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Abstract: In this paper, a novel perfect tracking control method based on the
multirate sampling control is proposed, in which the concepts of the two-degree-
of-freedom control are employed. Moreover, by generalizing the multirate input and
output sampling periods, the proposed method can match the restrictions of the
sampling periods caused by the hardware, and achieve higher performance. The main
results of this paper are 1) the perfect tracking performance is assured in the inter-
sampling points, if the input multiplicity is increased, 2) higher feedback performance
is achieved, if the output multiplicity is increased. Illustrative examples of position
control using a dc servo motor are presented, and simulations and experiments
demonstrate the advantages of this approach. Copyright 1999 IFAC
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1. INTRODUCTION

In the digital motion control system, either the
point to point control or the tracking control is
usually employed. The point to point controller
moves the plant output from one point to an-
other point without indicating the path. Thus, it
sometimes has the large tracking error because the
transient path is not concerned. In the tracking
control, however, the controlled plant follows the
smoothed desired trajectory. Therefore, the track-
ing controllers are employed for high speed and
high precision servo systems.

The best tracking controller is ideally the Per-
fect Tracking Controller (PTC) which controls
the controlled object with zero tracking error
(Tomizuka, 1987). The perfect tracking can be
achieved using the feedforward controller C1[z]

which is realized by the inverse system of the
closed-loop system Gcl[z].

C1[z] =
1

zdGcl[z]
(1)

where d is the relative degree of Gcl[z].

However, the discrete-time plant discretized by
the zero-order-hold usually has unstable zeros
(Åström et al., 1984). Thus, C1[z] becomes unsta-
ble because Gcl[z] has the unstable zeros. There-
fore, in the conventional digital control systems
utilizing the zero-order-holds, the perfect tracking
is usually impossible.

From this viewpoint, two feedforward control
methods are proposed for the discrete-time non-
minimum phase plant by Tomizuka (1987). First,
The Stable Pole Zero Canceling (SPZC) controller
cancels all poles and stable zeros of the closed-
loop system, which has both phase and gain er-
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rors caused by the uncancellable unstable zeros.
Second, Zero Phase Error Tracking Controller
(ZPETC) adds the factors which cancel the phase
error to SPZC. However, the gain error caused by
the unstable zeros has remained.

A lot of methods are proposed to compensate the
gain error of ZPETC (Haack and Tomizuka, 1991;
Torfs et al., 1992; Gross et al., 1994). However,
these methods are not able to realize the perfect
tracking because the zero-order-holds are assumed
to be employed.

Authors have proposed a novel perfect track-
ing control method in use of multirate feedfor-
ward control without utilizing the zero-order-hold
(Fujimoto and Kawamura, 1998). In this paper,
the feedback controller is also made multirate,
and the periods of the plant input and output
are generalized. Those generalizations improve the
closed-loop characteristics and the tracking per-
formance in the inter-sampling points.

Kabamba (1987) and Mita et al. (1990) resolved
the unstable zeros problems of the discrete-time
plant by zero assignment in use of multirate con-
trol. However, Moore et al. (1993) shows that
those methods have disadvantages of large over-
shoot and oscillation in the inter-sampling points
because the control input changes back and forth
very quickly. On the other hand, the proposed
method never has this problem because all of the
plant states are controlled along the smoothed
desired trajectories.

Recently, the modern sampled-data control theo-
ries have developed, which can optimize the inter-
sample response (e.g. Chen and Francis, 1995;
Hara et al., 1996). In contrast, the proposed
method makes a simple and practical approach
to grantee the smooth inter-sample responses by
giving trajectories to all of the plant states (e.g.
position and velocity) at every sampling point T .

2. GENERALIZATIONS OF THE SAMPLING
PERIODS

A digital tracking control system usually has two
samplers for the reference signal r(t) and the
output y(t), and one holder on the input u(t) as
shown in Fig. 1. Therefore, there exist the three
time periods T, Ty , and Tu which represent the
period of r(t), y(t), and u(t), respectively. The
input period Tu is generally decided by the speed
of the actuator, D/A converter, or the calculation
on the CPU. Moreover, the output period Ty is
also determined by the speed of the sensor or the
A/D converter.

Real control systems usually hold the restrictions
on Tu and/or Ty. Thus, the conventional digital

yc(t) y[i]uc(t)u[i]r[i]r(t)
SM SMHM

(Ty)(Tu)(T )
Pc(s)C1[z]

C2[z]

+

+

Fig. 1. Two-degree-of-freedom control system.
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Fig. 2. Multirate sampling control.

control systems make these three periods equal to
the longer period between Tu and Ty.

On the other hand, authors showed that the per-
fect tracking can be achieved on every sampling
point T by letting T = nTu, where n is the
plant order (Fujimoto and Kawamura, 1998). Al-
though the conventional methods with zero-order-
hold are unable to realize the perfect tracking, the
method has succeeded in it by introducing new
control scheme. In spite of that, it has a prob-
lem; on the high order plant, the output sampling
period Ty gets too long and the closed-loop char-
acteristics become poor because the assumption
Ty = nTu is fixed.

In this paper, high performance perfect tracking
control method is proposed, by which the control
system matches the hardware restrictions on the
periods of the plant input holding and output
sampling. In the following discussions, T = nTu is
regarded as the condition for the perfect tracking,
and the assumption Ty = T is removed and
generalized.

In this paper, the following two cases are consid-
ered, which are very ordinary in industries. First,
although Tu is decided in advance by the hardware
restrictions, the plant output can be detected M
times during T (= nTu > Ty), as shown in Fig.
2(a). This case is referred to as case 1 in this
paper. On this case, the closed-loop characteristics
can be improved because much information of the
plant can be detected. Second, although Ty is de-
cided in advance, the plant input can be changed
L×n(

�
= N ) during Ty, as shown in Fig. 2(b). It is

also referred to as case 2. On this case, the perfect
tracking can be assured L times during inter-
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Fig. 3. Generalized multirate sampling control.

sample points of Ty . The output multiplicity M ,
input multiplicity N and L are positive integers.

In the two multi-period systems as shown in Fig.
2, the longer period between T and Ty is defined as
the flame period Tf (Araki, 1993). If this definition
is employed, case 1 and 2 can be dealt with
together.

3. DESIGNS OF THE PROPOSED
CONTROLLERS

In this section, the proposed perfect tracking
control method is presented. For simplification,
the continuous-time plant is assumed to be SISO
system. The proposed method, however, can be
extended to deal with the MIMO system by the
same way as Fujimoto et al. (1999).

3.1 Plant Discretization and Parameterization

In order to deal with case 1 and 2 together, the
multirate control scheme is represented by Fig. 3
in use of input and output multiplicityN and M .
Thus, in case 1, N should be set to n. Moreover,
in case 2, M also have to be set to 1.

Consider the continuous-time nth order plant de-
scribed by

ẋ(t) = Acx(t) + bcu(t) , y(t) = ccx(t).(2)

The discrete-time plant discretized by the gener-
alized multirate sampling control (Fig. 3) becomes

x[i+1] = Ax[i]+Bu[i] , y[i] = Cx[i]+Du[i](3)

where x[i] = x(iT ), and where matrices A,B,C,D
and vectors u,y are given by

[
A B
C D

]
�
=



eAcTf b1 · · · bN

c1 d11 · · · d1N

...
...

...
cM dM1 · · · dMN


 (4)

u
�
= [u1, · · · , uN ]T , y

�
= [y1, · · · , yM ]T (5)

bj
�=

∫ (1−µ(j−1))Tf

(1−µj)Tf
eAcτbcdτ , ck

�= cce
AcνkTf (6)

dkj
�=




µj < νk : cc

∫ (νk−µ(j−1))Tf

(νk−µj)Tf
eAcτbcdτ

µ(j−1) < νk ≤ µj : cc

∫ (νk−µ(j−1))Tf

0
eAcτbcdτ

νk ≤ µ(j−1) : 0

0 = µ0 < µ1 < µ2 < ... < µN = 1 (7)

0 ≤ ν1 < ν2 < ... < νM < 1 (8)

where µj(j = 0, 1, · · · , N ) and νk(k = 1, · · · ,M )
are the parameters for multirate sampling as
shown in Fig. 3. If Tf is divided at same intervals,
µj = j/N, νk = (k − 1)/M .

The coprime factorization of the pulse transfer
function P [z] realized by (3) is described by

P [z] = NM−1 (9)

where M ,N ∈ RH∞ (Sugie and Yoshikawa,
1986).

The proposed method employs the multirate-
input control as the two-degree-of-freedom con-
trol, as shown in Fig. 1. In the figure, HM , SM

represent the multirate hold, the (multirate) sam-
pler, respectively.

In the ideal tracking control system, the transfer
characteristic (Gyr) from the command r to the
output y is generally 1. In this paper, the feed-
forward controller C1[z] is considered so that the
transfer characteristic from the desired state xd

to the plant state x can be I.

3.2 Design of the feedback controller C2[z]

Before the perfect tracking controller C1[z] is
designed, the C2[z] has to be determined. Here,
the given feedback controller C2[z] must be a
robust controller that let the sensitivity function
S[z] = (I − P [z]C2[z])−1 be small enough. The
reason is that the sensitivity function S[z] rep-
resents the variation of the command response
characteristic Gyr under the variation of P [z]
(Sugie and Yoshikawa, 1986).

In Fig. 1, C2[z] is described as a multirate input
and multirate output controller. However, in this
section, the simplest method is proposed, in which
the C2[z] is obtained from the popular single-rate
controller such as a disturbance observer or H∞
controller.

First, in case 1, Ty is set to equal to Tu(M = n),
and C2s[z

1
n ] = {As, bs, cs, ds} is designed on

sampling period Ty. Then, C2[z] moving on every
Tf is obtained from C2s[z

1
n ] moving on every

Ty = Tf/n by (Chen and Francis, 1995)

C2[z] =




An
s An−1

s bs An−2
s bs · · · bs

cs ds 0 · · · 0
csAs csbs ds · · · 0
...

...
...

csA
n−1
s csA

n−2
s bs csA

n−3
s bs · · · ds


 .(10)
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Fig. 4. Basic structure of TDOF control.

Second, in case 2, C2s[z] is designed on Ty. Then,
the outputs of the C2[z] become the same values
during one sampling period Ty as represented by

C2[z] = [

N︷ ︸︸ ︷
C2s[z], · · · , C2s[z] ]T . (11)

3.3 Design of the Perfect Tracking Controller
C1[z]

In this section, the feedforward controller C1[z]
is designed so that the perfect tracking can be
assured at every sampling point T .

(3) described on Tf can be transferred to following
equation on T = Tf/L.

x̄[i + 1] = Āx[i] + B̄u[i] (12)

where q
�= 1/L, and where matrices Ā, B̄ and

vectors x̄ are given by

x̄[i+ 1]
�
=




x[i + q]
...

x[i+ lq]
...

x[i+ 1]



, Ā

�
=




eAcT

...
eAclT

...
eAcLT




(13)

B̄
�
=




BL O · · · · · · · · · O
...

. . . O
BL−l · · · BL O · · · O

...
. . . O

B1 B2 · · · · · · · · · B L




(14)

Bl = [b(l−1)n+1, · · · , bln] (l = 1, · · · , L). (15)

From Fig. 1, the multirate control law of the
proposed method is described by

u = C1r + C2y (16)
= Fx̂ + Qey + Kr (17)

where K,Q ∈ RH∞ are free parameters. There-
fore, Fig. 1 can be transferred to Fig. 4 (Zhou et
al., 1996). In this paper, K becomes a constant
matrix.

Because the estimation errors of the observer be-
come zero (x̂ = x, ey = 0) for the nominal plant,
from (12) and (17), this system is represented by

y[i]u[i]r[i] SMHM Pc(s)

C2[z]

M

N

K

y0[i]
ey[i]

+

+
+

−

Fig. 5. Implementation of the proposed controller.

x̄[i + 1] = (Ā + B̄F )x[i] + B̄Kr[i]. (18)

Because non-singularity of the matrix B can be
assured by T = nTu (Araki, 1993), B̄ also be-
comes non-singular. Therefore, the parameters
F ,K can be selected so that following equations
are satisfied

Ā + B̄F = O , B̄K = I. (19)

From (19), F ,K are given by

F = −B̄
−1

Ā , K = B̄
−1
. (20)

Therefore, (18) is described by

x̄[i + 1] = r[i]. (21)

Utilizing the future desired state, let the reference
input be

r[i] = x̄d[i+ 1] (22)

where x̄d[i] is desired state. From (21) and (22),
we find the perfect tracking x̄[i] = x̄d[i] can be
achieved at every sampling point T .

Here, (16) and Fig. 1 can be transferred to (23)
and Fig. 5 (Sugie and Yoshikawa, 1986). There-
fore, the proposed controller can be simply imple-
mented by substituting (23) for (20) and (24), and
minimally realizing [C 1[z],C2[z]].

u = (M − C2N )Kr + C2y (23)

M =
[

A + BF B
F I

]
= I + z−1FB

N =
[

A + BF B
C + DF D

]
= D + z−1(C + DF )B

(24)

4. ILLUSTRATIVE EXAMPLES

In this section, the simulated and experimental
results for the position tracking control system of
the dc servo motor are presented, and the advan-
tages of the proposed approach are demonstrated.

4.1 Case2 on L = 1

First, the simplest examples in case 2 on L = 1
are considered. The dc servo motor is described
by

Pc(s) =
K

Js2
. (25)
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Fig. 6. Simulation and experimental results (Tref = 0.5[s]).

The feedback controller C2[z] is obtained from
the H∞ mixed-sensitivity problem, which includes
an integrator and becomes 3rd order(Mita et
al., 1995). Calculating (23) and minimally real-
izing the obtained C1[z] and C2[z], the controller
[C1,C2] becomes 5th order system.

Simulated and experimental results under the
sinusoidal desired trajectories of period Tref =
0.5[s] are shown in Fig. 6. Assuming Ty = 2[ms],
the each periods become T = 2[ms] and Tu =
Ty/Ln = 1[ms] because this plant is 2nd order.

In the following simulations and experiment, the
proposed method is compared with both SPZC
and ZPETC proposed by Tomizuka (1987) at
same input sampling period (Tu) . Therefore, the
reference and the output sampling periods (T
and Ty) of proposed method are twice as long
as those of SPZC and ZPETC because of Ty =
Tu = T = 1[ms] on them. In spite of that, the
results of proposed method have better tracking
performance than those methods.

Fig. 6(a)(b) show that the proposed method gives
better performance both than the SPZC and the
ZPETC. While the responses of the SPZC and
ZPETC have large tracking errors caused by the
unstable zero, those of the proposed method have
zero tracking errors. The simulated time response
of the control input is shown in Fig. 6(c), which
indicates that the control input of the proposed
method is smooth in spite of using the multi-
rate input control. Thus, we find the proposed
multirate feedforward method is very practical.
Moreover, the experimental result also indicates
that the proposed method has high tracking per-
formance as shown in Fig. 6(d). Furthermore, Fig.
6(a)(b) also show that the inter-sample responses
are very smooth because not only position but also
velocity follow the desired trajectories at every
sampling point T .
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4.2 Case2 on L = 2, 4

Second, Ty = 2[ms] is fixed for the same plant as
section 4.1, and the control input is changed more
frequently than Tu = 1[ms].

Although in Fig. 6(b), the desired trajectories
were very slow (Tref = 0.5[s]), Fig. 7 shows the
simulated results for more fast trajectories Tref =
10[ms].

Compared with L = 1, the tracking performances
are improved for large input multiplicity L = 2, 4.
The perfect tracking is also assured L times during
Ty.

4.3 Case1 on M = n

Third, although Ty = 2[ms] is assumed in section
4.1, the output is detected more frequently at
Ty = Tu = 1[ms] in this section. That is equal
to case 1 on M = n.

In this case, the tracking performance is re-
mained unchanged from section 4.1. However, the
closed-loop characteristics can be improved be-
cause much information of the plant can be de-
tected. Fig. 8 shows the simulated results when
the plant inertia J becomes three times larger
than the nominal inertia Jn. We find that the
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(Tref = 0.5[s]).

high performance robustness is achieved by the
H∞ feedback controller as shown in Fig. 8(a).
Moreover, Fig. 8(b) also shows that this case of
Ty = 1[ms], M = 2 has higher performance
robustness than the case of Ty = 2[ms], M = 1.

5. CONCLUSION

A novel perfect tracking control method in use
of the multirate sampling control was proposed.
Moreover, high performance perfect tracking con-
trol method was achieved, by which the control
system matches the hardware restrictions on the
periods of the plant input holding and output
sampling. The remarkable advantages of the pro-
posed method are 1) the tracking performance can
be improved on the inter-sampling points, if the
input can be changed more frequently, 2) higher
feedback performance is achieved, if the output
can be detected more frequently. Furthermore,
illustrative examples of position control using a dc
servo motor are performed, and the advantages of
this approach are demonstrated.

Finally, the authors would like to note that part
of this research is carried out with a subsidy of
the Scientific Research Fund of the Ministry of
Education.
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