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Abstract

In this paper, a novel perfect tracking control
method based on multirate feedforward control is
proposed. The advantages of the proposed method
are 1) the proposed multirate feedforward controller
eliminates the notorious unstable zero problem in
designing the discrete-time inverse system, 2) the
plant states track the desired trajectories with zero
error at every sampling point of reference input,
and 3) the feedback characteristics are completely
independent of the proposed controller. Thus, highly
robust performance is assured by the robust feedback
controller. Moreover, the proposed design method via
transfer function approach is much simpler than that
of the state space approach which was previously
presented by authors. Illustrative examples of
position control using servomotor, hard disk drive,
and voltage control of an inverter are presented,
and simulations and experiments demonstrate the
advantages of this approach.

Key words: digital control, multirate sampling,
tracking, motion control, power electronics

1 Introduction

In digital control systems, tracking controllers are
often employed because the controlled plant follows
a smoothed desired trajectory. The best tracking
controller is ideally perfect tracking controller (PTC)
which controls the object with zero tracking error [1].
Perfect tracking control can be achieved using d-step
preview action and a feedforward controller C1[z]
which is realized by an inverse of the closed-loop
system Gcl[z].

C1[z] =
1

zdGcl[z]
=

1− P [z]C2[z]
zdP [z]

(1)

r[i] = yd[i+ d] (2)

Here, d is the relative degree of Gcl[z], r[i] is the
reference input, yd[i] is the desired trajectory, and
C2[z] is the feedback controller.
However, the discrete-time plant P [z] discretized

by zero-order hold usually has unstable zeros [2].
Thus, C1[z] becomes unstable because Gcl[z] has
unstable zeros. Therefore, in conventional digital
control systems utilizing zero-order holds, perfect
tracking control is usually impossible.
From this viewpoint, two feedforward control

methods have been proposed for the discrete-time

y(t) y[i]u(t)u[i]r[i]r(t)
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Fig. 1. Two-degree-of-freedom control system.

plant with unstable zeros [1]. First, the stable pole
zero canceling (SPZC) controller cancels all poles and
stable zeros of the closed-loop system, which has both
phase and gain errors caused by the uncancellable
unstable zeros. Second, the zero phase error tracking
controller (ZPETC) adds the factors which cancel
the phase error, to SPZC. However, the gain error
caused by the unstable zeros remains.
On the other hand, authors developed perfect

tracking control method using multirate feedforward
control instead of the zero-order hold [3, 4]. In this
paper, a simple design method of perfect tracking
controller is presented by transfer function approach.
In the perfect tracking control, the tracking error
of plant state becomes completely zero at every
sampling period of reference input for a nominal
plant without disturbance1 . Moreover, by combining
the proposed feedforward controller with a robust
feedback controller such as disturbance observer
or H∞ controller, high tracking performance is
preserved even if the plant has modeling error and
disturbance.
The unstable-zeros problem of the discrete-time

plant has been resolved by zero assignment based on
multirate control [5, 6]. However, it has been shown
that those methods sometimes have the disadvantages
of large overshoot and oscillation in the intersample
points because the control input changes back and
forth very quickly [7]. On the other hand, the
proposed method never has this problem because all
of the plant states (e.g., position and velocity) are
controlled along the smoothed desired trajectories.

2 Perfect Tracking Control

A digital tracking control system usually has
two samplers for the reference signal r(t) and the

1The word of “perfect tracking control” is originally
defined in [1], which means the plant output perfectly tracks
the desired trajectory with zero tracking error at every
sampling point.
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Fig. 2. Multirate feedforward control.

output y(t), and one holder on the input u(t), as
shown in Fig. 1. Therefore, there exist three time
periods Tr , Ty, and Tu which represent the periods
of r(t), y(t), and u(t), respectively [8]. The input
period Tu is generally decided by the speed of the
actuator, the D/A converter, or the calculations on
the CPU. On the other hand, the output period Ty

is determined by the speed of the sensor or the A/D
converter.
In this paper, the perfect tracking control is

proposed in the simplest case for a SISO plant
without hardware restrictions on the sampler and
holder (Ty = Tu) . Because actual control systems
usually have restrictions on Tu and/or Ty, the
proposed method is extended to general systems
with these restrictions (Ty �= Tu) [4].
In the proposed multirate feedforward control,

the control input u(t) is changed n times during one
sampling period (Tr) of reference input r(t), as shown
in Fig. 2. Here n is the plant order. The advantage
of the proposed method is that the tracking error of
plant state becomes perfectly zero at every Tr .

2.1 Plant Discretization and Parameteriza-
tion

Consider the continuous-time nth-order plant Pc(s)
described by

ẋ(t) = Acx(t) + bcu(t) , y(t) = ccx(t). (3)

The discrete-time plant P [zs] discretized by the short
sampling period Ty (= Tu) of Fig. 3 becomes

x[k + 1] = Asx[k] + bsu[k] (4)
y[k] = csx[k], (5)

where x[k] = x(kTy), zs := esTy , and

As := eAcTy , bs :=
∫ Ty

0

eAcτbcdτ, cs := cc. (6)

Thus, the discrete-time plant P [z] discretized by
the multirate sampling control of Fig. 3 can be
represented by

x[i+ 1] = Ax[i] + Bu[i] (7)
y[i] = Cx[i] + Du[i], (8)

.....

iTr

kTy (k + 1)Ty (k + 2)Ty (k + n)Ty

(i + 1)Tr

u1[i]
u2[i]

un[i]
y1[i]

y2[i]
yn[i]

y1[i+ 1]

Fig. 3. Multirate sampling control

where x[i] = x(iTr), z := esTr , and multirate input
and output vectors u,y are defined as 2

u[i] := [u1[i], · · · , un[i]]T

= [u(kTy), · · · , u((k + n− 1)Ty)]T , (9)
y[i] := [y1[i], · · · , yn[i]]T

= [y(kTy), · · · , y((k + n− 1)Ty)]T , (10)

and matrices A,B,C,D are given by
[

A B
C D

]
:=




An
s An−1

s bs An−2
s bs · · · Asbs bs

cs 0 0 · · · 0 0
csAs csbs 0 · · · 0 0
...

...
...

csA
n−1
s csA

n−2
s bs csA

n−3
s bs · · · csbs 0


 . (11)

The proposed method employs the multirate-
input control as a two-degree-of-freedom control,
as shown in Fig. 1. In the figures, HM and
SM represent the multirate hold and the multirate
sampler, respectively. The functions of HM and SM
are shown in Fig. 3, and defined in (9) and (10).
In the ideal tracking control system, the transfer

characteristic (Gyr) from the command r to the
output y is generally 1. In this paper, the feedforward
controller C1[z] is considered so that the transfer
characteristic from the desired state xd to the plant
state x can be I.

2.2 Design of the Feedback Controller C 2[z]

Before the perfect tracking controller C1[z] is
designed, the feedback controller C2[z] must be
determined. Here, C2[z] must be a robust controller
which renders the sensitivity function S[z] = (I −
P [z]C2[z])−1 sufficiently small at the frequency of
the desired trajectory. The reason is that the
sensitivity function S[z] represents variation of the
command response Gyr[z] under the variation of
P [z] [10].
For systems without special hardware restrictions

in which the feedback loop is single-rate (Ty = Tu),
the feedback controller C2[zs] = {As2, bs2, cs2, ds2}
is designed for Pc(s) with a single-rate sampling
period Ty (= Tu), where zs = esTy . Subsequently,

2The operations of (9) and (10) are called “discrete-time
lifting” in advanced sampled-data control theory [9] .
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Fig. 4. Perfect tracking controller by the transfer
function approach.

C2[zs] is transferred to an n-input n-output system
C2[z] using (12), in order to realize C1[z] and C2[z]
together, where z = esTy = zn

s .

C2[z] =




An
s2 An−1

s2 bs2 An−2
s2 bs2 · · · bs2

cs2 ds2 0 · · · 0
cs2As2 cs2bs2 ds2 · · · 0

...
...

...
cs2A

n−1
s2 cs2A

n−2
s2 bs2 cs2A

n−3
s2 bs2 · · · ds2




(12)
Because the feedback characteristics such as distur-

bance rejection performance and stability robustness
are never improved by the multirate control in the
case where there is no hardware restriction in the
sampling scheme (Ty = Tu) [11, 12], it is not neces-
sary to design a n-input n-output multirate system
as the feedback controller C2[z]. Therefore, a single-
rate feedback controller C2[zs] is adequate in the case
of Ty = Tu.

2.3 Design of the Perfect Tracking Controller
C1[z] – Transfer Function Approach

In this section, the perfect tracking controller
is designed using the transfer function approach,
which can be understood more intuitively than
the state space approach presented in [4]. The
proposed controller can assure perfect tracking at
every sampling point Tr .
From (7) and (8), the transfer function from x[i+1]

to u[i] and y[i] is described by

u[i] = B−1(x[i+ 1]− Ax[i])
= B−1(I − z−1A) x[i+ 1]

=
[

O −A

B−1 B−1

]
x[i+ 1] (13)

y[i] = z−1C x[i+ 1] + D u[i]. (14)

In (13), the nonsingularity of matrix B is assured
for controllable plant, because B in (11) is equal to
the controllability matrix. Because all poles of the
transfer function (13) are zero, it is found that (13) is
a stable inverse system. Thus, if the control input is
calculated by (15) as shown in Fig. 4, perfect tracking
is guaranteed because (15) is an exact inverse plant.

u0[i] = B−1(I − z−1A) xd[i+ 1] (15)

Here, xd[i + 1] is previewed desired trajectory of
plant state. The output of the nominal plant model
can be calculated by

y0[i] = z−1Cxd[i+ 1] + Du0[i]. (16)

When the tracking error e is caused by disturbance
or modeling error, it can be eliminated using the
robust feedback controller C2[z] by applying (17).

u[i] = u0[i] + C2[z](y[i]− y0[i]) (17)

3 Application to motion control

3.1 Tracking control of servomotor

In this section, the proposed perfect tracking
control method is applied to the position control
system of the servomotor in a two-link direct-drive
robot manipulator.
The servomotor with current control is described

by

Pc(s) =
K

Js2
. (18)

The feedback controller C2[z] is obtained from the
continuous-time H∞ mixed-sensitivity problem and
Tustin transformation.
Simulated and experimental results are shown in

Fig. 5 and Fig. 6. The desired trajectory is a
sinusoidal waveform represented by

θd(iTr) = A(1− cos(ωref iTr))
ωd(iTr) = Aωref sin(ωref iTr),

(19)

where ωref = 2π× 4[rad/s]. In this system, both the
input and output periods are Ty = Tu = 15[ms]3. Be-
cause this plant is a 2nd-order system, the sampling
period of the reference signal becomes Tr = 30[ms]
(N = 2).
In the following simulations and experiments, the

proposed method is compared with the SPZC and
ZPETC proposed in [1], with the same Ty and Tu.
The reference sampling period Tr of the proposed
method is set twice as long as those of SPZC
and ZPETC, because these methods are single-
rate approaches and sampling periods are set to
Ty = Tu = Tr = 15[ms]. However, the proposed
controller utilizes the desired trajectories of both
position and velocity, while SPZC and ZPETC use
those of position only.
Fig. 5(a) and (b) show that the proposed method

exhibits better performance than either SPZC or
ZPETC. While the responses of SPZC and ZPETC
include large tracking errors caused by the unstable
zero, those of the proposed method have zero tracking
error. The simulated time response of the control
input is shown in Fig. 5(c), which indicates that
the control input of the proposed method is smooth
despite using multirate input control. Thus, we find
that the proposed multirate feedforward method is
very practical. Moreover, as shown in Fig. 6, the
experimental result also indicates that the proposed
method has high tracking performance. Fig. 5 and
Fig. 6 also show that the intersample responses
are very smooth, because not only position but
also velocity follows the desired trajectories at every
sampling point Tr .

3In the experimental results (Fig. 6), the output signals
are sampled at much shorter than 15 [ms] in order to
display the intersample responses. The sampling period is
set relatively long so as to make the comparison clear.
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Fig. 8. Hard disk drive.

The frequency responses from the desired trajec-
tory yd[i] to the output y[i] are shown in Fig. 7.
Because the proposed method ensures perfect track-
ing control, the command response becomes 1 for
all frequencies. In comparison, the gain of ZPETC
decreases at high frequencies.

3.2 Seeking control of hard disk drive

In the servo systems of hard disk drives, the
head position is detected by the discrete servo
signals embedded in the disks, as shown in Fig. 8.
Therefore, the output sampling period Ty is decided
by the number of these signals and the rotational
frequency of the spindle motor. However, it is
possible to set the control period Tu shorter than Ty

because of the recent development of CPU. Thus, the
controller can be regarded as the multirate system
which have the hardware restriction of Tu < Ty.
In this section, the proposed PTC is applied to
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Fig. 9. Seeking control of HDD

seeking control of 3.5-in hard disk drive [13, 14].
The plant is modeled by double integrator system
with time delay. Thus, the proposed method has
extended to the hardware restriction of Tu < Ty [4]
and time delay [8, 14]. The sampling time of this
drive is Ty = 138.54 [µs], and the control input can
be changed N = 4 times during this period. The
actual plant has the first mechanical resonance mode
around 2.7 [kHz]. The Nyquist frequency is also 3.6
[kHz]. In spite of those, the target seeking-time is set
to 3 sampling time (2.4 [kHz]) for one track seeking
in these experiments.
Perfect tracking controller is designed on input

multiplicity N = 4. Because the plant is second
order system (n = 2), perfect tracking is assured
N/n = 2 times during sampling period [4].
Fig. 9(a) shows simulation results of the short-

span seeking (1 [trk]), which shows that the proposed
method gives better performance than ZPETC.
While the response of ZPETC has large tracking



Table 1. Experimental seeking-time.
PTC ZPETC Conventional

1trk 3.17Ts 3.77Ts 4.14Ts

6trk 8.66Ts 9.57Ts 14.0Ts

E
R

L

C

vin vc

Fig. 10. Inverter system.

error caused by the unstable zero, that of the
proposed method has almost zero tracking error. As
a result, the proposed method exhibits very high
speed seeking. Fig. 9(b) shows that the seeking time
of the proposed method gets to about 3 sampling
time in the experiments.
Table 1 shows the average seeking-time which

is measured in the 2000 times experiments. The
seeking-time of the proposed method (PTC) is much
smaller than that of ZPETC and the conventional
settling control [15]. In the short-span seeking (1
[trk]), the seeking-time of the proposed method is 19
and 31 [%] shorter than the ZPETC and conventional
method, respectively. In the middle-span seeking (6
[trk]), the proposed method is 1 and 6 sampling time
faster than them. The details of these experiments
have been presented in [14].

4 Application to power electronics

In this section, the proposed method is applied
to the voltage control of an inverter. Tracking
performance is very important not only in motor
drive but also in active filter and UPS. The controlled
plant is shown in Fig. 10. The PWM inverter bridge
can generate output voltage of ±E or 0, and this
system has a LC filter and a resistive road R. This
plant is modelled by

ẋ(t) = Acx(t) + bcvin(t) , y(t) = ccx(t), (20)

Ac :=
[

0 1
− 1

LC
− 1

CR

]
, bc :=

[
0
1

LC

]
,

cc := [1, 0], x :=
[

vc

v̇c

]
, (21)

where R = 2[Ω], L = 0.53[mH], C = 800[µF], E =
40[V] [16]. Selecting the pulse width ∆T [k] in Fig.
11 as control input u[k], the discrete time plant with
control period Tu(= Ty) is modelled by (4), and the
parameters are described by [16, 17]

As := eAcTu, bs := eAcTu/2bcE, cs := cc, (22)

where Tu = 0.1[ms]. In the proposed multirate
feedforward control, the sampling period of the

r[i], y[k]

y[k + 1] r[i+ 1], y[k+ 2]

∆T [k] ∆T [k+ 1]

u1[i] u2[i]
E

kTu (k + 1)Tu (k + 2)Tu

TuTu
iTr (i + 1)Tr

Tr

t

Fig. 11. Multirate PWM control.

reference input is twice as long as the control period
(Tr = 2Tu), because the plant is a second order
system.
The simulation results for sinusoidal desired trajec-

tory are shown in Fig. 12 ∼ 17. Fig. 12 indicates that
the conventional single-rate deadbeat controller has
tracking error even on the sampling points, because
it requires two-step settling time. The frequency of
desired trajectory is assumed to be unknown. Thus,
the deadbeat controller is designed for step-type
reference signal.
If the desired trajectory is given at every two

sampling time, the deadbeat controller still has
problems of large intersample tracking error and
oscillated control input, as shown in Fig. 13 ∼ 15. In
this paper, the conventional deadbeat control with
Tr = 2Tu is named as multirate deadbeat control.
While the reference input of the multirate deadbeat
control is output variable yd[i], the proposed method
(PTC) utilises the desired state variable xd[i]. Thus,
perfect tracking of not only the output voltage but
also its derivative is guaranteed. Therefore, the
intersample tracking error of the proposed method is
much smaller than that of the deadbeat controller,
and the control input is very smooth.
In Fig. 16 and 17, the robustness for plant

variation is examined. For inductance variation and
time delay, the responses of conventional feedback
deadbeat controller become unstable. However, those
of proposed controller are stable and perfect tracking
performance is maintained.
Because the deadbeat performance is realized by

high-gain feedback controller, the stability robustness
is weak in conventional deadbeat control [16, 17].
On the other hand, in the proposed method, per-
fect tracking performance is realized in feedforward
controller. Thus, rich robustness is guaranteed by
feedback controller, which is completely independent
of the feedforward controller.

5 Conclusion

A novel perfect tracking control method using
multirate feedforward control was proposed. The
advantage of this method is that the feedforward
controller can be designed without considering the
unstable zero problem. Moreover, by combining
the proposed feedforward controller with a robust
feedback controller, high robust tracking performance
is obtained. The proposed design method via transfer
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function approach is much simpler than that of the
state space approach which was previously presented
by authors. Finally, examples of tracking control
of servomotor, seeking control of hard disk drive,
and voltage control of an inverter demonstrated the
advantages of this approach through simulations and
experiments.
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