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Abstract: In this paper, novel multirate two-degree-of-
freedom controllers are proposed for digital control sys-
tems, where it is restricted that the speed of the A/D
converters are slower than that of the D/A converters.
The proposed feedforward controller assures the perfect
tracking at M inter-sampling points. Moreover, it is
shown that the structure of the proposed perfect tracking
controller is very simple and clear. Next, the proposed
method is extended to systems with time delay. The pro-
posed scheme is applied to the seeking control for hard
disk drive, and advantages of this approach are demon-
strated by simulations and experiments.

1 Introduction

Head-positioning controllers of hard disk drives are gen-
erally composed of two control modes; the track-seeking
mode and the track-following mode. In the track-seeking
mode, the feedforward performance is important because
the head is moved to the desired track as fast as pos-
sible. After that, the head needs to be positioned on
the desired track while the information is read or writ-
ten. In the track-following mode, the disturbance rejec-
tion performance is important because the head must
be positioned finely on the desired track under the vi-
brations generated by the disk rotation and disturbance.
In the long-span seeking, where the seeking distance is
comparatively long, high speed seeking is achieved by
the mode-switching controller [1]. In the short-span
seeking, however, single mode controllers based on two-
degree-of-freedom control have advantages, because the
mode-switching controller sometimes generates undesir-
able transient response [2, 3, 4].

Digital two-degree-of-freedom controllers generally
have two samplers for the reference signal r(t) and the
output y(t), and one holder on the input u(t) as shown in
Fig. 2. Therefore, there exist three time periods Tr, Ty,
and Tu which represent the period of r(t), y(t), and u(t),
respectively. The input period Tu is generally decided
by the speed of the actuator, D/A converter, or the cal-
culation on the CPU. Moreover, the output period Ty is
also determined by the speed of the sensor or the A/D
converter.
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Fig.1: Hard disk drive.
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Fig.2: Two-degree-of-freedom control system.

In the head-positioning control of hard disk drives,
the head position is detected by the discrete servo sig-
nals embedded in the disks as shown in Fig. 1. Therefore,
the output sampling period Ty is decided by the number
of these signals and the rotation frequency of the spindle
motor. However, it is possible to set the control period
Tu shorter than Ty because of the recent development of
CPU. Thus, the controller can be regarded as the multi-
rate control system which have the hardware restriction
of Tu < Ty.

In this paper, the digital control systems which have
the hardware restrictions of Tu < Ty are assumed, and
novel design method of multirate feedforward controller
is proposed, which achieve the perfect tracking at M
inter-sample points of Ty. Next, the proposed method
is extended to systems with time delay. The restriction
of Tu < Ty may be general because D/A converters are
usually faster than the A/D converters. Multirate con-
trollers also have demonstrated higher performance both
in feedforward [2, 3] and feedback [5, 6] characteristics.
In this paper, the proposed perfect tracking controller is
applied to the track-seeking mode of HDD.
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2 Design of the perfect tracking controller

In the conventional digital tracking control systems, it
is impossible to track the desired trajectory with zero
error [7], because the discrete-time plant discretized by
the zero-order-hold usually has unstable zeros [8].

The unstable zeros problems of the discrete-time
plant have been resolved by zero assignment method in
use of multirate input control in [9] and [10]. However,
[11] shows that those methods have disadvantages of
large overshoot and oscillation in the inter-sample points
because the control input changes back and forth very
quickly. On the other hand, [12] proposed the perfect
tracking control by introducing the multirate feedfor-
ward control, which never has this problem because all
of the plant states are controlled along the smoothed de-
sired trajectories.

In this section, new multirate feedforward controller
is proposed. For the restriction of Tu < Ty, the flame
period Tf is defined as Tf = Ty , and the dynamics of the
controller is described by Tf . In this paper, the integer

M is selected so as to M
�= N/n becomes an integer,

where N is the input multiplicity and n is the plant order.
As shown in Fig. 3, the plant input is changed N times
during Ty(= Tf ), and the perfect tracking of the plant
state is guaranteed M times during Ty.

For simplification, the continuous-time plant is as-
sumed to be SISO system in this paper. The proposed
methods, however, can be extended to deal with the
MIMO system by the same way as [13].

2.1 Plant Discretization by Multirate Sampling

Consider the continuous-time plant described by

ẋ(t) = Acx(t) + bcu(t) , y(t) = ccx(t). (1)

The discrete-time plant discretized by the multirate sam-
pling control (Fig. 3) becomes

x[i + 1] = Ax[i] + Bu[i] , y[i] = Cx[i], (2)

where x[i] = x(iT ), and where matrices A, B, C and
vectors u are given by[

A B
C O

]
�=

[
eAcTf b1 · · · bN

cc 0 · · · 0

]
, (3)

bj
�
=

∫ (1−µ(j−1))Tf

(1−µj)Tf

eAcτbcdτ , u
�
= [u1, · · · , uN ]T , (4)

0 = µ0 < µ1 < µ2 < ... < µN = 1. (5)

The inter-sample plant state at t = (i + νk)Tf is repre-
sented by

x̃[i] = Ãx[i] + B̃u[i], (6)

[
Ã B̃

] �
=




Ã1 b̃11 · · · b̃1N

...
...

...
ÃM b̃M1 · · · b̃MN


 , (7)

Ãk
�
= eAcνkTf , x̃

�
= [xT

1 , · · · , xT
M ]T , (8)

xk[i] = x[i + νk] = x((i + νk)Tf ), (9)

b̃kj
�=




µj < νk :
∫ (νk−µ(j−1))Tf

(νk−µj)Tf
eAcτbcdτ

µ(j−1) < νk ≤ µj :
∫ (νk−µ(j−1))Tf

0
eAcτbcdτ

νk ≤ µ(j−1) : 0

,

0 < ν1 < ν2 < ... < νM = 1, (10)

where µj(j = 0, 1, · · · , N ) and νk(k = 1, · · · , M ) are the
parameters for multirate sampling as shown in Fig. 3. If
Tf is divided at same intervals, µj = j/N, νk = k/M .

2.2 Design of the perfect tracking controller

In this section, the perfect tracking controller C1[z] is
designed so that the plant state (x) completely tracks
the desired trajectory (x∗) at every sampling points Tr(=
Ty/M ) [12].

Before the perfect tracking controller C1[z] is de-
signed, the feedback controller C2[z] has to be deter-
mined. Here, the C2[z] must be a robust controller which
let the sensitivity function S[z] = (I − P [z]C2[z])−1 be
small enough in the frequency of the desired trajectory.
The reason is that the sensitivity function S[z] represents
the variation of the command response Gyr[z] under the
variation of P [z] [14].

This paper adopts the simplest feedback controller
C2[z], which is obtained from a conventional single-rate
controller such as a disturbance observer or H∞ con-
troller. In this case, the outputs of the C2[z] become
the same values during one sampling period Ty as repre-
sented by

C2[z] =




As bs

cs ds

...
...

cs ds


 , (11)

where {As, bs, cs, ds} is a single-rate controller designed
on Ty. Furthermore, the multirate feedback controller
can improve the stability margin [5] and disturbance re-
jection performance of the inter-sample response [15].

The control law of Fig. 2 is described by

u = C1r + C2y (12)
= F x̂ + Qey + Kr, (13)

where K, Q ∈ RH∞ are free parameters [16]. There-
fore, Fig. 2 can be transferred to Fig. 4. In the figure,
HM, S, and the thick lines represent the multirate hold,
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Fig.4: Basic structure of TDOF control.
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Fig.5: Implementation of the proposed controller.

the sampler, and the multirate signals, respectively. In
this paper, K becomes a constant matrix.

Because the estimation errors of the observer become
zero (x̂ = x, ey = 0) for the nominal plant, from (6) and
(13), this system is represented by

x̃[i] = (Ã + B̃F )x[i] + B̃Kr[i]. (14)

Because non-singularity of the matrix B̃ can be assured
by Mn = N and Tr = nTu [12, 17], the coefficient ma-
trices of (14) can be arbitrary assigned by F and K. In
this paper, the parameters F and K can be selected so
that following equations are satisfied.

Ã + B̃F = O , B̃K = I (15)

From (15), F and K are given by

F = −B̃
−1

Ã , K = B̃
−1

. (16)

Therefore, (14) is described by x̃[i] = r[i]. Utilizing the
future inter-sample desired state x̃∗[i], if the reference
input is set to r[i] = x̃∗[i] with the preview action, we
find the perfect tracking x̃[i] = x̃∗[i] can be achieved at
every sampling point Tr .

Because C1[z] of (12) can be transferred to (17),
C1[z] is given by (Fig. 5)

C1[z] = (M − C2N )K , (17)

M =
[

A + BF B

F I

]
= I + z−1FB,

N =
[

A + BF B
C O

]
= z−1CB,

(18)

where M , N are the right coprime factorization of the
plant P [z] = NM−1[14].

Next, it is shown that the structure of the perfect
tracking controller is very simple and clear. [18] shows
that the structure of the proposed controller is repre-
sented by Fig. 6. The plant P [z] is driven by the stable
inverse system. When the tracking error e[i] is generated
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P [z]

C2[z]

[
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]−1
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Fig.6: Structure of the proposed controller.
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by disturbance or modeling error, the robust feedback
controller C2[z] works in order to compensate the error
e[i].

2.3 Extension to system with time delay

In this section, the proposed perfect tracking control is
extended to plants with time delay. As shown in Fig. 7,
the time delay is considered to exist on the plant out-
put. The continuous-time plant with time delay Td is
described by

ẋ(t) = Acx(t) + bcu(t) , y(t) = ccx(t − Td).(19)

The time delay can also be considered to exist on the
plant input, and expressed by [19]

ẋ(t) = Acx(t) + bcu(t − Td) , y(t) = ccx(t).(20)

However, in case of the single input and single output
plant, (19) is equivalent to (20). Thus, this paper adopts
(19) because it can make this extension more simple the-
oretically. Moreover, the time delay is assumed to be
Td ≤ Tf for simplification. The proposed methods, how-
ever, can be extended to the time delay of Td > Tf by
the same way as [19].

Discretizing (20) by the multirate sampling control
(Fig. 7), the discrete-time plant becomes

x̄[i + 1] = Āx̄[i] + B̄u[i], (21)

y[i] = c̄ x̄[i], (22)

Ā
�=

[
A O
O O

]
, B̄

�=
[

B
E

]
, x̄

�=
[

x
xu

]
,(23)

c̄
�
= [c|d] = [cce

AcνyTf |dN−nu+1, · · · , dN ], (24)



Table 1: Plant’s parameters.

Amplifier gain Ka 1.996 A/V
Force constant Kf 2.95 N/A
Mass Mp 6.983 g
Track pitch Tp 3.608 µm/trk
Sampling time Ts 138.54 µsec
Calculation delay Tcalc 38 µsec
Equivalent delay Tequiv 38.7 µsec
Input multiplicity N 4

dj
�=




νy ≤ −1 + µ(j−1) :
−cce

AcνyTf
∫ (1−µ(j−1))Tf

(1−µj)Tf
eAcτbcdτ

−1 + µ(j−1) ≤ νy < −1 + µj :
−cce

AcνyTf
∫ −νyTf

(1−µj)Tf
eAcτbcdτ

−1 + µj ≤ νy < 0 : 0

, (25)

E
�
= [O, Inu], νy = −Td

Tf
, (26)

where nu is a number of the of u[i − 1] elements during
Td as shown in Fig. 7, and xu is a vector composed of
these elements.

The exact plant model with time delay is obtained by
(21) and (22). Moreover, F and K obtained in (16) guar-
antee the perfect tracking, if the model P [z] = NM−1

in the proposed feedforward controller includes the time
delay. Therefore, from (21) and (22), the proposed con-
troller is extended to the plants with time delay by

C1[z] = (M − C2N )K , (27)

M =
[

Ā + B̄F̄ B̄

F̄ I

]
, N =

[
Ā + B̄F̄ B̄

c̄ O

]
(28)

F̄ = [F , O]. (29)

3 Applications to HDD

3.1 Modeling of the plant

The experimental setup is 3.5-in hard disk drive. Let the
nominal model of this plant be

Pc(s) =
KfKa

Mps2
e−sTd . (30)

The parameters of this plant are shown in Table 1. While
servo signals are detected at a constant period about 138
[µs], the control input can be changed 4 times. There-
fore, the proposed approach is applicable. In the ex-
periment, the time delay Td = Tcalc + Tequiv is consid-
ered, where Tcalc is the calculation delay of the processor,
and Tequiv is the equivalent delay of the current control
and the notch filter for the second mechanical resonance
mode. The actual plant has the first mechanical reso-
nance mode around 2.7 [kHz]. The Nyquist frequency is
also 3.6 [kHz]. In spite of those, the target seeking-time
is set to 3 sampling time (2.4 [kHz]) for one track seeking
in these experiments.

Table 2: Parameters of the trajectories.

Ar[trk] fr(= 1/2πτr) [kHz]
Condition A 1 2.8
Condition B 6 1.7

3.2 Applications of perfect tracking controller
to seeking mode

The perfect tracking controller is designed on input mul-
tiplicity N = 4. Because the plant is second order sys-
tem (n = 2), the perfect tracking is assured N/n = 2
times at every sampling points. In the following simula-
tions and experiments, the proposed method is compared
with ZPETC proposed in [7]. ZPETC is one of the most
well-known and important feedforward controllers in the
mechanical system control. [3] and [4] applied it to the
hard disk drive control.

The control period Tu of ZPETC becomes four times
as long as that of the proposed method because ZPETC
is single-rate controller1 and two methods are compared
at same sampling period Ty. The feedback controllers of
two methods are same single-rate PI-Lead filters. More-
over, the desired trajectory (31) is selected, which jurk
(differential acceleration) is smooth in order not to excite
the mechanical resonance mode.

y∗(s) =
Ar

s(τrs + 1)4
e−sTd (31)

v∗(s) =
Ar

(τrs + 1)4
e−sTd (32)

The parameters of these desired trajectories are shown in
Table 2. In these experiments, the multirate feedforward
input u0[i] in Fig. 5 and 6 is obtained by off-line calcula-
tion in order to save the processor resources. Therefore,
the order of the feedforward controller and the desired
trajectory are not related to the calculation time delay.

3.2.1 Simulation results

Simulation results are shown in Fig. 8 and 9. Fig. (a) and
(b) show that the proposed method gives better perfor-
mance than ZPETC. While the response of ZPETC has
large tracking error caused by the unstable zero, that
of the proposed method has almost zero tracking error.
Fig. (c) also indicates that the proposed multirate input
is very smooth.

The frequency responses from the desired trajectory
yd[i] to the output y[i] are shown in Fig. 10. Because the
proposed method (PTC) assures the perfect tracking,
the command response becomes 1 in the all frequency.
However, the gain of ZPETC decreases in the high fre-
quency. The frequency of the short-span seeking is 2
[kHz] around. Therefore, the proposed method has ad-
vantages in seeking control.

1[3, 20] attempt to extend ZPETC to multirate controllers.



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

t [msec]

y 
[µ

 m
]

Position

y(t):PTC
y[k]:PTC
y(t):ZPETC
y[k]:ZPETC
y

d
(t)

(a) Position

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−0.1

0

0.1

0.2

0.3

0.4

0.5

t [msec]

e 
[µ

 m
]

Tracking Error

PTC
ZPETC

(b) Tracking error

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

t [msec]

u 
[A

]

Control Input

PTC
ZPETC

(c) Control input

Fig.8: Simulation results A (1trk).
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Fig.9: Simulation results B (6trk).
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3.2.2 Experimental results

Experimental results are shown Fig. 11 and 12. In Fig.
(a), about 1,000 experimental data are overwritten. Fig.
(b) and (c) are averages of them, which show the pro-
posed method has high tracking performance. Although
the actual plant has mechanical resonance mode around
2.7 [kHz], this mode is not suppressed by notch filter in
order to save the phase margin. In spite of that, the ex-
periment of condition A (1 [trk]) adopts the wide band-
width desired trajectory (fr = 2.8 [kHz]) for high speed
seeking. Therefore, Fig. 11(a)(b) have overshoot of max-
imum height 0.4 [µm]. However, this overshoot is in
permissible range because the overshoot is small enough
compared with the track pitch 3.6 [µm].

Because the position signal is detectable only on the
sampling points, the comparison results between the pro-
posed method and ZPETC are not clear in Fig. 11 and
12. Therefore, in this section, the proposed method is
compared by the average of the seeking-time measured
in the 2000 times experiments. The seeking-time is de-
fined as the time from the seeking start to the point when
the remaining distance becomes under 0.4 [µm] and the

Table 3: Experimental seeking-time.

PTC [ms] ZPETC [ms] Conventional [ms]
A 0.4394 0.5226 0.5738

1trk (3.17Ts) (3.77Ts) (4.14Ts)
B 1.200 1.325 1.933

6trk (8.66Ts) (9.57Ts) (14.0Ts)

overshoot is smaller than 0.4 [µm].
Table 3 shows the average seeking-time which ob-

tained in the experiments. The seeking-time of the
proposed method (PTC) is much smaller than that of
ZPETC and the conventional settling control [1]. In the
short-span seeking (1 [trk]), the seeking-time of the pro-
posed method is 19 and 31 [%] shorter than the ZPETC
and conventional method, respectively. In the middle-
span seeking (6 [trk]), the proposed method is 1 and 6
sampling time faster than them.

4 Conclusion

In this paper, the digital control systems which have
hardware restrictions of Tu < Ty were assumed, the mul-
tirate feedforward controller was proposed, which assures
the perfect tracking at M inter-sample points. It was
shown that the structure of the proposed perfect tracking
controller was very simple and clear. Next, the proposed
method was extended to systems with time delay.

Moreover, the proposed method was applied to the
track-seeking mode of the hard disk drive. The advan-
tages of this approach were demonstrated by the simu-
lations and experiments.
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[8] K. J. Åström, P. Hangander, and J. Sternby, “Zeros of sam-
pled system,” Automatica, vol. 20, no. 1, pp. 31–38, 1984.

[9] P. T. Kabamba, “Control of linear systems using generalized
sampled-data hold functions,” IEEE Trans. Automat. Contr.,
vol. 32, no. 9, pp. 772–783, 1987.

[10] T. Mita, Y. Chida, Y. Kazu, and H. Numasato, “Two-delay
robust digital control and its applications – avoiding the prob-
lem on unstable limiting zeros,” IEEE Trans. AC, vol. 35,
no. 8, pp. 962–970, 1990.

[11] K. L. Moore, S. P. Bhattacharyya, and M. Dahleh, “Capabil-
ities and limitations of multirate control schemes,” Automat-
ica, vol. 29, no. 4, pp. 941–951, 1993.

[12] H. Fujimoto, Y. Hori, and A. Kawamura, “High performance
perfect tracking control based on multirate feedforward/ feed-
back controllers with generalized sampling periods,” in 14th
IFAC World Congress, vol. C, pp. 61–66, July 1999.

[13] H. Fujimoto, A. Kawamura, and M. Tomizuka, “Generalized
digital redesign method for linear feedback system based on
N-delay control,” IEEE/ASME Trans. Mechatronics, vol. 4,
no. 2, pp. 101–109, 1999.

[14] T. Sugie and T. Yoshikawa, “General solution of robust track-
ing problem in two-degree-of-freedom control systems,” IEEE
Trans. Automat. Contr., vol. 31, no. 6, pp. 552–554, 1986.

[15] H. Fujimoto, Y. Hori, T. Yamaguchi, and S. Nakagawa, “Pro-
posal of perfect tracking and perfect disturbance rejection
control by multirate sampling and applications to hard disk
drive control,” in Conf. Decision Contr., pp. 5277–5282, De-
cember 1999.

[16] K. Zhou, J. Doyle, and K. Glover, Robust and Optimal Con-
trol. Prentice-Hall, Inc, 1996.

[17] M. Araki and T. Hagiwara, “Pole assignment by multirate-
data output feedback,” Int. J. Control, vol. 44, no. 6,
pp. 1661–1673, 1986.

[18] H. Fujimoto, Y. Hori, and A. Kawamura, “Structure of per-
fect tracking controller based on multirate feedforward con-
trol,” in Int. Power Electronics Conference, April 2000. (to
be presented).

[19] G. F. Franklin and J. D. Powell, Digital Control of Dynamic
Systems. Addison-Wesley Publishing Company, 1980.

[20] Y. Gu and M. Tomizuka, “High performance tracking control
system under measurement constraints by multirate control,”
in 14th IFAC World Congress, vol. C, pp. 67–71, July 1999.


