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Experimental evaluation of torsional system’s vibration suppression control performance by

discrete fractional order controller
Chengbi Ma*, Yoichi Hori, (The University of Tokyo)

Abstract : This article proposes a novel discrete fractional order PIDk controller for speed control of three-

inertia torsional system. The experiments are also carried out to verify the theoretical robustness of the

proposed PIDk control realized by the Short Memory Principle compared to the classical integer order PID

control. The experimental results show the fractional order control system’ s superior robustness performance

against backlash nonlinearity and thus the backlash vibration can be suppressed. Applying fractional order

control concept to motion control is still in a research stage, but it’ s superior robustness against nonlinearities

and other uncertainties highlights the promising aspects.
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1. Introduction

The concept of expending derivatives and integrals
to fractional (non-integer) order is by no means new.
In fact,Leibniz mentioned this concept in a letter to
L' Hospital over three hundred years ago (1695) and the
earliest more or less systematic studies seem to have
been made in the beginning and middle of the 19th
century by Liouville (1832), Holograms (1864) and
Riemann (1953) . However, factional order control
concept, when the controlled systems or controllers are
described by fractional order differential equations, was
not widely incorporated into control engineering mainly
due to the conceptually difficult idea of taking fractional
order and so few physical applications at that time .

In last few decades, researchers pointed out that frac-
tional order differential equations could model various
real materials more adequately than integer order ones
and provide an excellent tool for the description of dy-
namical processes ® ® (9 These fractional order mod-
els need the corresponding fractional order controllers be
proposed and evoked the interest to various applications
of fractional order control. The significance of fractional

order control is that it is a generalization and“ interpo-

lation” of classical integral order control theory, which
could lead to more adequate modeling and more robust
control against various uncertainties.

However, most of these works were originated and con-
centrated on control of chemical processes while in mo-
tion control, the research is still in a primitive stage. In
fractional order control, phase and gain could be ad-
justed continuously to give the systems more margin
against uncertainties such as nonlinearities than their
integer order counterpart. This theoretical superiority
should highlight the promising aspects of fractional or-
der control in motion control.

The paper is organized as follows: in section 2, ba-
sic mathematical aspects of fractional order control are
mentioned to show the fractional order control is ac-
tually a natural generalization of classical integer con-
trol theory. The robustness of fractional 1/ s* system is
also discussed; in section 3, fractional order PID* con-
trollers are proposed to the three-inertia torsional sys-
tem ' s speed control with backlash nonlinearity. The
Short Memory Principle is introduced to realize designed
fractional order D* controller on digital computers; in

section 4, the designed fractional order PID" realized by



the Short Memory Principle with different order k& and
memory length are evaluated by the experiment of tor-
sion system ' s speed control. The experimental results
show that the discrete fractional order PIDF control Sys-
tems display superior robustness against gear backlash
nonlinearity and suppress the vibration caused by the
backlash. Finally, in section 5, preliminary conclusions

are drawn.

2. Theoretical Aspects
02010 Mathematical definitions The mathe-
matical definition of fractional calculus has been the sub-
ject of several different approaches. The most frequently
encountered definition is called Riemann-Liouville defi-
nition ) )

1 vt 1
an = m@/ﬂ mf(@% (1)

Where Gamma function

a and t are limits and k, (k € R) the order of the oper-
ation. < is an integer that satisfies v — 1 < k < 7. The
other approach for definition is Grunwald — Letnikov
definition " ®);
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Where the binomial coefficients
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0 2720 Laplace and Fourier Transforms The
Laplace transforms of the Riemann — Liouville™® *
fractional derivative with order k£ > 0 is
L{oD;} =s*

§=0

(5)

where (n —1 <k <n). If
oD 770 =0 j=0,12....n-1  (6)

then

L{oDEF(0)} = $*F(5) (7)

Obviously, the Fourier transform of fractional order cal-

culus could be obtained by setting s = jw in its Laplace

Z { DFi 1y (0)],(n71§k<n)

transform just like the classical integer order calculus’.
Therefore, the frequency responses of fractional order
Clearly, the
fractional order systems’ gain and phase change contin-

1/s* systems can be plotted as Fig.??.

uously between the classical integer order ones’.
Fractional order calculus is also a generalization of
classical integer order calculus in Laplace and Fourier
transforms, which would mean that extremely well de-
veloped classical integer order control techniques could

still be fully referred in fractional order control.
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characteristics equation with vari-

02130 Robustness to gain variation
loop 1/s* system ' s
able gain factor A is

14+ Asf =0 (8)

The equation has two complex-conjugate dominate poles
within [—7, 47]:

S1,2 = Ai%eijﬂ/k (9)
The relative damping ratio £ is

£ = cos (7r — %) = —cos (%) (10)

This result shows the relative damping ratio ¢ is exclu-
sively decided by order k and independent of the gain

factor A. In frequency domain, the characteristic equa-

tion is
14+ AG (jw) =0 (11)
Equ.(11) can be rewritten in the form:
1
G (jw) = —— 12
() =~ (12)

The movement of —1/A can be considered to be the locus
of the critical point (Fig.??). when the gain variation
occurs. For the integer order systems, this movement
usually leads to less phase margin and low damping of
overswings. But for fractional 1/s* systems, phase mar-
gin and relative damping ratio can be kept constant in
wide range of frequencies below and in the neighborhood
of the critical point. This characteristic highlights the
hopeful aspect of applying fraction order control to real

engineering problems.



3. Fractional Order PID* Speed Control

0 3110 Modeling of the Torsional System The
simplest model and block diagram of the torsional sys-
tem with backlash nonlinearity between gears are the
three-inertia model shown in Fig.3 and Fig.4, where
Jm,Jg and J; are driving motor, gear and load’s iner-
tias, K shaft elastic coefficient, w,, and w; motor and
load rotation speed, T, the input torque and 7; the
disturbance torque. In the modeling, the gear backlash
nonlinearity is simplified as a deadzone factor with band
[-6,+¢] and elastic coefficient K.

Fig.3. Torsional system ’ s model
Fig. 4. Block diagram of the three-inertia system

The open loop transfer function between T, to wy, is
G(s) = {JyJis* + [(Ks + K,)J, + KsJ,)s* + K K}/
{8{Tm Ty Jis* + [Ks(Jg + J1)Im + Kg(Jim Ji
+Jg + J)ls* + (m + Jg + J) KK}
qass + q28% + qo
8(pasa + p2s® + po)
(8* + wi)(s* + wiy)
 Tms(s? +wgy)(s2 + wiy)

where wg; and wga(wor < wpz) are the resonance fre-
quencies while wp1 and wpe (wh1 < wh2) are the anti-
resonance frequencies. As shown in the three-inertia
system ' s Bode plot (Fig.1), wp; and wpy correspond
to torsion vibration mode; wgs and wpe correspond to
gear backlash vibration mode. The frictions between

the components are neglected due to their tiny values.
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00 3120 Fractional PID* controller

smooth the discontinuity of speed command w, by the

In order to

integral controller, a set-point-I PID k (Fig.6) controller

is introduced to speed control of the torsional system.

Fig. 6. Set-point-I1 PID k controller Where,

K, = %\1/5 Jiks, K; = %KS,Kd = %Jl —Jm (14)
which is designed by Coefficient Diagram Method, a de-
sign method based on pole-placement of close loop char-
acteristic equation Y. The PID k controller’s design is
based on assuming D controller’s fractional order & be-
ing integer order 1 firstly and simplifying the torsional
system to two-inertia system where driving motor and
gear are treated as unity inertia of J,,, + J4 and the back-
lash between gears is just neglected. Time responses by
simulation with the simplified two-inertia model show
the designed integer order PID control system has a
satisfactory time-domain performance without backlash

nonlinearity (Fig.2). However, when the designed inte-
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0 2 Time responses of the integer order PID
two-inertia system by simulation

ger order PID controller is applied to the three-inertia
system with gear backlash, the control system would be
unstable and give rise to severe vibration due to the neg-
ative gain phase margin in PD and three-inertia plant’s
minor loop, as shown in Fig.3’s k=1 case. The large
phase delay of about -180 degree in high frequency range
also indicates poor robustness again backlash nonlin-
earity and other uncertainties. In order to provide the
minor loop enough stability margin, introducing a low
pass D controller K4s/Tys + 1 to substitute pure D con-
troller is the common method while the design process
would become much more complex since the necessity
of redesign the whole PID controller’s parameter set-
ting including the time constant 7, based on the suf-
ficient condition of Multi-inertia system stability with
PID control . However, in this paper, a novel method
of expanding D controller’s order to fractional is pro-

posed to adjust the minor loop’s gain and phase margin



k=05

0 3 Bode plots of PD* and plant’s minor
loop

directly and thus suppress the vibration caused by back-
lash nonlinearity, as shown in Fig.8.

03130 Discrete Realization Method It is well
known that the fractional order systems have an infi-
nite dimension while the integer order systems finite di-
mensional. Proper approximation of designed fractional
order controllers by finite difference equations is crucial
for applying the fractional order control to real engineer-
ing problems. Especially, since most modern controllers
are realized on digital computers, the discrete realiza-
tion methods of fractional order controllers remain being
more concerned.

Generally, there are currently three approaches to at-
tain direct discretization of fractional order controllers:
the definition approach Short Memory Principle ®),
time-domain approach Lagrange interpolation method
(™ and Tustin operator expansion approach ®. Among
them, the Short Memory Principle is being used most
intensively in the simulation and realization of discrete
fractional order systems by various literatures ®, (10)-
(12) due to its easy programming and clear interpre-
tation. The principle takes into account the behavior
of f(t) only in the “recent past”, i.e. in the interval
[t — L,t], where L is the length of “memory”:

oDEf(t) Re—r DEF(2),(t > a+ L) (15)

The Short Memory Principle is based on the observation
that the values of binomial coefficients near the “start-
ing point” ¢t = a in the Grunwald — Letnikov definition
is small enough to be neglected or “forgotten” for large

t. By using the principle, the discrete equivalent of the

fractional order controller in discrete domain is given by

& i @w
(w(z H))*k =TF* Z ¢ ieg =1 (16)
=0

where 7" is sampling time and the binomial coefficients

are:

[tk 1 +
c§i’“’=(—1>]< j >:<1_ +a(‘ k))kal,c§k=1

(17)

Clearly, in order to have good approximation, small
sampling time and long memory length are needed. In
this paper, the Short Memory Principle is adopted to

realize the discrete fractional k order D* controller.
4. Experimental Results

In order to verify the backlash vibration suppression
performance of fractional PID* controllers and evaluate
the Short Memory Principle discrete realization method
in torsional system’s speed control, experiments are car-
ried out with sampling time 7'=0.001s, different D* con-
troller’s order k£ and memory length L. Parameters
of the experimental torsional three-inertia system are
shown in Table.l. An encoder (8000pulse/rev) is used

as the speed feedback sensor.

0O 1 Parameters of the three-inertia syste

T Jq T K, K, 5
(Kgm?) | (Kgm?) | (Kgm?) | (Nm/rad) | (Nm/rad) | (deg.)
0.0007 0.0034 0.0029 3000 198.49 0.5

Equ.(14) give
K, = 0979, K; = 72.178, K4 = —0.003  (18)

Since the torque input to driving motor from the ex-
perimental equipment’s motor diver has a limitation of
maximum 3.84NM, K, is retuned to 18.032 by trial-and-
error to avoid severe overshoot and overswing caused by
the torque input saturation. Firstly, the speed control
experiment is carried out by integer order PID control.
As have been analyzed in section 3.2, the severe back-
lash vibration occurs due to the minor loop’s negative
stability margin (Fig.4).

Fig.5 to Fig.10 show the experimental results of frac-
tional order PID* control with 0.2 and 0.5 order D*
controllers and memory length 0.005sec and 0.1sec. By
introducing fractional order controller, the control sys-
tem’s stability and robustness against backlash robust-

ness are improved and thus the vibration could also
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O 4 Time responses of the integer order PID
control

be suppressed. The better approximation and perfor-
mance could be achieved with longer memory length.
Some transient tiny vibrations occur in the short mem-
ory length case L/T = 5, while for longer memory with
L/T = 100, the tiny vibrations disappear and the time
responses are more satisfactory. It ’ s interesting to find
the time responses of the fractional order control sys-
tems also show the” interpolation” characteristic be-
tween their integer order counterparts that higher order
0.8 near integer order 1 leads to large overshoot and
overswing, indicating a relative poor stability and ro-
bustness performance, while in lower order such as 0.2,
there is nearly zero overshoot and the time responses
indict the superior robustness against backlash nonlin-
earity. This “interpolation” characteristic is a key point
to understand the superiority of fractional order control
as providing much more flexibility in control design pro-

Cess.

wm (radisec)

wl (rad/s)

time (sec)

0 5 Time responses of fractional order
PID"® with L/T =5

N
&

@
8
L

N
8

wm (radsec)

5
L

o
o
o
°
ke
°
>
o
©

wl (rad/s)
n @ IS
3 8 8

.

H
5
L

°
°
°
~
°
S
°
>
°
®

time (sec)

O 6 Time responses of fractional order
PID®5 with L/T =5

wm (radisec)

wl (rad/s)
= IS
5 3
T T
1

time (sec)

O 7 Time responses of fractional order
PID%? with L/T =5

wm (radisec)

40

30 [ T

20 [

wl (rad/s)

10 [ T

time (sec)

0 8 Time responses of fractional order
PID"® with L/T = 100

5. Preliminary Conclusions

In this paper, novel discrete fractional order PID*
controllers realized by the Short Memory Principle are

proposed for speed control of three-inertia torsional sys-
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tem with gears backlash nonlinearity. The experimen-
tal results show the improved robustness and stability
performances of proposed fractional PIDk order control
system. By changing the fractional order, the system’s
robustness can be improved directly which means less
complex design process and less tuning efforts in real in-
dustrial applications. Applying fractional order control
concept to motion control is still in a research stage, but
its superior robustness against nonlinearities and other
uncertainties highlights the promising aspects while fu-

ture exploration of more complex cases is needed.
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