
I. INTRODUCTION 
The concept of expending calculus to 

non-integer order is by no means new. In fact, the 

concept has a firm and long standing theoretical 
foundation. Leibniz mentioned it in a letter to 

L’Hospital three hundreds years ago (1695) [1]. 

The earliest systematic studies seem to have been 

made in the beginning and middle of the 19th 
century by Liouville, Riemann, and Holmgren [1][2]. 

However, the concept was not widely 

incorporated into control engineering until in last 

few decades, researchers pointed out that 

fractional order models could model various real 

materials more adequately than integer order 

ones and provide an excellent tool for the 

description of dynamical processes [1][2]. These 

fractional order models need the corresponding 

fractional order control be proposed and evoked 

the interest to it’s various applications. The 

significance of fractional order control is that it is 

a generalization and “interpolation” of classical 

integral order control theory, which could lead to 

more adequate modeling and more robust control. 

However, most of these works were originated 

and concentrated on control of chemical processes 

while in motion control, the research is still in a 

primitive stage [2][3]. 

  The article is organized as follows: in section II, 

mathematical aspects of fractional order control 

are mentioned; in section III, a integer order PID 

controller is designed for the speed control; in 

section IV, a frequency band PIαD controller is 

proposed and its broken-line realization method 

is also introduced; in Section V,  Experimental 

results are presented  to show the robustness of 
proposed fractional order PIαD controller. Finally, 

in section V, preliminary conclusions are drawn. 
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II. MATHEMATIC ASPECTS 
A. Mathematical definitions 

The mathematical definition of fractional 

calculus has been the subject of several different 

approaches [1][2]. The most frequently 

encountered definition is called 

Riemann-Liouville definition: 
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a and t are limits and k, (k∈R) the order of the 

operation.γis an integer that satisfies γ-1<k<γ. 

  The other approach for definition is the 

Grunwald-Letnikov definition: 
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B. Laplace and Fourier transforms 

The Laplace transforms of the Riemann-Liouville 
fractional derivative of order k>0 is [2] 
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Obviously, the Fourier transform of fractional 
order calculus could be obtained by setting s=jω 

in its Laplace transform just like the classical 

integer order calculus’.  

Fractional order calculus is also a 

generalization of classical integer order calculus 

in Laplace and Fourier transforms, which would 

mean that extremely well developed classical 

integer order control theory could still be fully 

used in fractional order control. 

 

 

III. INTEGER ORDER PID CONTROL 
A. Modeling of two-inertia system 

  The most simple model and block diagram of 

2-inertia system are shown in Fig.1 and Fig.2.  

 
Fig. 1. Two-inertia system model 

The open loop transfer function between TM to 

ωM is 
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where the resonance frequency ω0 and the 

anti-resonance frequency ωh are 
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Fig. 2. Block diagram of 2-inertia system 

Parameters of the experimental 2-inertia system 

are shown in Table.1. 
Table 1. Parameters of the 2-inertia System 

JM (Kgm2) JL (Kgm2) Ks (Nm/rad) 

0.004 0.003 198.490 

 
B. Design of PID controller 

A set-point-I PID controller is introduced to 

control the 2-inertia system,  
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Fig. 3. Set-point-I PID controller 
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is designed by Coefficient Diagram Method 

esign method based on pole-placement. By 

) and equ(4b),  
0.979, Ki = 72.178, Kd = -0.003, Td = 0.02 (4c) 
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  Time response by simulation shows the 

designed PID control system has a satisfactory 

performance (Fig.4). While in its frequency 

response, the enough phase margin is not kept in 

the neighborhood of the critical points, which 

could lower the robustness of the systems when 

nonlinearities such as saturation and parameter 

changing occur (Fig.5). 
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Fig. 4. Time response by simulation 
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Fig. 5. Bode plot of designed integer order PID system 

 

 

IV. FRACTIONAL ORDER PIαD CONTROL 
A. Frequency band Iα controller 

The most direct way to enhance the 

robustness of designed PID control system is to 

adjust I controller’s order in order to giving more 

phase margin around the critical point. However, 

it is neither practicable nor desirable to try to 

make the order be fractional in all frequency 

range. Frequency-band fractional order controller 

is useful and required in real applications. Here, 
a frequency-band I α controller is propose to 

substitute classical integer order I controller 
where the low band frequency ωb = 10 rad/sec and 

high band frequency ωh = 1000 rad/sec (equ.5). 
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By changing the order of α, the phase margin of 

proposed fractional order PIαD control system 

can be adjusted directly and continuously (Fig.6). 
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Fig. 6. Bode plot of fractional order PIαD system 

 

B. Realization method 

It is intuitive to approximate fractional order 

controllers by frequency-domain approach since 

the clear geometric interpretation in this domain. 

A broken-line approximation method is 

introduced to realize frequency-band fractional 

order controllers.  Let 
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From Fig.7, two recursive factorsα and β are 

introduced where: 
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Fig 7. Broken-line approximation (N=1) 
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g.8 shows the Bode plots of ideal frequency 
nd D(s) (k = 0.4, ωb=10Hz and ωh=1000Hz) and 

 1st-order, 2nd-oder and 3rd-order 
proximations by above method. Even N = 2 

uld give satisfactory accuracy in frequency 
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Fig. 8. Bode plots of ideal case and approximations 

 

 

V. EXPERIMENTAL RESULTS 
  Experiments of two-inertia speed control by 

integer order PID controller and frequency-band 
PIαD controller are carried out based on the 

parameters setting in Table.1 with maximum 

output torque limitation TM = 3.84NM and an 
encoder (8000pulse/rev) as speed sensor. Here, α 

is taken as 0.6 to give proper phase margin 
around the critical point. The parameters Ki, Kp, 
Kd and Td of PID and PI0.6D controllers are kept as 

same as the settings in equ(4c). 

For integral order PID controller, the step 

response is greatly changed when saturation 

occurs (Fig.9). While it can be seen the 

frequency-band PI0.6D system showing a better 

robustness to saturation nonlinearity (Fig.10). 
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Fig. 9. Step response of PID system with saturation 
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Fig. 10. Step response of PI0.6D system with saturation 

  Fig. 11 and Fig. 12 give the step responses of 

two control systems with different inertia on load 

side. Compared to the severe change of integer 

order PID control system’s time responses with 

large overshoot and overswing, the 

frequency-band PI0.6D control system shows much 

better robustness to inertia variation with 

smaller and nearly constant overshoot. 
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Fig. 11. Step responses of PID system with inertia variation 
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Fig. 12. Step responses of PI0.6D system with inertia variation 

 

VI. PRELIMINARY CONCLUSIONS 
In this paper, a frequency-band fractional 

order PI αD controller is proposed for speed 

control of two-inertia system with torque 

saturation limitation and load side inertia 

variation. An intuitive broken-line approximate 

realization method of frequency-band controllers 

is also introduced which has a satisfactory 

accuracy in frequency domain. The experimental 

results show the robustness of proposed fractional 

control system. By changing fractional order, the 

robustness of the system can be enhanced directly 

which means the less complex design process and 

less tuning efforts in real industrial applications. 

Fractional order control to motion control is still 

in a research stage, but its superior robustness 

against parameter variation and nonlinearities 

highlight the promising aspects while future 

exploration of the applications to more complex 

cases is needed. 
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