influence from disturbance xd[i]
to the intersample state xp[i+νk] at t = (i+νk)Tf can
become zero. Moreover, xp[i] and ev[i] at the sampling
point converge to zero at the rate of the eigenvalues of
ÃpM + B̃pMF p and Â (the poles of the regulator and
observer). Therefore, perfect disturbance rejection is
achieved (xp[i+νk] = 0) in the steady state. The poles
of the regulator and observer will be tuned by taking
account of the tradeoff between the performance and
stability robustness. In [4], the gain F p is designed us-
ing intersample observer, which enables to increase the
336
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stability margin by compensating large delay generated
by holder.

Substituting (18) for (20), the feedback type con-
troller is obtained by[

v̂[i + 1]
u[i]

]
=

[
Â + ĴF Ĉ b̂ + ĴF d̂

F Ĉ F d̂

] [
v̂[i]
y[i]

]
.

(27)
In this paper, the state multiplicity is defined as

M = N/n in order to reject the disturbance perfectly
at M inter-sample points. On the other hand, M was
selected more than N/n to optimize the inter-sample
performance in [10].

2.3 Extension to Systems with Time Delay
In this section, the proposed multirate feedback

control is extended to plants with time delay. The
continuous-time plant with time delay Td is described
by

ẋ(t) = Acx(t) + bcu(t) (28)
y(t) = ccx(t − Td), (29)

as shown in Fig. 4. Because the time delay is consid-
ered to be generated by the output signal processing or
calculation, it is assumed to be shorter than the frame
period (Td ≤ Tf ) for simplification. However, longer
time delay can also be considered in the same way as
[11].

The discrete-time plant with multirate hold can be
represented by

x̄[i + 1] = Āx̄[i] + B̄u[i] (30)

ȳ[i] = C̄x̄[i] (31)

Ā :=
[

A O
O O

]
, B̄ :=

[
B
E

]
, C̄ :=

[
c g
O Inu

]
,

x̄ :=
[

x
xu

]
, ȳ :=

[
y
xu

]
(32)

c := cce
AcνyTf , g := [gN−nu+1, · · · , gN ], (33)

gj :=




νy ≤ −1 + µ(j−1) :
−cce

AcνyTf
∫ (1−µ(j−1))Tf

(1−µj)Tf
eAcτbcdτ

−1 + µ(j−1) ≤ νy < −1 + µj :
−cce

AcνyTf
∫ −νyTf

(1−µj)Tf
eAcτbcdτ

−1 + µj ≤ νy < 0 : 0

,
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Figure 5: Feedforward repetitive control.

E := [O, Inu], νy := −Td

Tf
(34)

where nu is a number of u[i− 1] elements during Td in
Fig. 4, and xu is a vector composed of this control input
(xu[i] = [uN−nu+1[i− 1], · · · , uN [i − 1]]T ). In (31), the
measurement variable ȳ includes the past control input
xu in order to make the system observable.

For the plant with time delay represented by (30) and
(31), the discrete-time observer at the sampling points
is obtained. Thus, using the feedback gain designed in
(26), let the control law be

u[i] = F̄ x̄[i], F̄ := [F d, O]. (35)

By the parallel discussion with section 2.2, perfect dis-
turbance rejection performance is preserved by (35).

3 Periodic Disturbance Rejection Control
In this section, perfect disturbance rejection control

is applied to periodic disturbance, and two multirate
repetitive controllers are proposed [10], they are 1)
feedback approach based on the internal model princi-
ple and 2) feedforward disturbance rejection approach
based on open-loop estimation.

3.1 Feedback Repetitive Control
The disturbance with period T0 := 2π/ω0 can be

represented by the Fourier series as

d(t) = a0 +
∞∑

k=1

ak cos kω0t + bk sin kω0t. (36)

where ω0 is known and ak, bk are unknown parame-
ters. Letting the disturbance model (13) be (36), the
repetitive feedback controller is obtained by (27), in-
cluding the internal model s2 + (kω0)2 in discrete-time
domain. Repetitive disturbance is perfectly rejected
(xp[i+νk] = 0) at M inter-sample points in the steady
state.

3.2 Feedforward Repetitive Control
Repetitive feedback control based on the internal

model principle has disadvantages that closed-loop
characteristics worsen and it becomes difficult to assure
stability robustness [12]. Therefore, in this section, a
novel repetitive controller based on open-loop estima-
tion with switching function and feedforward distur-
bance rejection is proposed, as shown in Fig. 5
337
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Figure 6: Two-link DD robot with camera.

The repetitive disturbance is estimated by the open-
loop disturbance observer. When the estimation con-
verges to the steady state, the switch turns on at t = t0.
After that, the switch turns off immediately. Repeti-
tive disturbance is calculated by (37) from the initial
value x̂d[t0] which contains the amplitude and phase
information of the disturbance.

x̂d[i + 1] = Addx̂d[i], Add = eAcdTf (37)

Because the disturbance feedforward Fd is obtained
by (26), perfect disturbance rejection is achieved at M
inter-sample points. The advantage of this approach
is that the feedback controller C2[z] is completely in-
dependent of the repetitive controller. Thus, stability
robustness is guaranteed by the feedback controller ob-
tained from robust control theory. With this scheme, it
becomes possible to construct the repetitive controller
without sacrifice of the feedback characteristics.

4 Applications to visual servo system
In this section, the visual servo problem is consid-

ered, in which the camera mounted on the robot ma-
nipulator tracks a moving object as shown in Fig. 6.
Although the sampling period of vision sensor such as
a CCD camera is comparatively slow (over 33 [ms]), the
control period of joint servo is fast (less than 1 [ms]).
Therefore, multirate controllers have been developed
and implemented in the visual servo system (e.g. [13]).
In this section, it is assumed that the motion of the
object is periodic, and repetitive disturbance rejection
control is applied based on the multirate feedback and
feedforward approaches developed in section 3.

In order to focus on the dynamical problems of the
multirate system, the kinematical problems of the vi-
sual servo system are assumed to be simple: the object
movement is in two-dimensional plane, and the depth
information between the camera and the object z is
known.

4.1 Modeling of Visual Servo System
First, the work space position controller is designed

in order to control the camera position as shown in Fig.
7 [14]. Because this controller employs the robust dis-
turbance observer (DOB) in the joint space, each joint
axis is decoupled. Therefore, if the non-singularity of
Jacobian Jaco is assured, the transfer function from



ẍref
c

J−1
aco(q)

J̇aco(q)
q̇

q̈ref

Robot
with DOB

xcxref
c

Kp

sKd

+ + +

− − −

Figure 7: Workspace controller (inner-loop).

Image plane

Camera

Camera
Coordinate
System

Object

ξx

ξy

x
y

z
f

Figure 8: Perspective model

the work space acceleration command ẍref
c to the work

space position xc(= [Xc, Yc]T ) can be regarded as a
double integrator system for the frequency region below
the cut-off frequency [14]. Letting xref

c be the control
input u of the outer vision loop, the plant is modeled by
the analog system (38) because the sampling period of
the inner-loop is very short (1 [ms] in this experiment).

xc(s) = P c(s)u(s), P c(s) :=
Kp

s2 + Kds + Kp
I2 (38)

In Fig. 7, the parameters of the position controller are
set to Kp = diag{100, 100} and K d = diag{20, 20}.

Next, the perspective model of the camera is derived.
In Fig. 7, the object position (x, y) on the camera co-
ordinate system is determined only by the relative po-
sition between the camera position xc and object po-
sition xo. Therefore, the following model is obtained
because (x, y) is mapped to the feature point ξ on the
image plane, as shown in Fig. 8 [13].

ξ =
f

z

[
x
y

]
=

f

z

[
cos θ sin θ
− sin θ cos θ

] [
Xo − Xc

Yo − Yc

]
(39)

Here f is the focus distance, z is the distance between
the object and camera in the Z-axis direction, and θ :=
q1 + q2. Equation (39) is described by ξ = ι(θ)(xo −
xc) = ι(θ)xe.

Fig. 9 shows the proposed control system. In this ex-
periment, the desired feature ξref is set to zero because
the camera is controlled to be positioned just below the
object. The movement of the object can be modeled
as the output disturbance xo. Therefore, the proposed
method can achieve high tracking performance because
the periodic motion can be rejected by the proposed
PDR. Moreover, the control system of Fig. 9 is lin-
earized and diagonalized by the inverse transformation
ι−1(θ) of (39)2. Thus, the controllers can be designed

2In case of the setup of Fig. 9, ι −1(θ) is easily obtained from
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Figure 10: Frequency responses (S[z] and T [z]).

independently in the x and y axes. The sampling pe-
riod of the image and the control period of the position
command xref

c are set to Ty = 100 [ms] and Tu = 25
[ms], respectively. Because the input multiplicity is
N = 4 and the order of plant (38) is n = 2, perfect dis-
turbance rejection is assured at 2(= N/n) intersample
points. The time delay caused by image processing is
Td = 100 [ms].

4.2 Simulation and Experimental Results
In the experiments, a two-link direct drive robot is

utilized, and a personal computer is used both for joint
servo control and image processing. The repetitive dis-
turbance is modeled for k = 1st, 3rd, and 5th order.
The period of the object’s movement is T0 = 0.5[s].

Fig. 10 shows the sensitivity and complementary sen-
sitivity functions S[z] and T [z] both of the feedback
(Fig. 3) and the feedforward (Fig. 5) control systems.
Fig. 10(a) indicates the disadvantages of the feedback
repetitive controller, where the closed-loop characteris-
tics worsen and it becomes difficult to assure stability
robustness. On the other hand, in the proposed feedfor-
ward repetitive control (Fig. 5), the closed-loop char-
acteristics depend only on C2[z] which does not need
to have the internal model of repetitive disturbance.
Therefore, the feedback characteristics are better than
those of the feedback approach.

Fig. 11 shows the simulated results of position error
Xo−Xc for circular movement of the object. As shown
in Fig. 11(a), the position error of the feedforward con-
troller converges quickly after the switching action at

the inverse matrix of (39). In general case, it can be calculated
from the inverse Jacobian.
8
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.

t0 = 1.0[s], while that of the feedback controller has
large transient errors. In the steady state, the errors
of the position and velocity become zero at every Ty/2
with the proposed controllers as shown in Fig. 11(b).
The intersample position error of the proposed multi-
rate method is much smaller than that of the single-rate
controller.

The experimental results are shown in Fig. 12. In
these experiments, the image is detected at every 100
[ms]. In order to display the intersample response, the
sampling period is set to Ty = 400 [ms] in the con-
troller. Fig. 12(a) shows that the tracking error of the
proposed multirate controller is much smaller than that
of the single-rate controller. Moreover, as shown in Fig.
12(b) and (c), the camera position is very smooth be-
cause the multirate controller generates the intersam-
ple position reference based on the disturbance model.
Note that the amplitude and phase of the target move-
ment are assumed to be unknown, and the information
is estimated by the observer.
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5 Conclusion
In this paper, the repetitive disturbance rejection

controllers were applied to the visual servo system of
robot manipulator based on the multirate sampling
control. Because the proposed control system assured
the perfect disturbance rejection at M intersample
points, the control system achieved high tracking per-
formance. Moreover, the time delay for image pro-
cessing was compensated by the developed observer.
Next, the novel scheme of repetitive control was pro-
posed based on the open-loop estimation and switching
function, which enabled to reject periodical disturbance
without any sacrifice of the feedback characteristics.
The advantages of these approaches were demonstrated
through simulations and experiments using two-link di-
rect drive robot.
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