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Abstract

In this paper, novel multirate two-degree-of-freedom controllers are proposed for digital control systems, in which the sampling

period of plant output is restricted to be relatively longer than the control period of plant input. The proposed feedforward

controller assures perfect tracking at M inter-sampling points. On the other hand, the proposed feedback controller assures perfect

disturbance rejection at M inter-sample points in the steady state. Illustrative examples of position control for hard disk drive are

presented, and the advantages of these approaches are demonstrated. r 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

A digital control system usually has two samplers for
the reference signal rðtÞ and the output yðtÞ; and one
holder on the input uðtÞ as shown in Fig. 1. Therefore,
there exist three time periods Tr;Ty; and Tu which
represent the period of rðtÞ; yðtÞ; and uðtÞ; respectively.
The input period Tu is generally decided by the speed of
the actuator, D/A converter, or the calculations on the
CPU. On the other hand, the output period Ty is also
determined by the speed of the sensor or the A/D
converter.
Actual control systems usually hold the restrictions on

Tu and/or Ty: Thus, in the conventional digital control
systems, these three periods are made equal to the longer
of the two periods Tu and Ty: However, multirate
sampling control have been studied from the point of
view of both control theories and applications (Araki,
1993). Authors also have developed some multirate
sampling controllers, and applied them to motion
control systems (Fujimoto, Kawamura, & Tomizuka,

1999a; Fujimoto, Hori, & Kawamura, 2001; Fujimoto,
2000).
In this paper, the digital control systems which have

hardware restrictions of TuoTy are assumed, and novel
design methods of multirate two-degree-of-freedom
(TDOF) controllers are proposed, which achieve ‘‘per-
fect tracking’’ and ‘‘perfect disturbance rejection’’ at M

inter-sample points in Ty: The restriction of TuoTy may
be general because D/A converters are usually faster
than the A/D converters. Especially, the head-position-
ing systems of the hard disk drives (HDDs) or the visual
servo systems of robot manipulators belong to this
category, because the sampling rates of measurement are
relatively slow.
In the servo systems of HDDs, the head position is

detected by the discrete servo signals embedded in the
disks, as shown in Fig. 2. Therefore, the output
sampling period Ty is decided by the number of these
signals and the rotational frequency of the spindle
motor. However, it is possible to set the control period
Tu shorter than Ty because of the recent development of
CPU. Thus, the controller can be regarded as the
multirate system which have the hardware restriction of
TuoTy:
In the head-positioning control of HDD, the control

strategy is divided into two modes: seeking mode and
following mode. In the track-seeking mode, the feed-
forward performance is important because the head is
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moved to the desired track as fast as possible. After that,
the head needs to be positioned on the desired track
while the information is read or written. In the track-
following mode, the disturbance rejection performance
is important because the head is positioned precisely on
the desired track under the vibrations generated by disk
rotation and other disturbances. In this paper, the
proposed TDOF controllers are applied to each mode.
For HDDs, multirate controllers have demonstrated

higher performance in both feedforward (Takakura,
1999; Kobayashi et al., 1998) and feedback (Chiang,
1990; Hara & Tomizuka, 1999) characteristics. This
paper applies the proposed perfect tracking controller to
the track-seeking mode, and the proposed perfect
disturbance rejection controller is also applied to the
track-following mode.

2. Design of the multirate TDOF controller

In this section, new multirate TDOF controllers are
proposed. For the restriction of TuoTy; the frame
period Tf is defined as Tf ¼ Ty (Araki, 1993), and the
dynamics of the controller is described by Tf : In the
proposed multirate scheme, the plant input is changed N

times during Tf and the plant state is evaluated M times
in this interval as shown in Fig. 3. The positive integers
M and N are referred to as input and state multiplicities,
respectively. N is determined by the hardware restric-

tion. The state multiplicity is defined as M ¼ N=n;
where n is the plant order.
In Fig. 3, mj ð j ¼ 0; 1;y;NÞ and nk ðk ¼ 1;y;MÞ

are the parameters for the timing of the input changing
and the state evaluation, which satisfy conditions (1)
and (2).

0 ¼ m0om1om2o?omN ¼ 1; ð1Þ

0on1on2o?onM ¼ 1: ð2Þ

If Ty is divided at same intervals, the parameters are set
to mj ¼ j=N; nk ¼ k=M :
For simplification, the continuous-time plant is

assumed to be a SISO system. The proposed methods,
however, can be extended to deal with the MIMO
system in the same way as Fujimoto et al. (1999a).

2.1. Plant discretization by multirate sampling

Consider the continuous-time plant described by

’xðtÞ ¼ AcxðtÞ þ bcuðtÞ; yðtÞ ¼ ccxðtÞ: ð3Þ

The discrete-time plant discretized by the multirate
sampling control (Fig. 3) becomes

x½i þ 1� ¼ Ax½i� þ Bu½i�; y½i� ¼ Cx½i�; ð4Þ

where x½i� ¼ xðiTÞ; and where matrices A;B;C and
vectors u are given by

A B

C O

2
4

3
59 eAcTf b1 ? bN

cc 0 ? 0

2
4

3
5; ð5Þ

bj9
Z ð1�mðj�1ÞÞTf

ð1�mjÞTf

eActbc dt; u9½u1;y; uN �T: ð6Þ

The inter-sample plant state at t ¼ ði þ nkÞTf is repre-
sented by

*x½i� ¼ *Ax½i� þ *Bu½i�; ð7Þ

½ *A *B �9

*A1
*b11 ? *b1N

^ ^ ^
*AM

*bM1 ? *bMN

2
64

3
75; ð8Þ

*Ak9eAcnkTf ; *x9½xT
1 ;y;xT

M �T; ð9Þ

Fig. 1. Two-degree-of-freedom control system.

Fig. 2. Hard disk drive.

Fig. 3. Multirate sampling control.
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xk½i� ¼ x½i þ nk� ¼ xðði þ nkÞTf Þ; ð10Þ

*bkj9

mjonk;
R ðnk�mðj�1ÞÞTf

ðnk�mj ÞTf
eActbc dt;

mðj�1Þonkpmj ;
R ðnk�mðj�1ÞÞTf

0 eActbc dt;

nkpmðj�1Þ; 0:

8>>><
>>>:

ð11Þ

2.2. Design of perfect tracking controller

In the conventional digital tracking control systems, it
is impossible to track the desired trajectory with zero
error (Tomizuka, 1987), because the discrete-time plant
discretized by the zero-order-hold usually has unstable
zeros ( (Astr .om, Hangander, & Sternby, 1984).
The unstable zeros problems of the discrete-time plant

have been resolved by zero assignment method in the
use of multirate control in Kabamba (1987) and Mita,
Chida, Kazu, and Numasato (1990). However, Moore,
Bhattacharyya, and Dahleh (1993) showed that those
methods sometimes had disadvantages of large over-
shoot and oscillation in the inter-sample points because
the control input changed back and forth very quickly.
On the other hand, authors proposed perfect tracking
control by introducing the multirate feedforward con-
trol, which never has this problem because all of the
plant states are controlled along the smoothed desired
trajectories (Fujimoto et al., 2001; Fujimoto, Hori, &
Kawamura, 1999b). In this section, perfect tracking
controller C1½z� is designed so that the plant state ðxÞ
completely tracks the desired trajectory ðxnÞ at every
sampling points Trð¼ Ty=MÞ:
The control law of Fig. 1 is described by

u ¼ C1r þ C2y ð12Þ

¼ F #x þ Qey þ Kr; ð13Þ

where K ;QARHN are free parameters (Zhou, Doyle, &
Glover, 1996; Fujimoto et al., 2001). Therefore, Fig. 1
can be transferred to Fig. 4. In the figure, HM ; S; and
the thick lines represent the multirate hold, the sampler,
and the multirate signals, respectively. In this paper, K
becomes a constant matrix.
Because the estimation errors of the observer become

zero ( #x ¼ x; ey ¼ 0) for the nominal plant, from (7) and
(13), this system is represented by

*x½i� ¼ ð *A þ *BFÞx½i� þ *BKr½i�: ð14Þ

Because the non-singularity of the matrix *B is proved in
Araki and Hagiwara (1986), the coefficient matrices of
(14) can be arbitrary assigned by F and K : In this paper,
the parameters F and K can be selected so that the
following equations are satisfied:

*A þ *BF ¼ O; *BK ¼ I : ð15Þ

From (15), F and K are given by

F ¼ � *B�1 *A; K ¼ *B�1: ð16Þ

Therefore, (14) is described by *x½i� ¼ r½i�: Utilizing the
inter-sample desired state *xn½i�; if the reference input
is set to r½i� ¼ *xn½i�; we find that perfect tracking ( *x½i�
¼ *xn½i�) can be achieved at every sampling point Tr:
Because C1½z� of (12) can be transferred to (17), C1½z�

is given by

C1½z� ¼ ðM � C2NÞK ; ð17Þ

M ¼
A þ BF B

F I

2
4

3
5 ¼ I þ z�1FB;

N ¼
A þ BF B

C O

2
4

3
5 ¼ z�1CB ð18Þ

as shown in Fig. 5, where M and N are the right
coprime factorization of the plant P½z� ¼ NM�1 (Sugie
& Yoshikawa, 1986; Fujimoto et al., 2001). The initial
state variable of (18) is set to be identical with the initial
plant state x½0�: The internal stability of the proposed
control system is guaranteed because M ;NARHN:
Next, it is shown that the structure of perfect tracking

controller is very simple and clear. Fujimoto et al. (2001)
showed that the structure of the proposed controller was
represented in Fig. 6. The plant P½z� is driven by the
stable inverse system. When the tracking error e½i� is
generated by disturbance or modeling error, the feed-
back controller C2½z� works in order to compensate the
error e½i�: Thus, C2½z� must be a robust controller which
renders the sensitivity function S½z� ¼ ðI � P½z�C2½z�Þ

�1

sufficiently small at the frequency of the desired
trajectory. The reason is that the sensitivity function S½z�
represents variation of the command response Gyr½z�
under the variation of P½z� (Sugie & Yoshikawa, 1986).

2.3. Design of perfect disturbance rejection controller

In this section, novel multirate feedback controller
is proposed based on the state space design of the

Fig. 4. Basic structure of TDOF control.
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disturbance observer (Ohnishi, Shibata, & Murakami,
1996).
Consider the continuous-time plant model described

by

’xpðtÞ ¼ AcpxpðtÞ þ bcpðuðtÞ � dðtÞÞ; ð19Þ

yðtÞ ¼ ccpxpðtÞ; ð20Þ

where dðtÞ is the disturbance input. Let the disturbance
model be

’xdðtÞ ¼ Acdxd ðtÞ; dðtÞ ¼ ccdxdðtÞ: ð21Þ

For example, the step-type disturbance can be modeled
by Acd ¼ 0; ccd ¼ 1: The continuous-time augmented
system consisting of (19) and (21) is represented by

’xðtÞ ¼ AcxðtÞ þ bcuðtÞ; ð22Þ

yðtÞ ¼ ccxðtÞ; ð23Þ

Ac9
Acp �bcpccd

O Acd

" #
; bc9

bcp

0

" #
; x9

xp

xd

" #
;

cc9½ccp; 0�:

Discretizing (22) by the multirate sampling control, the
inter-sample plant state at t ¼ ði þ nkÞTf can be calcu-
lated from the kth row of (7) by

x½i þ nk� ¼ *Akx½i� þ *Bku½i�; ð24Þ

*Ak ¼
*Apk

*Apdk

O *Adk

" #
; *Bk ¼

*Bpk

O

" #
:

For plant (22) discretized by (4), the discrete-time
observer on the sampling points is obtained from
Gopinath’s method by

#v½i þ 1� ¼ #A #v½i� þ #by½i� þ #Ju½i�; ð25Þ

#x½i� ¼ #C #v½i� þ #dy½i�: ð26Þ

As shown in Fig. 7, let the feedback control law be

u½i� ¼ Fp #xp½i� þ Fd #xd ½i� ¼ F #x½i�; ð27Þ

where F9½Fp;Fd �: Notice that the F of the above
equation is different from that of (13) used in C1½z� de-
sign. Letting ev be the estimation errors of the observer
ðev ¼ #v � v), the following equation is obtained:

#x½i� ¼ x½i� þ #Cev½i�: ð28Þ

From (24) to (28), the closed-loop system is represented
by

xp½i þ nk�

xd ½i þ nk�

ev½i þ 1�

2
64

3
75 ¼

*Apk þ *BpkFp
*Apdk þ *BpkFd

*BpkF #C

O *Adk O

O O #A

2
664

3
775

�

xp½i�

xd ½i�

ev½i�

2
64

3
75: ð29Þ

Because full row rank of the matrix *Bpk can be assured
(Araki & Hagiwara, 1986), Fd can be selected so that the
(1,2) element of the above equation becomes zero for all
k ¼ 1;y;M :

*Apdk þ *BpkFd ¼ O: ð30Þ

The simultaneous equation of (30) for all k becomes

*Apd þ *BpFd ¼ O; ð31Þ

Fig. 5. Implementation of the proposed controller.

Fig. 6. Structure of the proposed controller.

Fig. 7. Multirate control with disturbance observer.
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*Apd
*Bp

� �
9

*Apd1
*Bp1

^ ^
*ApdM

*BpM

2
64

3
75: ð32Þ

From (31), Fd is obtained by

Fd ¼ � *B�1
p

*Apd : ð33Þ

In (29) and (30), the influence of disturbance xd ½i� on the
inter-sample state xp½i þ nk� at t ¼ ði þ nkÞTf can become
zero. Moreover, xp½i� and ev½i� at the sampling point
converge to zero at the rate of the eigenvalues of *ApM þ
*BpMFp and #A (the poles of the regulator and observer).
Therefore, perfect disturbance rejection is achieved
(xp½i þ nk� ¼ 0) in the steady state. The poles of the
regulator and observer will be tuned by the tradeoff
between the performance and stability robustness.
Substituting (25) into (27), the feedback-type con-

troller is obtained by

#v½i þ 1�

u½i�

" #
¼

#A þ #JF #C #b þ #JF #d

F #C F #d

" #
#v½i�

y½i�

" #
: ð34Þ

Because the multirate system becomes multi-input
system, the feedback gain Fp cannot be decided uniquely
only by the pole assignment of the regulator
( *ApM þ *BpMFp). In Fujimoto, Hori, Yamaguchi, and
Nakagawa (1999c), authors have developed the inter-
sample observer, which can utilize this redundancy
effectively. The advantage of this observer is that the
stability margin is increased by compensating the long
delay of the holder.

3. Applications to HDD

3.1. Modeling of the plant

In this section, the proposed methods are applied to a
3.5-in hard disk drive. Let the nominal model of this
plant be

PcðsÞ ¼
Kf Ka

Mps2
e�sTd : ð35Þ

The parameters of this plant are shown in Table 1.
While servo signals are detected at a constant period of
about 138 ms; the control input can be changed 4 times.
Therefore, the proposed approach is applicable. In (35),
the time delay Td ¼ Tcalc þ Tequiv is considered, where
Tcalc is the calculation delay of the processor, and Tequiv

is the equivalent delay of the current control and the
notch filter for the second mechanical resonance mode.
Therefore, the proposed method has extended to
systems with time delay in Fujimoto, Hori, Yamaguchi,
and Nakagawa (2000) and Fujimoto, (2000).

3.2. Applications of perfect tracking controller to seeking

mode

In this section, perfect tracking control proposed in
Section 2.2 is applied to the seeking mode. The actual
plant has the first mechanical resonance mode around
2:7 kHz: The Nyquist frequency is also 3:6 kHz: In spite
of those, the target seeking time is set to 3 sampling time
(2:4 kHz) for one track seeking in these experiments.
Perfect tracking controller is designed on input

multiplicity N ¼ 4: Because the plant is a second-order
system ðn ¼ 2Þ; perfect tracking is assured N=n ¼ 2
times during the sampling period. In the following
simulations and experiments, the proposed method is
compared with ZPETC proposed in Tomizuka (1987).
ZPETC is one of the most well-known and important
feedforward controllers in the mechanical system con-
trol. Kobayashi et al. (1998) and Yi and Tomizuka
(1999) applied it to hard disk drive control.
The control period Tu of ZPETC becomes four times

as long as that of the proposed method because ZPETC
is a single-rate controller1 and two methods are
compared at the same sampling period Ty:

2 The feed-
back controllers of two methods are same single-rate PI-
lead filters. Moreover, the desired trajectory (36) is
selected, which jerk (differential acceleration) is
smooth in order not to excite the mechanical resonance
mode.

ynðsÞ ¼
Ar

sðtrs þ 1Þ4
: ð36Þ

The parameters of these desired trajectories are shown in
Table 2. In these experiments, the feedforward inputs
u0½i� and y0½i� in Figs. 5 and 6 are obtained by off-line
calculation in order to save the processor resources.
Therefore, the order of the feedforward controller and
the desired trajectory are not related to the calculation
time delay.

Table 1

Parameters of the plant

Amplifier gain Ka 1.996 A/V

Force constant Kf 2.95 N/A

Mass Mp 6.983 g

Track pitch Tp 3.608 mm=trk
Sampling time Ts 138.54 ms
Calculation delay Tcalc 38 ms
Equivalent delay Tequiv 38.7 ms
Input multiplicity N 4

1Kobayashi et al. (1998) and Gu and Tomizuka (1999) attempt to

extend ZPETC to multirate controllers.
2 In Fujimoto et al. (2001), the proposed perfect tracking controller

is compared with ZPETC in the same control period Tu for the

position control system of servomotor, which has no sampling

restriction (i.e. Ty ¼ Tu).
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Fig. 8 shows simulation and experimental results of
condition A (1 trk). Fig. 8(a) and (b) shows that the
proposed method gives better performance than
ZPETC. While the response of ZPETC has large
tracking error caused by the unstable zero, that of the
proposed method has almost zero tracking error.
Fig. 8(c) also indicates that the proposed multirate
input is very smooth. Fig. 8(d) shows that the seeking
time of the proposed method gets to about 3 sampling
times in the experiments.

The frequency responses from the desired trajectory
yd ½i� to the output y½i� are shown in Fig. 9, which
includes the preview action (Tomizuka, 1987). Because
the proposed method (PTC) assures perfect tracking, the
command response becomes 1 in all frequencies.
However, the gain of ZPETC decreases in the high
frequency. The frequency of the short-span seeking is
around 2 kHz: Therefore, the proposed method has
advantages in seeking control.
Table 3 shows the average seeking time which is

measured in the 2000 times experiments. The seeking
time is defined as the time from which the seeking starts
to the point when the remaining distance becomes less
than 0:4 mm and the overshoot is less than 0:4 mm: The
seeking time of the proposed method (PTC) is much
smaller than that of ZPETC and the conventional
settling control (Yamaguchi, Numasato, & Hirai, 1998).
In the short-span seeking (1 trk), the seeking time of the

Table 2

Parameters of the trajectories

Ar ðtrkÞ fr ð¼ 1=2ptrÞ ðkHzÞ

Condition A 1 2.8

Condition B 6 1.7

Fig. 8. Simulation and experimental results of the seeking mode ð1 trk seeking): (a) position (Simulation); (b) error (Simulation); (c) control input

(Simulation); (d) experiment.
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proposed method is 19% and 31% shorter than the
ZPETC and conventional method, respectively. In the
middle-span seeking (6 trk), the proposed method is 1
and 6 sampling times faster. The details of these
experiments have been presented in Fujimoto et al.
(2000).
Furthermore, the proposed method also has great

advantages in the systems such as NC machines or
robots, where the tracking error for the desired
trajectory is much important. In Fujimoto et al.
(2001), perfect tracking control is applied to the position
control system for servomotor, which shows that the
tracking error is much improved not only at the
sampling points but also in the inter-sample points on
the experiments.

3.3. Applications of perfect disturbance rejection

controller to the following mode

In this section, perfect disturbance rejection control
system proposed in Section 2.3 is applied to the
following mode. The block diagram of the following
mode is shown in Fig. 10. The disturbance dyðtÞ
represents vibration of the track generated by disk

rotation, which is known as track runout. The objective
of this mode is to keep the position error peðtÞ zero. nðtÞ
and duðtÞ represent measurement noise and acceleration
disturbance, respectively.
In the following mode, two kinds of disturbance

should be considered: repeatable and non-repeatable
runout. Repeatable runout (RRO) is synchronous with
the disk rotation, and non-repeatable runout (NRRO) is
asynchronous. There exist several approaches to reject
RRO (Kempf, Messner, Tomizuka, & Horowitz, 1993).
In this paper, the RRO is modeled by a sinusoidal
disturbance, and it is perfectly rejected at M inter-
sample points in the steady state.
In this paper, the following disturbance models are

considered:

ðAÞ: dðsÞ ¼
1

sðs2 þ o2
RÞ

; ðBÞ: dðsÞ ¼
1

s
: ð37Þ

The model (A) makes the sensitivity function SðsÞ small
at low frequencies and the rotation frequency of the disk
oRð¼ 2p120Þ: The model (B) is introduced for compar-
ison with conventional PI-lead filters, because the
controller consisting of state-feedback and disturbance
observer for (B) becomes the second order with an
integrator.
Perfect disturbance rejection controllers are designed

with N ¼ 2 and 4: The proposed method is compared
with the single-rate disturbance observer, in which the
disturbance is modeled by d½z� ¼ Z½dðsÞ�: The poles of
the regulator and observer are assigned to set the open
loop 0 dB cross-over to about 500 Hz: Fig. 11(a) shows
the sensitivity and complimentary sensitivity functions
(S½z� and T ½z�) for model (A) and (B). The SISO closed-
loop transfer functions are obtained at the output of
plant. It is found that the proposed controllers have the
internal model of (37).
Fig. 11(b) and (c) shows the simulation results for a

120 Hz sinusoidal runout added from t ¼ 0; whose
amplitude is 1 trk ¼ 3:6 mm: Although the position

0

0.2

0.4

0.6

0.8

1

10 100 1000

G
ai

n

Frequency [Hz]

Gyr[z]

PTC
ZPETC

Fig. 9. Frequency responses (y½z�=yn½z�).

Table 3

Average seeking-time on experiments

PTC

(ms)

ZPETC

(ms)

Conventional

(ms)

A 0.4394 0.5226 0.5738

1 trk ð3:17TsÞ ð3:77TsÞ ð4:14TsÞ

B 1.200 1.325 1.933

6 trk ð8:66TsÞ ð9:57TsÞ ð14:0TsÞ

Fig. 10. Following mode.

H. Fujimoto, Y. Hori / Control Engineering Practice 10 (2002) 773–781 779



errors are large in the transient state, the errors of the
controllers (A) become zero at sampling point in the
steady state, because the feedback controllers have
the internal model of the disturbance. However, Fig. 11(c)
shows that the inter-sample responses have errors even
in the steady state. It is shown that the errors of the
plant position and velocity become zero at every 2Ts=N

by the proposed controllers. Moreover, the inter-
sample position errors of the proposed multirate
methods are much smaller than that of the single-rate
controller.
In the above simulations, only the first mode of RRO

is considered. However, in Fujimoto and Hori (2000),
this method is extended to repetitive disturbance
rejection control in order to deal with the high-order
RRO. Moreover, the proposed approaches are applied
to the visual servo system for robot manipulators, and

the effectiveness is verified through simulations and
experiments (Fujimoto & Hori, 2001).

4. Conclusion

In this paper, the digital control systems which have
hardware restrictions of TuoTy were assumed, the
multirate feedforward controller was proposed, which
assured perfect tracking at M inter-sample points. Next,
the multirate feedback controller was also proposed,
which guaranteed perfect disturbance rejection at M

inter-sample points in the steady state.
Furthermore, the former was applied to the track-

seeking mode of hard disk drive, and the later was also
applied to the track-following mode. The advantages of

Fig. 11. Simulation results of the following mode: (a) S½z� and T ½z�; (b) position error; (c) position error in steady state.
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these approaches were demonstrated by the simulations
and experiments.
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