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Sampling Time Scaling Property of Discrete Fractional Order Controller and
Application to Realization of Fractional Order Vibration Suppression Control
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Abstract

This paper proposes an interpretation of discrete fractional
order controllers as sampling time scaled classical discrete
integer order controllers. The discrete fractional order con-
trol systems are proved to remaining being Linear Time-
Invariant systems based on the proposed sampling time scal-
ing property. Essence of fractional order control as control
with scaled memory is proposed to explain the fractional or-
der control systems’ robustness against uncertainties. Fi-
nally, the sampling time scaling property is used to realize
fractional order PID¥ controllers which are designed to sup-
press torsional system’s backlash vibration. The experimental
results show good approximation of the proposed novel real-
ization method and the PIDF control systems’ superior ro-
bustness against backlash non-linearity. Applying fractional
order control concept to motion control is still in a research
stage, but it’s superior robustness against non-linearities and
other uncertainties highlights the promising aspects.

1 Introduction

The concept of expanding derivatives and integrals to
fractional (non-integer) orders is by no means new. In
fact, the concept had a firm and long standing theoreti-
cal foundation. Leibniz mentioned this concept in a letter
to Hospital over three hundred years ago (1695) and the
earliest more or less systematic studies seem to have been
made in the beginning and middle of the 19th century by
Liouville(1832), Holmgren(1864) and Riemann(1953) [1].
However, the concept of Fractional Order Control (FOC),
in which the controlled systems and/or controllers are de-
scribed by fractional order differential equations, was not
widely incorporated into control engineering mainly due to
the conceptually difficult idea of taking fractional order and
the existence of so few physical applications at that time [2].

In last few decades, researchers pointed out that frac-
tional order differential equations could model various real
materials more adequately than integer order ones and pro-
vide an excellent tool for the description of dynamical pro-
cesses [1,3,4]. Those fractional order models need the cor-
responding fractional order controllers to be proposed and
evoked the interest to various applications of FOC [5-8]. The
significance of FOC is that it is a generalization and “interpo-
lation” of classical integral order control theory, which could
lead to more adequate modeling of dynamic processes and
more direct design of robust control systems against uncer-
tainties.

It is well known that integer order derivatives and inte-

grals have clear physical and geometric interpretations, such
as slope or velocity for derivatives and area or distance for
integrals generally. These clear and easily understandable
interpretations simplified their applications to various prob-
lems in different fields, including control theory that is ex-
tremely well developed based on integer order differential
equations. On the contrary, for fractional order derivatives
and integrals, it was not so. The notorious lack of clear geo-
metric interpretations made fractional order derivatives and
integrals conceptually difficult and greatly obstructed their
real applications. Podlubny proposed a simple geometric in-
terpretation of fractional integrals as “changing shadows on
the wall” and some pictures describing this changing process
were given [9]. However, since most modern controllers are
realized by digital computers, clear interpretation of frac-
tional order controllers’ roles in discrete domain is much
more concerned and with practical importance.

The paper is organized as follows: in section II, basic
mathematical aspects are mentioned; in section ITI, an inter-
pretation for discrete fractional order controllers based on
sampling time scaling property is proposed and basic con-
cepts of discrete FOC systems are investigated by using the
proposed property; in section IV, robustness of FOC systems
is analyzed through their absolute and relative stabilities; in
section V, experiments of applying discrete PID* controller
to backlash vibration suppression control are introduced; in
section VI, preliminary conclusions are drawn; finally, in sec-
tion VII, future works are mentioned.

2 Mathematical Aspects

2.1 Mathematical Definitions

The mathematical definition of fractional derivatives and
integrals has been the subject of several different approaches
[1] [3]. The most frequently encountered definition is called
Riemann-Liouville definition, in which the fractional order
integrals are defined as

WD = [T @dg
while the definition of fractional order derivatives is
WDi = 91,07 ] @
where
M@= [ ey )



is the Gamma function, a and ¢ are limits and « (o > 0 and
o € R) is the order of the operation. < is an integer that
satisfies y — 1 < o < 7.

The other approach is Grinwald-Letnikov definition:

o [a4
toDf = lim h~™ E
h—>0
nh=

f(t—rh) (4)

Where the binomial coefficients (r > 0)

((3):1, (ﬁ)za(a—l)..;!(a—r-l—l) )

2.2 Laplace and Fourier Transforms

The Laplace transform of the Riemann-Liouville fractional
order derivative with order o > 0 [1] [3] is

n—1

L{oDp}=s"F(s)~ s [bDF 7110 (6)
where (n—1) < a<n. If
oD F(0) =0, =0,1,2,...,n—1 (7)
then
L{oD7f(0)} = s*F(s) (8)

Namely, the Laplace transform of fractional order deriva-
tive is fractional order Laplace calculator s. Obviously, the
Fourier transform of fractional derivative can be obtained by
substituting s with jw in its Laplace transform just like the
classical integer order derivative’s.

3 Sampling Time Scaling Property
3.1 Geometric interpretation

By Riemann-Liouville definition, fractional order integral
with order between 0 and 1 is

oI% £ (1) /f )gi(r), 0 < @ < 1 )
where
1
gi(7) = m[ta -t -7) (10)

Let ¢ = nt,, where {5 is sampling time and n is the step
currently under execution, then

n® — (n—k)*

Gnt, (kts) = F(]. T Oé)

o k=1,.,n (1)

Therefore, by sharing the same view of discrete integer order
integration rules the “real” sampling time T of kth step is

To(k) = Agns,(kts)
= gnt,(kts) — gne,[(k — 1)t]
m—k+1)*—(n—-k)* ,
['(1+«) s (12)

Thus
-0x
Tn(n) = mts
To(n—1) = 217
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T (1) F1+a) e
(13)
Finally, based on the trapezoidal integration rule
o " f(kty) + fl(k — 1)t
I =~y (k) 2[( ) ]Tn(k) (14)
k=1
and
o _ p N~ F(kts) + fl(k = 1)¢]
oln;, = lim > 5 To(k)  (15)

t=nt, k=1

From Equ. (13), the interpretation of discrete fractional or-
der integrals is the “deformation” of their integer order coun-
terparts by the internal sampling time scaling (see Fig. 1).
By using this interpretation, it is easily to understand that
the past values are “forgotten” gradually in discrete frac-
tional order integral due to their scaled tiny sampling time
while in integer order ones all the values are “remembered”
with the same weights.
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Fig.1: Fractional order integral’s sampling time scaling

Similarly, discrete fractional order derivatives with order
between 0 and 1 is

o _ 1 d [* f(r)
oDFf() = F(l—a)%/ (t—T)adT
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Again based on the trapezoidal integration rule

/fdgt

and
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(20)
The interpretation of discrete fractional order derivatives
is the derivatives of fractional (1 — «) order integrals
font“ f(7)dg;(r). Namely, it can be understood geometrically
as the changing ratio of the “scaled integral area” (see Fig. 2)
due to the sampling time scaling property.

Fig.2: Changing of the “scaled integral area”

Clearly, when the orders are integers, the sampling time
scaling effect disappears which means in discrete domain
FOC is also a generalization and “interpolation” of the inte-
ger order control theory.

3.2 Causal LTT Systems

Some important concepts of discrete FOC systems become
transparent when view in terms of the sampling time scal-
ing property. Standard discrete control system is depicted in
Fig. 3. For simplification the discrete controller F is frac-
tional a order derivative or integral (0 < a < 1).
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Fig.3: Block diagram of digital control system

Discrete « order derivative or integral’s output at the kth
step is a linear combination of all the past inputs (¢(0) = 0):

Bk) = [FI80), (k,1=1,2,..)) (21)
The system matrix is
1,1 0 0
FI= | fa) e e @)

where for « order integral
1

= e sa, l: k
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(23)
while for @ order derivative the elements are a little complex:
1 I
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(24)

Based on Equ. (21) to Equ. (24), it is easy to prove that
discrete FOC systems are causality that the outputs at step
k depend only on the inputs up to step k ([F] is lower tri-
angular). Even with the sampling time scaling property, the
FOC systems keep being Linear Time-Invariant since [F] is
constant along diagonals. Namely, if an input to FOC sys-
tems {¥(1),¢(2),...} produces the output {¢(1),%(2),...},
then the input {0 v( ), ¥(2), ...} produces an output of the
form {0,¢(1),(2), ...} due to the causality and linear time-
invariance of the discrete FOC systems. The Equ. (23) and
Equ. (24) can also be used to realize fractional order con-
trollers that will be discussed in detail in section. 5.4.

Although FOC is conceptually unfamiliar, it is in fact a
natural generalization and expansion of integer order control
theory. The FOC systems are also Causal LTI systems whose
Laplace and Fourier transforms are similar to the integer
order systems’ but with fractional orders. These identities
imply the future researches of FOC can still make good use
of the extremely well-developed classical control theory for
reference.

3.3 Control with Scaled Memory

The FOC systems have two time scales: feedback and
sampling time scaler. As depicted in Fig. 4, a fractional
order controller can be considered as the series of sampling
time scaler and the classical integer order controller concep-
tually based on the proposed sampling time scaling property.
Namely, the sampling time of input sequence {#(1), ¥(2),...}
is pre-adjusted by the sampling time scaler before entering
the integer order controller.

Fractional order controller
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Fig.4: Sampling time scaler of FOC systems

Fractional order control can be regarded as some kind of
control with “forgetting factors” A, (k). For example, the



“forgetting factors” of fractional order integral controllers
equal 1/T,(k) in Equ. (13), where large scaled sampling
time of latest values means small “forgetting factor” and
vice versa:

u(n) = Anl(k) [e(k) + e(k — 1)] (25)

k=1

It can be seen in Fig. 5 that in fractional order inte-
gral controllers the input values are memorized with scaled
weights, while the integer order controllers give all the val-
ues with same weights. The rapid fading influences of the old
values and dominance of the latest ones make fractional or-
der controllers “adaptive”’to present changes of the dynamic
processes. This can also be a time domain explanation of
FOC systems’ robustness against uncertainties, while future
researches are needed to make clear the theoretical impor-
tance of FOC as control with scaled memory.
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Fig.5: Discrete 1°-% controller’s scaled sampling time

4 Robust Control

4.1 Absolute Stability

The fractional a order control systems’ characteristic
equation is

()" + ap_1(s*)" '+ ... +a15* +ag =0 (26)
where 0 < @ < 1. Let o = s*, Equ. (26) can be rewritten as
0"+ 8 10" ... +a10+ag=0 (27)

The requirement of the stability for Equ. (26) is the roots
p; of the characteristic equation in the principle sheet of the
Riemann surface (—7 < arg(s) < w) must be all located in
the left-half s-plane, namely —% < arg(p;) < 5. Using the
mapping o = s%, the corresponding stability condition for
Equ. (27) is that all its roots p; must be located in —-ga <
arg(p;) < Za of the o-plane (see Fig. 6).

Compared with the characteristic equations of integer or-
der control systems with same coefficients {a,_1,...,a1,a0},
the stability requirement of the FOC systems is looser. For
uncertainties the coefficients of the characteristic equation
change and consequently the root move about the complex
plane. Looser stability requirement of FOC systems means
better robustness performance against uncertainties.

s-plane

Fig.6: Larger stable roots’ region for FOC systems

4.2 Relative stability

In frequency domain, the characteristic equation of unity-
feedback system with open-loop transfer function G(s) =
1/s* is

1+ AG(s) =0 (28)

where A is variable gain factor. Equ. (28) can be rewritten
in the form: .

Gljw) =~ (29)
The movement of —1/A can be considered to be the locus of
the critical point as depicted in Fig. 7 when the gain varia-
tion occurs. For the integer order control systems, this move-
ment usually leads to less phase margin since their open-loop
frequency responses can only be adjusted between integer or-
ders. But for fractional 1/s* systems, phase margin can be
kept at any desired value and constant in wide range of fre-
quencies below and in the neighborhood of the critical point.
This characteristic highlights the hopeful aspect of applying
fraction order controllers to real control problems.
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Fig.7: Any desired phase margin of 1/s* system

5 Application of Vibration Suppression

5.1 Experimental torsional system

The experimental setup of torsional system is depicted in
Fig. 8. A torsional shaft connects two flywheels while driv-
ing force is transmitted from driving servomotor to the shaft
by gears with gear ratio 1:2. Some system parameters are
changeable, such as gear inertia, load inertia, shaft’s elas-
tic coefficient and gears’ backlash angle. The encoders and
tacho-generators are used as position and rotation speed sen-
sors.
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Fig.8: Experimental setup of torsional system

The experimental torsional system is controlled by a
Pentium IV PC (see Fig. 9). Realtime operating system
RTLinux™ distributed by Finite State Machine Labs, Inc.
is used to guarantee the timing correctness of all hard re-
altime tasks [10]. The control programs are written in
RTLinux C threads which can be executed with strict timing
requirement of control sampling time. The torque commands
are calculated by the digital computer and sent to driving
and disturbance servomotors through attached drivers. A
12-bit analogue input/output board with 4 output DA chan-
nels and 8 input AD channels is used to convert digital torque
commands to analogue signals and analogue output voltage
of tacho-generators to digital signals, while the pulse output
signals of encoders are counted by a 4-channel 24-bit encoder
pulse counter board.

Pentium IV :
(MR | »! Driving servomotor
Q ——» D [P Disturbance servomotor
o | B |B]i]&
. e | <
E» 5 O |[¢— & [ «—— Shaft tacho-generator (driving)
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< 't encoder (driving
g g |8« Shaft encoder (driving)
o = | B |« Shaft encoder (load)
§ < Motor encoder

Digital Computer Torsional System

Fig.9: Digital control system of the experimental setup

5.2 Three-mass modeling

The simplest model and block diagram of the torsional
system with backlash non-linearity between gears are the
three-inertia model depicted in Fig. 10 and Fig. 11, where
Jm, Jg and J; are driving motor, gear and load’s inertias, K,
shaft elastic coefficient, w,, and w; motor and load rotation
speed, T;, the input torque and 7; the disturbance torque.
In the modeling, the gear backlash non-linearity is simplified
as a deadzone factor with backlash angle band [-§,46] and
elastic coeflicient K.

The open-loop transfer function between Ty, to wy, is
G(s) = {Jgdis* +[(Ks+ K)Ji + KsJg)s> + K K}/
{8{Jmdyis* + [Ks(Jy + J) I + Ko (I J
+Jg + I8 + (Jm + Jg + ) K Kg}}

(s* + win)(s* + wiy)

Tms(s? + w3y )(s* + w3,)

Fig.11: Block diagram of the three-mass model

where w,1 and w,o are the resonance frequencies while wp,
and wpo are the anti-resonance frequencies. w,; and wpi
correspond to torsion vibration mode, while wy,o and wpo
correspond to gear backlash vibration mode (see Fig. 12).
The frictions between the components are neglected due to
their tiny values.
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Fig.12: Bode plot of the three-inertia model

5.3 TFractional PID* controller

In order to smooth the discontinuity of speed command w,
by the integral controller, a set-point-I PID® (see Fig. 13)
controller is proposed for speed control of the torsional sys-
tem where D controller’s order can be any real number.
Firstly, the integer order PID controller is designed by sim-
plifying the torsional system to two-inertia system where
driving servomotor and gears are treated as unity inertia
of J,, + J,; and the backlash non-linearity between gears is
just neglected. The parameters of the PID controller are
decided by Coefficient Diagram Method, a design method
based on pole-placement of close-loop characteristic equa-
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Fig.13: Set-point-I PID* controller
tions [11] [12]:

10v/2 4 5
=7 V Jikg, K = ﬁKs:Kd = ﬁJl —Jm  (31)

Simulations with the simplified two-inertia model show the
PID control system has a satisfactory performance (see

Fig. 14).
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Fig.14: Time responses of the integer order PID two-inertia
system by simulation

However, when the integer order PID controller is ap-
plied to the three-inertia system with gear backlash, the con-
trol system will be unstable and cause severe vibration due
to the negative gain phase margin in PD and three-inertia
plant’s minor loop as depicted in Fig. 15’s k=1 case.
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In order to provide the minor loop with enough stability
margin, introducing a low pass D controller Kgs/(Tgs + 1)

to substitute pure D controller is the common method while
the design process will become much more complex since all
the PID controller’s parameters including the time constant
T4 should be re-designed [13]. In this paper, a novel method
of letting D controller’s order to be fractional is proposed
to adjust the minor loop’s gain and phase margin directly
and therefore suppress the vibration caused by backlash non-
linearity (see Fig. 15).

5.4 Realization method

It is well known that the fractional order systems have an
infinite dimension while the integer order systems finite di-
mensional. Proper approximation by finite difference equa-
tion is needed to realize the PID* controller. Generally,
there are curretnly three approaches to attain direct dis-
cretization of fractional order controllers: the definition ap-
proach Short Memory Principle [3], time-domain approach
Lagrange interpolation method [6] and Tustin operator ex-
pansion approach [14].

In this paper, the sampling time scaling property is used
to realize the D* controller due to its clear interpretation
and easy programming. The method takes into account the
behavior of f(¢) only in the “recent past”, i.e. in the interval
[t — L,t], where L is the length of “memory”:

toDEf(t) ~e_1, DEF(t), t>to+ L (32)

The realization method is based on the observation that the
lengths of scaled sampling time near the “starting point” ¢g
is small enough to be “forgotten” for large ¢ (see Fig. 5). By
using this observation and Equ. (24), the discrete equivalent
of the D* controller is given by

kBT
Z(s*) = iz 33
(S ) 211(2 _ ) Z C]Z ( )
7=0
where T is sampling time and the coefficients ¢; are
Cop = 1
a = 2'7%-1
¢ = ((+1)—¢°
-1 -E-2)7" 22
(34)

Clearly, in order to have better approximation, longer mem-
ory length are needed.

5.5 Experimental results

Experiments of torsional system’s PIDF speed control are
carried out with sampling time 7'=0.001sec, different D con-
troller’s order k and memory length L. Parameters of the
experimental torsional three-inertia system are shown in Ta-
ble. 1. Two encoders (8000pulse/rev) are used as the rota-
tion speed sensors. Equation (31) gives

K, =0.979, K; = 72.178, K4 = —0.003 (35)

where K; < 0 means positive feedback of acceleration w,,.
Since the driving servomotor’s input torque command 7,
has a limitation of maximum 3.84 NM, K; is reduced to



Table 1: Parameters of the three-inertia system

Im Jy gy K, K )
(Kgm?) | (Kgm?) | (Kgm?) | (Nm/rad) | (Nm/rad) | (deg.)
0.0007 0.0034 0.0029 3000 198.49 0.5

18.032 by trial-and-error to avoid large over-shoot due to the
saturation. Firstly, integer order PID speed control experi-
ment is carried out. As depicted in Fig. 16 severe backlash
vibration occurs due to the minor loop’s negative gain mar-
gin, which is consistent with the analysis result in section
5.3.
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Fig.16: Time responses of the integer order PID control

Figures 17 and 18 depict the experimental results of frac-
tional order PIDF control with 0.2, 0.4, 0.6, 0.8 order D
controllers and memory length of L/T = 5 (0.005sec) and
L/T = 100 (0.1sec). The control system’s stability and
robustness against backlash non-linearity are greatly im-
proved and the severe backlash vibration in integer order
PID control case is suppressed. It can be see in Fig. 17
and Fig. 18 better approximation and performances can be
achieved with longer memory length, while even taking short
memory length such as L/T = 5 can also give satisfactory
performances. The intermittent tiny vibrations in lower or-
der 0.6, 0.4 and 0.2 cases are due to their relative high gains
near gear backlash vibration mode in open-loop frequency
responses.
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Fig.17: Time responses of PI1D* control (L/T = 5)

@
S
@
S

3 3
8o 8o
3 3
k1 k1
5 20 5 20
0 0
0 02 0.4 0.6 0.8 1 0 02 0.4 0.6 038 1
30 30
) )
% 20 % 20
3 3
k1 k1
10 10
3 3
0 0
0 02 0.4 0.6 08 1 0 02 0.4 0.6 038 1
time (sec) time (sec)
60 60
3 3
o e 40
Lao z
£ £
5 20 520
0 0
0 02 0.4 06 038 1 0 02 04 0.6 038 1
30 30
) o
% 20 % 20
4 «©
g £
10 z
3 3
0 0
0 02 0.4 06 038 1 0 02 04 06 038 1
time (sec) time (sec)

Fig.18: Time responses of PID* control (L/T = 100)

It is interesting to find the time responses of the frac-
tional order PID¥ control systems also show the “interpola-
tion” characteristic between their integer order counterparts.
As depicted in Fig. 19, the time responses of PID%% and
PID%%! closely resemble PID! and PID%’s time responses,
while this experimental reslut is natural since the orders are
nearly same. The “interpolation” characteristic is one of
main points to understand the superiority of FOC as provid-
ing more flexibility for designing robust control systems. At
the same time, the experimental consistency with the logi-
cality also verifies the good approximation of proposed novel
realization method based on the sampling time scaling prop-
erty.
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Fig.19: Continuity of PID* control’s time responses (the
fractional order controllers are realized with L/T = 100)



6 Preliminary Conclusions

In this paper, the sampling time scaling property is pro-
posed to give an interpretation of fractional order controllers
in discrete domain. This interesting property might be one
of main points to understand the essence of FOC systems in
discrete domain as remaining being Causal Time-Invariant
systems and control with scaled memory. The property is
also used to realize fractional order PID* controllers which
are designed to suppress torsional system’s backlash vibra-
tion. The experimental results show the improved robustness
of PID* control system and good approximation of the real-
ization method. By changing D* controller’s order k, the
control system’s robustness against backlash non-linearity
can be adjusted directly which means less design and tuning
efforts in real industrial applications. Applying FOC con-
cept to motion control is still in a research stage, but its
superior robustness against nonlinearities and other uncer-
tainties highlights the promising aspects.

7 Future Works

o Theory:

1. Making clear the theoretical significance of inter-
preting FOC as control with scaled memory will be
considered. Especially, the FOC systems have their
own time scaler and infinite memeory. Theoreti-
cal explanation of these two important charaterstics
should give insight to the FOC’s essence.

2. In adaptive control, there are also two time scales:
a fast time scale for ordinary feedback and a slower
one for updating the controller parameters actively
to follow the process variations [15]. Some basic
considerations and research methods of the adadap-
tive control may be referred in theoretical studies of
FOC research.

3. The current researches of FOC are mainly in conti-
nous domain. Discussing the FOC with latest digi-
tal control theory would be challenging and fruitful.

o Modeling: Fractional order model can model
distributed-paramter systems more accurately [4]. Mod-
eling aspects of the FOC theory are also important. The
experimental torsional system should be a good object.

o Application: Applying FOC to other digital motion con-
trol such as robot actuators’ vibration suppression and
harddisk tracking control problems will be considered.

o Realization:

1. The proposed novel realization method should be
discussed in more detail and compared with the
other realization methods to verify its superiority.

2. FOC systems can only be realized by integer order
approximations. Logically the realizable FOC sys-
tems are in fact integer order systems. The FOC
can be looked as a “mine” of classical integer or-
der control theory. Discussion of FOC approach
directly from the viewpoint of integer order control
theory would be interesting and profound.
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