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Abstract. In the resonance ratio control, the estimation speed of the disturbance observer should have been much faster than the
resonance frequency of the controlled system. However, too fast disturbance observer causes implementation problem. In this
paper, we give the optimal speed of the disturbance estimation and propose a novel technique, slow resonance ratio control,
which enables us to design the speed control and the vibration suppression control independently.
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Vibration suppression and disturbance rejection control in torsional
system is an important problem in the future motion control. As the
newly required speed response is very close to the primary resonant
frequency of such systems, conventional techniques based on P&I
controller is not effective enough. To overcome the problems, various
control strategies have been proposed mainly for controlling 2-inertia
system, the simplest model of the flexible system.[1][2][3][7][12][13][14]

In this paper, we will focus our discussion on the disturbance
observer-based techniques. We proposed "resonance ratio control"
several years ago and showed its excellent performance by
simulation.[4][9] By feeding back the torsional torque estimated by the
disturbance observer, the virtual motor inertia moment can be changed
to an arbitrarily value. This means that we can change the resonance
frequency and then the resonance ratio.

However, the estimation speed of the disturbance observer used in the
resonance ratio control was assumed fast enough compared with the
resonant frequency of the controlled object.[9] Too fast disturbance
observer causes implementation problem. We then investigated the
effect of estimation speed on various control performances.

In this paper, we propose a novel technique, "slow resonance ratio
control", whose advantages are as follows:

(1) The optimal speed of the disturbance estimation is given by a
explicit formula. It can be relatively slow.

(2) The speed controller can be independently designed from the
vibration suppression control.

Finally, we explain the specially ordered experimental setup using two
motors and adjustable flywheels connected by a flexible shaft. We can
adjust not only the inertia moments and the stiffness of the shaft but
also the backlash and friction. We confirm the effectiveness of the
proposed method by experiments.

STEEL ROLLING MILL AND 2-INERTIA MODEL

Figure 1 illustrates the typical configuration of steel rolling mill system.
This system is basically a distributed parameter system. By using the
modal analysis, it can be modeled as a system having several inertia
moments and springs. [12] For example, 12 inertia moments are
needed. 2-inertia system given by Figure 2 is its simplest model.
Figure 3 gives its block diagram representation.

In Figure 2, we assume

JM0 + JL = 1 ,   Ks = 1 (1),  (2)

roll
gear couplings

pinion
stand

motor

speed
sensor

Figure 1: Typical configuration of steel rolling mill system.
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Figure 2: 2-inertia system model.
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Figure 3: Block diagram of 2-inertia system.

for comparative analysis. These equations mean that the total inertia
moment of the motor and the load, and the spring coefficient are fixed
to 1, respectively. Various 2-inertia systems with different inertia ratios
will be investigated under these relations.

The transfer function from TM to M, which is most important in the
closed loop design, is given by
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This transfer function has two particular points: the resonant and anti-
resonant frequencies given by

r0 =  Ks 
JL

 1+  JL 
 JM0 

 (4)

a
  =  Ks 

JL
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where R0 is the inertia ratio given by R0=JL/JM0. At these frequencies,
the phase characteristics change drastically. 

SLOW RESONANCE RATIO CONTROL
AND ITS DESIGN METHOD

Figure 4 depicts our proposing new technique: the slow resonance ratio
control. Using this configuration, I will explain our idea.

Ideal fast resonance ratio control [9][11]

When Tq=0 in Figure 4, it gives the ideal "resonance ratio control"
based on the fast disturbance observer. In usual disturbance observer
applications, 100% of the estimated disturbance is fed back to the
motor torque, but in this case, 1-K of the estimated disturbance is fed
back. We can change the virtual motor inertia moment to any value as



 JM =  JM0 K (6)

The inertia ratio can be changed to

R  = JL
 JM 

 = JL

 JM0 K 
 = KR0  (7)

The resonant frequency is then changed to

r =  Ks 
JL

 1+  JL 
 JM 

 (8)

The anti-resonant frequency does not change. In the resonance ratio
control, by setting the new resonance ratio H= r/ a to be 2～ 5,
effective vibration control is achieved.[4][9][11] However, the
estimation speed of the disturbance observer is finite in actuality. From
some simulations, it is known that the estimation should be done faster
than the resonant frequency of the controlled object.

Slow resonance ratio control

When the estimation speed of the observer is finite, i.e., Tq>0, the
ideal resonance ratio control is impossible. Generally by using Q as
the low-pass filter part: 1/(Tqs+1) in Figure 4, the following two
important transfer functions can be obtained.
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We pay more attention to L/TM' .  Its characteristics are as follows.

■When the observer is very fast, i.e., Tq=0 if Q=1/(Tqs+1),
by putting Q→1, eq.(11) is obtained.
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■When the observer is very slow, i.e., Tq=∞ if Q=1/(Tqs+1),
by putting Q→0, eq.(12) is obtained.
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These two curves have the intersection point at

0 = 1+ R+R0
2

 a (13)

and the amplitude there is given by
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(14)
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Figure 4: Configuration of the slow resonance ratio control.

Interestingly, all curves having any Tq pass this point. Hence, if Tq is
selected so that this point is the local maximum, vibration suppression
can be realized most effectively. Such Tq is given by

Tq =
1+ R+3R0

4
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4
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2
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 a 

(15)

This is the optimal estimation speed (the optimal time constant) of the
disturbance observer when we use the first order observer.

For reference, the optimal estimation speed given by Iwata in Umida's
slow disturbance observer is given by [5][6]

Tq = 1+ R0
2

 1
 a 

(16)

This value is close to the value to put R=0 in eq.(15). In other word,
Umida's slow disturbance observer is the special case to put R=0 in the
slow resonance ratio control.

Design of K

K is the ratio of R (the new inertia ratio that the resonance ratio control
aims to realize) to R0 (the original inertia ratio), i.e., R=KR0. a is
also the function of R0. When R0 is given as a parameter of the
original system, from eqs.(14) and (15), the optimal estimation speed
Tq and the peak amplitude at 0 are the functions of only K .

Figure 5 draws the peak amplitude at 0 as the function of K . The
peak at 0 decreases when K increases. On the other hand, from
Figure 6, we can see that q(=1/Tq) becomes bigger when K increases,
which means that faster estimation is required. It must cause
implementation problem. Hence we need a compromise.

From Figures 5 and 6, if we select K=5～10, the peak is relatively
small while keeping q not so big for a wide range of R0. For smaller
K , q becomes much smaller, which reduces implementation problem,
because the controller has no fast parts.
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Figure 5: The peak amplitude at 0 v.s. K .
(When K increases, the peak at 0 decreases.)
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Figure 6: The optimal estimation speed of the disturbance observer.
(For bigger K , faster estimation is needed. Tq = 1/ q.)



Design of the speed controller

In eqs.(9) and (10), L/TM' converges to 1/s when s→0, because we
designed so as to keep their DC gains same regardless of R0. It means
that, in any R0 cases, the 2-inertia system can be seen 1-inertia system
having JM0+JL=1 as the total inertia moment.

It is very convenient if we can use the fixed P&I speed controller
designed for the 1-inertia system. Here, we put

Kp = 1
T

  ,    K i = 
Kp

2.5T
(17),  (18)

T is the specified response time of speed control. Here, we put
T =1/ a hoping to realize the command response as fast as the anti-
resonant frequency. Eq.(18) means that we selected the integral time
constant to be 2.5 times of the speed control response. In simulation,
Two-Degree-Of-Freedom P&I controller is used to reduce the
overshoot in command response. It can be realized simply by putting
b=0.5 in Figure 4.

Summary of the design procedure

The following is the summary of the design procedure of the "slow
resonance ratio control" proposed in this paper.

(1) Put K=5～10, i.e., R=5R0～10R0.
(2) Put the disturbance observer's estimation speed by eq.(15).
(3) Design the speed controller by eqs.(17) and (18).

SIMULATION RESULTS OF THE SLOW
RESONANCE RATIO CONTROL

Here we will show the time response simulation of the "slow
resonance ratio control" At t=5, the speed command *=1 is given to
observe its command response. At t=25, step disturbance of TL=-0.5
is given to see the disturbance response.

In this simulation, the model constants include 10~20% errors, and
backlash (+/-0.01) and torque limiter (+/-1.2) are introduced. We can
know that the performances of the proposed method are same or even
superior to other methods, e.g., the resonance ratio control, the optimal
PID control, and even the state feedback control.[10][11][15]

The speed controller here is designed for 1-inertia system without
considering vibration suppression. Such an independent design has a
great advantage in actual industrial application systems.
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Figure 7: Simulation results when K=5.

EXPERIMENTAL RESULTS OF DISTURBANCE
OBSERVER BASED CONTROLLERS

Experimental setup

Figure 8 illustrates the "Torsional Vibration System Experimental
Setup" specially made by Mitsubishi Heavy Industry. It consists of
two brushless DC (BLDC) motors, changeable backlash and friction
mechanism, the load equipment and so on. The torques of BLDC
motors are controlled fast and precisely enough by two high
performance motor drivers.

Sensor information from shaft encoders and tacho-generators are read
into the microcomputer via counter boards and A/D converters. After
some control calculations, the torque commands are outputted to the
drivers via D/A converters. Control algorithm is written by C
language. We developed some more convenient programs, e.g., a
frequency response measurement algorithm using M-series signal.
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Figure 8: Experimental setup of torsional vibration system.

Table 1 gives the experimented control methods and their parameters.
The inertia moments are converted to the load-side (i.e. the torsional
shaft side) quantities. We implemented

(1) original disturbance observer designed for 1-inertia system,
(2) fast resonance ratio control using fast disturbance observer,

and
(3) slow resonance ratio control proposed in this paper. 

The speed controllers of (1) and (3) are designed for 1-inertia system,
and in (2) we used Manabe Polynomial method.[8] In all experiments,
IP speed controllers are used by putting b=0 in Figure 4.
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Figure 9: Original disturbance observer.

TABLE 1- Tested control methods and the parameters

controller
parameters

disturbance
observer
for 1 axis

fast
resonance

ratio control

slow
resonance

ratio control

system parameters

inertia moment of motor JM0=4.016×10-3[kgm2]

inertia moment of load JL=2.921×10-3[kgm2]

stiffness constant Ks=39.21 [Nm/rad]

resonant frequency
anti-resonant frequency r0=152.3[rad/s], a=115.9[rad/s]

inertia ratio
resonance ratio

R0=JL/JM0=0.7273, H0=1.314

control period Ts =1[ms]

parameters in speed control
Kp (proportional gain) 0.804 0.435 0.535

K i (integral gain) 26.6 14.26 17.71

parameters in vibration control
K ( = R/R0 ) － 3.025 2.368

q ( = 1/Tq ) * 2.0 a 3.0 a 1.7 a

* Tq : time constant of the disturbance observer
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Figure 10: Fast resonance ratio control.
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Figure 11: Slow resonance ratio control.

In the experiments of the command response shown in Figure 9(a)～
Figure 11(a), the speed reference ref=10[rad/s] is given at t=0. In
experiments of the disturbance response shown in Figures (b), at t=0
the disturbance torque of 2[Nm] is added from the loadside motor.

In the experiments here, sL is the load speed, sg is the gear speed
(We used the gear of 1/2 gear ratio.), m is the motor speed and Tm is
the motor torque. We tried to set the gear backlash to be 0, but there
still remains little backlash. Also, note that the motor torque is limited
by +/-3.84[Nm]. The torque commands are drawn in the figures.

Experimental results and discussion

The original disturbance observer in Figure 9 designed for 1-inertia
system just suppresses the disturbance injected into the motor axis,
which is the torsional torque in this case. As the result, big vibration
was induced in the load speed and it considerably affected to the motor
speed, too.

In the fast resonance ratio control shown in Figure 10, we implemented
the disturbance observer as fast as we can. However it is not fast
enough to realize the ideal resonance ratio control. Low frequency

vibration can be suppressed effectively. However, the transfer
function from TL to L has a harmful frequency peak around
200[rad/s]. Due to this peak, relatively big high frequency vibration
remains in the motor torque.

The slow resonance ratio control shown in Figure 11 gives sufficiently
stable vibration-less responses in frequency characteristics and motor
torque waveforms. This is because there are no fast parts in the
proposed controller.

CONCLUSION

In this paper, we proposed the "slow resonance ratio control" as an
effective torsional system control method. We gave the explicit
formula of the optimal estimation speed of the disturbance observer.
We confirmed its superior performances by simulation and real
experiment. In the original "fast resonance ratio control", we needed to
design the speed controller considering the vibration suppression,
where we dealt with the total system's transfer function or the state
space representation. On the contrary, in the proposed slow resonance
ratio control, we can use the speed controller independently designed
for 1-inertia system. This is a great advantage in most industrial
applications.
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