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Abstract: In this paper, our recent studies on multirate sampling control and its
application to motion control systems are reviewed. Especially, multirate two-degree-
of-freedom controllers are focused on, where it is restricted that the sampling period of
plant output is longer than the control period. The proposed controllers assure perfect
tracking control (PTC) and perfect disturbance rejection (PDR) at M inter-sampling
points. The proposed approaches are applied to the position control of servomotors,
hard disk drives, and visual servo systems. The advantages are demonstrated through
simulations and experiments. Copyright c© 2002 IFAC
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1. INTRODUCTION

A generalized digital control system is shown in
Fig. 1, where Pc(s) is a continuous-time plant
to be controlled, C[z] is a discrete-time con-
troller implemented in digital computer. Because
the discrete-time controller has to deal with
continuous-time signals, it needs to have two sam-
plers for the reference signal r(t) and the output
y(t), and one holder on the input u(t). There-
fore, there exist three time periods Tr, Ty, and Tu

which represent the periods of r(t), y(t), and u(t),
respectively. The input period Tu is generally de-
cided by the speed of the actuator, D/A converter,
or the calculation on the CPU. The output period
Ty is also determined by the speed of the sensor
or the A/D converter.

Actual control systems usually hold the restric-
tions on Tu and/or Ty. Thus, in the conventional
digital control systems, these three periods are
often made equal to the longer of the two periods
Tu and Ty. However, multirate sampling control
has been studied from the point of view both
of control theories and applications [Araki, 1993].
Authors also have developed some multirate sam-
pling controllers, and applied them to motion con-
trol systems [Fujimoto, 2000].

In this paper, our recent work on this topic is
reviewed, and a part of important results is in-
troduced. The digital control systems which have
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Fig. 1. Two-degree-of-freedom control system.

hardware restrictions of Tu < Ty are assumed, and
novel design methods of multirate two-degree-of-
freedom (TDOF) controllers are proposed, which
achieve perfect tracking control (PTC) and per-
fect disturbance rejection (PDR) at M inter-
sample points in Ty. The restriction of Tu < Ty

may be general because D/A converters are usu-
ally faster than the A/D converters. Especially,
the head-positioning systems of hard disk drives
(HDDs) or the visual servo systems of robot ma-
nipulators belong to this category, because the
sampling rates of measurement are relatively slow.

Recently, the modern sampled-data control the-
ories have developed, which can optimize the
inter-sample response [Chen and Francis, 1995].
In contrast, the proposed methods make simple
and practical approaches to guarantee the smooth
inter-sample responses by controlling all of the
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Fig. 2. Multirate sampling control.

plant states (e.g. position and velocity) at M
inter-sample points.

2. DESIGN OF THE MULTIRATE TDOF
CONTROLLER

In this section, new multirate TDOF controllers
are proposed. For the restriction of Tu < Ty,
the frame period Tf is defined as Tf = Ty

[Araki, 1993], and the dynamics of the controller
is described by Tf . In the proposed multirate
scheme, the plant input is changedN times during
Tf and the plant state is evaluated M times in
this interval as shown in Fig. 2. The positive
integers N and M are referred to as input and
state multiplicities, respectively. N is determined
by the hardware restriction. The state multiplicity
is defined asM = N/n, where n is the plant order.

In Fig. 2, µj(j = 0, 1, · · · , N ) and νk(k =
1, · · · ,M ) are the parameters for the timing of the
input changing and the state evaluation, which
satisfy the conditions (1) and (2).

0 = µ0 < µ1 < µ2 < ... < µN = 1 (1)

0 < ν1 < ν2 < ... < νM = 1 (2)

If Ty is divided at same intervals, the parameters
are set to µj = j/N, νk = k/M .

For simplification, the continuous-time plant is as-
sumed to be SISO system. The proposed methods,
however, can be extended to MIMO system in the
same way as Fujimoto et al. [1999].

2.1 Plant Discretization by Multirate Sampling

Consider the continuous-time plant described by

ẋ(t) = Acx(t)+ bcu(t) , y(t) = ccx(t).(3)

The discrete-time plant discretized by the multi-
rate sampling control (Fig. 2) becomes

x[i+ 1] = Ax[i]+Bu[i] , y[i] = Cx[i],(4)

where x[i] = x(iT ), and where matrices A,B,C
and vector u are given by[

A B

C O

]
�=

[
eAcTf b1 · · · bN

cc 0 · · · 0

]
, (5)

bj
�=

(1−µ(j−1))Tf∫
(1−µj)Tf

eAcτbcdτ , u
�= [u1, · · · , uN ]T .(6)

The inter-sample plant state at t = (i + νk)Tf is
represented by

x̃[i] = Ãx[i] + B̃u[i], (7)

[
Ã B̃

] �
=




Ã1 b̃11 · · · b̃1N

...
...

...
ÃM b̃M1 · · · b̃MN


 , (8)

Ãk
�
= eAcνkTf , x̃

�
= [xT

1 , · · · ,xT
M ]

T (9)
xk[i] = x[i+ νk] = x((i + νk)Tf ), (10)

b̃kj
�
=




µj < νk :
∫ (νk−µ(j−1))Tf

(νk−µj)Tf
eAcτbcdτ

µ(j−1) < νk ≤ µj :
∫ (νk−µ(j−1))Tf

0 eAcτbcdτ
νk ≤ µ(j−1) : 0

.

2.2 Design of perfect tracking controller

In the conventional digital tracking control sys-
tems, it is impossible to track the desired trajec-
tory with zero error [Tomizuka, 1987], because the
discrete-time plant discretized by the zero-order-
hold usually has unstable zeros [Åström et al.,
1984].

The unstable zero problem of the discrete-time
plant has been resolved by zero assignment
method in use of multirate control in Kabamba
[1987] and Mita et al. [1990]. However, Moore
et al. [1993] showed that those methods sometimes
had disadvantages of large overshoot and oscilla-
tion in the inter-sample points because the control
input changed back and forth very quickly. On
the other hand, authors proposed perfect tracking
control by introducing the multirate feedforward
control, which never has this problem because
all of the plant states are controlled along the
smoothed desired trajectories [Fujimoto et al.,
2001]. In this section, perfect tracking feedforward
controller C1[z] is designed so that the plant state
(x) completely tracks the desired trajectory (x∗)
at every sampling points Tr(= Ty/M ).

The control law of Fig. 1 is described by

u = C1r +C2y (11)
= Fx̂ +Qey +Kr, (12)

where K,Q ∈ RH∞ are free parameters. There-
fore, Fig. 1 can be transferred to Fig. 3 [Fujimoto
et al., 2001]. In the figure, HM , S, and the thick
lines represent the multirate hold, the sampler,
and the multirate signals, respectively. In this
paper, K becomes a constant matrix.

Because the estimation errors of the observer be-
come zero (x̂ = x, ey = 0) for the nominal plant,
from (7) and (12), this system is represented by

x̃[i] = (Ã + B̃F )x[i] + B̃Kr[i]. (13)
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Fig. 3. Basic structure of TDOF control.
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Fig. 4. Implementation of the proposed controller.

Because the non-singularity of the matrix B̃ is
proved in Araki and Hagiwara [1986], the coef-
ficient matrices of (13) can be arbitrary assigned
by F and K. In this paper, the parameters F and
K can be selected so that following equations are
satisfied

Ã+ B̃F = O , B̃K = I. (14)

From (14), F and K are given by

F = −B̃
−1

Ã , K = B̃
−1

. (15)

Therefore, (13) is described by x̃[i] = r[i]. Uti-
lizing the previewed desired state at inter-sample
points (x̃∗[i]), if the reference input is set to
r[i] = x̃∗[i], we find perfect tracking (x̃[i] = x̃∗[i])
can be achieved at every sampling point Tr .

Because C1[z] of (11) can be transferred to (16),
C1[z] is given by

C1[z] = (M − C2N )K, (16)

M =
[

A +BF B

F I

]
= I + z−1F B,

N =
[

A +BF B

C O

]
= z−1CB,

(17)

as shown in Fig. 4, where M and N are the right
coprime factorization of the plant P [z] = NM−1

[Sugie and Yoshikawa, 1986, Fujimoto et al., 2001].
The initial state variable of (17) is set to be
identical with the initial plant state x[0]. The
internal stability of the proposed control system
is guaranteed because M ,N ∈ RH∞.

In the proposed scheme, C2[z] must be a robust
controller which renders the sensitivity function
S[z] = (I −P [z]C2[z])−1 sufficiently small at the
frequency of the desired trajectory. The reason
is that the sensitivity function S[z] represents
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Fig. 5. Multirate control with disturbance observer.

variation of the command response Gyr [z] under
the variation of P [z] [Sugie and Yoshikawa, 1986].

2.3 Design of perfect disturbance rejection controller

In this section, novel multirate feedback controller
is proposed based on the state space design of the
disturbance observer.

Consider the continuous-time plant model de-
scribed by

ẋp(t) = Acpxp(t) + bcp(u(t)− d(t)) (18)

y(t) = ccpxp(t), (19)

where d(t) is the disturbance input. Let the dis-
turbance model be

ẋd(t) = Acdxd(t) , d(t) = ccdxd(t). (20)

For example, the step type disturbance can be
modeled by Acd = 0, ccd = 1. The continuous-
time augmented system consisting of (18) and (20)
is represented by

ẋ(t) = Acx(t) + bcu(t) (21)
y(t) = ccx(t) (22)

Ac
�=

[
Acp −bcpccd

O Acd

]
, bc

�=
[

bcp

0

]
,x

�=
[

xp

xd

]
,

cc
�
= [ccp,0].

Discretizing (21) by the multirate sampling con-
trol, the inter-sample plant state at t = (i+νk)Tf

can be calculated from the kth row of (7) by

x[i + νk] = Ãkx[i] + B̃ku[i] (23)

Ãk =
[

Ãpk Ãpdk

O Ãdk

]
, B̃k =

[
B̃pk

O

]
.

For the plant (21) discretized by (4), the discrete-
time observer on the sampling points is obtained
from the Gopinath’s method by

v̂[i+ 1] = Âv̂[i] + b̂y[i] + Ĵu[i] (24)
x̂[i] = Ĉv̂[i] + d̂y[i]. (25)

As shown in Fig. 5, let the feedback control law
be

u[i] = F px̂p[i] + F dx̂d[i] = F x̂[i], (26)

where F
�
= [F p,F d]. Note that the F of the

above equation is different from that of (12) used



in C1[z] design. Letting ev be the estimation
errors of the observer (ev = v̂ − v), the following
equation is obtained.

x̂[i] = x[i] + Ĉev[i]. (27)

From (23) to (27), the closed-loop system is rep-
resented by

 xp[i+ νk]
xd[i+ νk]
ev[i+ 1]


 =


 Ãpk + B̃pkF p Ãpdk + B̃pkF d B̃pkFĈ

O Ãdk O

O O Â





 xp[i]

xd[i]
ev[i]


 .(28)

Because full row rank of the matrix B̃pk can be
assured [Araki and Hagiwara, 1986], F d can be
selected so as to the (1,2) element of the above
equation becomes zero for all k = 1, · · · ,M .

Ãpdk + B̃pkF d = O (29)

The simultaneous equation of (29) for all k be-
comes

Ãpd + B̃pF d = O, (30)

[
Ãpd B̃p

] �
=




Ãpd1 B̃p1

...
...

ÃpdM B̃pM


 . (31)

From (30), F d is obtained by

F d = −B̃
−1

p Ãpd. (32)

On (28) and (29), the influence from disturbance
xd[i] to the inter-sample state xp[i+νk] at t = (i+
νk)Tf can become zero. Moreover, xp[i] and ev[i]
at the sampling point converge to zero at the
rate of the eigenvalues of ÃpM + B̃pMF p and Â
(the poles of regulator and observer). Therefore,
perfect disturbance rejection is achieved (xp[i +
νk] = 0) in the steady state. The poles of regulator
and observer should be tuned by the tradeoff
between the performance and stability robustness.

3. APPLICATIONS TO MOTION CONTROL

3.1 Position control of servomotor by PTC

In this section, perfect tracking control (PTC)
proposed in section 2.2 is applied to the position
tracking control system of a servomotor [Fujimoto
et al., 2001]. First, the simplest example of Ty =
Tu is considered. The servomotor with current
control is described by

Pc(s) =
K

Js2
. (33)

The discrete-time plant with zero-order-hold is
obtained by

P [z] =
T 2K

2J
z + 1
(z − 1)2

, (34)
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Fig. 6. Experimental results of PTC for servomotor
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Fig. 7. Hard disk drive.

where T is the sampling period. Because it has
an unstable zero at −1, perfect tracking control
is impossible in the single-rate system. Thus, the
proposed multirate feedforward control is applied.

Experimental results under the desired sinusoidal
trajectories of 4 [Hz] are shown in Fig. 6. In
this system, both input and output periods are
Ty = Tu = 15[ms]. Because this plant is a 2nd-
order system, the sampling period of the reference
signal becomes Tr = 30[ms] (N = 2). The robust
feedback controller C2[z] is previously designed by
H∞ theory.

In the following experiments, the proposed method
is compared with both SPZC (Stable Pole Zero
Cancelling) and ZPETC (Zero Phase Error Track-
ing Control) proposed by Tomizuka [1987], at the
same Ty and Tu. Therefore, the reference sampling
period Tr of the proposed method is twice as
long as those of SPZC and ZPETC, because these
methods are single-rate approaches and their sam-
pling periods are set to Ty = Tu = Tr = 15[ms]. In
spite of that, the results of proposed method have
better tracking performance than those methods.

Fig. 6(a) and (b) show that the proposed method
exhibits better performance than either SPZC
or ZPETC. While the responses of SPZC and
ZPETC include large tracking errors caused by
the unstable zero, those of the proposed method
have small tracking error. Fig. 6 also shows that
the intersample responses are very smooth, be-
cause not only position but also velocity follow
the desired trajectories at every sampling point
Tr .

3.2 Seeking control of hard disk drive by PTC

In the servo systems of HDDs, the head position is
detected by the discrete servo signals embedded in
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the disks, as shown in Fig. 7. Therefore, the out-
put sampling period Ty is decided by the number
of these signals and the rotational frequency of the
spindle motor. However, it is possible to set the
control period Tu shorter than Ty because of the
recent development of CPU. Thus, the controller
can be regarded as the multirate system which has
the hardware restriction of Tu < Ty.

In this section, the proposed PTC is applied to
seeking control of 3.5-in hard disk drive [Fujimoto
and Hori, 2002]. The plant is modeled by dou-
ble integrator system with time delay. Thus, the
proposed method has extended to systems with
time delay in Fujimoto [2000]. The sampling time
of this drive is Ty = 138.54 [µs], and the control
input can be changed N = 4 times during this
period. Because the plant is second order system
(n = 2), perfect tracking is assured N/n = 2 times
during sampling period.

The actual plant has the first mechanical reso-
nance mode around 2.7 [kHz]. The Nyquist fre-
quency is also 3.6 [kHz]. In spite of those, the
target seeking-time is set to 3 sampling time (2.4
[kHz]) for one track seeking in these experiments.

The frequency responses from the desired trajec-
tory yd[i] to the output y[i] are shown in Fig. 8(a).
Because the proposed method (PTC) assures per-
fect tracking, the command response becomes 1
in the all frequency. However, the gain of ZPETC
decreases in the high frequency. The frequency of
the short-span seeking is 2 [kHz] around. There-
fore, the proposed method has advantages in fast
seeking control.

Fig. 8(b) shows simulation results of the short-
span seeking (1 [trk]), which shows that the
proposed method gives better performance than
ZPETC. Fig. 9 shows that the seeking time of the
proposed method gets to about 3 sampling time
in the experiments.

Table 1. Experimental seeking-time.
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Table 1 shows the average seeking-time which
is measured in the 2000 times experiments. The
seeking-time of the proposed method (PTC) is
much smaller than that of ZPETC and the con-
ventional settling control [Yamaguchi et al., 1998].

3.3 Visual servoing of robot manipulator by PDR

In this section, perfect disturbance rejection
(PDR) proposed in section 2.3 is applied to the
visual servo problem [Fujimoto and Hori, 2001],
in which the camera mounted on the robot ma-
nipulator tracks a moving object as shown in Fig.
10. Although the sampling period of vision sensor
such as a CCD camera is comparatively slow (over
33 [ms]), the control period of joint servo is fast
(less than 1 [ms]). Therefore, multirate controllers
have been developed and implemented in the vi-
sual servo system (e.g. Hashimoto and Kimura
[1995]).

Fig. 11 shows the proposed control system. First,
the work space position controller is designed to
control the camera position [Murakami et al.,
1995]. Letting xref

c (= [Xref
c , Y ref

c ]T ) be the con-
trol input u of the outer vision loop, the inner-loop
is regarded as analog system because the sampling
period of the inner-loop is very short (1 [ms] in
this experiment). The desired feature ξref is set
to zero because the camera is controlled to be posi-
tioned just below the object. The movement of the
object can be modeled as the output disturbance
xo. Therefore, the proposed method can achieve
high tracking performance, because the periodic
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Fig. 12. Experimental results of PDR for visual servo

system (Ty = 400 [ms], N = 4).

motion modeled by (35) can be rejected by the
proposed PDR.

d(t) = a0 +
∑

k

ak cos kω0t+ bk sinkω0t (35)

Moreover, the control system of Fig. 11 is lin-
earized and diagonalized by the inverse of the
perspective transformation ι−1(θ). Thus, the con-
trollers can be designed independently in the x
and y axes. In Fig. 11, e−sTd expresses the time
delay caused by image processing.

The experimental results are shown in Fig. 12.
In these experiments, the image is detected at
every 100 [ms]. In order to display the intersample
response, the sampling period is set to Ty = 400
[ms] in the controller. Fig. 12(a) shows that the
tracking error of the proposed multirate controller
is much smaller than that of the single-rate con-
troller in the image plane. Moreover, as shown in
Fig. 12(b) and (c), the camera position is very
smooth because the multirate controller generates
the intersample position reference based on the
disturbance model. Note that the amplitude and
phase of the target movement are assumed to be
unknown, and the information is estimated by the
observer. Fig. 12(d) shows the calculated results
of error ratio for the object velocity. While the
conventional single-rate controller has large error
for high speed movement, the proposed method
has very small error.

4. CONCLUSION

In this paper, our recent research on multirate
sampling control for motion control system was
reviewed. Particularly, the digital control systems
which have hardware restrictions of Tu < Ty were
assumed, and the multirate feedforward controller
was proposed, which assured perfect tracking at

M inter-sample points. Next, the multirate feed-
back controller was proposed, which guaranteed
perfect disturbance rejection at M inter-sample
points in the steady state. The proposed ap-
proaches were applied to the position control of
servomotors, hard disk drives, and visual servo
systems, and the advantages were demonstrated
through simulations and experiments.
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