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Abstract: In recent steel rolling mill system, according to the application of high response AC drive system,
the long shaft between the motor and the roll can no longer be assumed to be stiff. Vibration suppression and
disturbance rejection are today's most important issue, and various control strategies have been proposed. In
this paper, two relatively simple control techniques using the disturbance observer are proposed, analyzed and
compared. One is the "resonance ratio control" based on the "fast disturbance observer". Another is the "slow
disturbance observer". In both cases, by realizing "Manabe's Polynomial", the 2-mass non-stiff system can be
controlled effectively, although there is a clear difference between these two techniques.

INTRODUCTION

Vibration suppression and disturbance rejection in flexible
system must be an important issue in the future motion control.
It originates in the steel rolling mill system, where the load is
coupled to the driving motor by a long shaft. As the newly
required speed response is very close to the first resonant
frequency of such systems, only the conventional techniques
based on P&I control are not effective enough. To overcome
the problems, various control strategies have been proposed
mainly for controlling the 2-mass system, the simplest model
of the flexible system.[4][5] Here, we can see the history of
control theory: simple acceleration feedback, model following
control, observer and state feedback, and modern H∞ control.

In this paper, I will propose and compare two relatively simple
control techniques which uses the disturbance observer. One is
the "resonance ratio control" based on the "fast disturbance
observer". Another is the application of "slow disturbance
observer". In both cases, by realizing "Manabe's
Polynomial", the 2-mass system connected by a flexible shaft,
the simplest model of flexible system, can be controlled
effectively, although there is a clear difference between these
two techniques.

First, the idea of "resonance ratio control" is explained.
Resonance ratio is the ratio of the resonance and anti-resonance
frequencies in 2-mass system. By using the torsional torque
estimated by the "fast disturbance observer", the virtual motor
inertia moment can be changed to any arbitrarily value. This
means that we can change the resonance frequency and the
virtual inertia ratio of the motor to the load. Yuki suggested
that vibration can be suppressed effectively by adjusting the
resonance ratio to be about 5 . [6] I will show, in this paper,
that 0.8 5 is the optimal ratio in the speed control of the 2-
mass system by realizing Manabe's model polynomial for P&I
speed regulator.

The disturbance observer applied to the motor side has three

design parameters, i.e., the cut-off frequency o, the

compensation gain 1-K and the nominal inertia moment ratio r.

o of the "fast disturbance observer" is high enough so that its

dynamics can be neglected. Instead, the gain 1-K is not unity

so as to be used for "resonance ratio control". In contrast, o

of the "slow disturbance observer" and r are the design
parameters while the compensation gain is unity. "Slow
disturbance observer" was originally proposed by Umida.[8]

In this paper, I will show the optimal cut-off frequency and
other controller parameters by realizing Manabe's polynomial.

SYSTEM MODEL

Figs.1 and 2 illustrate the typical steel rolling mill system
configuration and its simplest model using two masses
connected by a spring. Fig.3 shows the block diagram of the
2-mass system. Here I put

JM0 + JL = 1 ,   Ks  = 1 (1),  (2)

These equations mean that the total inertia moment of the motor
and the load, and the spring coefficient are fixed. Various 2-
mass systems with different inertia ratios will be considered
under these relations.

Fig.3 is the block diagram of the 2-mass system and Fig.4
illustrates the transfer function block diagram neglecting the
disturbance TL. Fig.4 is based on the coprime factorizations.
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Fig.1 Illustration of the Steel Rolling Mill System.
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Fig.3 Block Diagram of the 2-Mass System.
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Fig.4 Transfer Function Representation.

An example of the frequency characteristics from TM to M is

drawn in Fig.5. The resonant and anti-resonant frequencies
are given by

r0 =  Ks 1 
 JM0 

 +  1 
 JL 

 (3)

and

a
  =  Ks 

JL
 (4)

At these frequencies, the phase characteristic changes
drastically.
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Fig.5 Frequency characteristics from M to TM.

The resonance ratio of the original system is defined by eq.(5).

H0  = r0

a
 = 1+ JL

 JM0 
 = 1+R0  (5)

where R0 is called the inertia ratio given by R0 = JL/JM0 .

RESONANCE RATIO CONTROL
by FAST DISTURBANCE

OBSERVER

Resonance Ratio Control

Fig.6 depicts how to perform the resonance ratio control using
the disturbance observer. In usual disturbance rejection control
systems, 100% of the estimated disturbance is fed back to the
motor torque. In contrast, 1-K of the estimated disturbance is
fed back in this case. One more block K is added in the path
from the new control input TM' .
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Fig.6 Block Diagram of the Resonance Control
based on the Fast Disturbance Observer.
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Fig.7 The Effect of the Resonance Ratio Control.

Fig.7 shows the new system where the resonance ratio control
is applied. We can change the virtual motor inertia moment to
any arbitrary value as given by

 JM =  JM0 K (6)

This means that we can change the resonant frequency to

r =  Ks 1 
 JM 

 +  1 
 JL 

 (7)

and the resonance ratio to

H  =  1+R  = 1+ JL
JM

    



                 = 1 + JL
JM0/K

 =   1 + R0K (8)

From eq.(8), K to realize the optimal resonance ratio H can be
obtained as given by

K =  H
2 - 1 
R0

  (9)

Normalization

Fig.8 is the block diagram from the new input torque TM' to

the motor speed M.
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Fig.8 Block diagram from TM' to M.

For simplicity, the normalization using a(=1) and JL(=1) is

introduced. The result is shown in Fig.9.
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Fig.9 Normalized System by Putting a=1 and JL=1.

Relations among some variables are summarized as follows.

r = 1+R a = H a (10)
H = 1+R  = 1 q     (11)

q = 1
H 2

 = 1
1+R 

 <1 (12)

JL
JM

 = R = H 2-1 = 1q - 1 (13)

JM
JL

 = 1
R

 = 1
H 2- 1

 = 
q

1 - q
 (14)

Controller Design using Manabe's Polynomial
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Fig.10 Design of Speed Controller C(s).

Using P&I controller C(s), the speed controller can be
designed considering the closed loop characteristics (See
Fig.10). When C(s) =Kp+K I /s, the characteristic equation of

the closed loop is given by

P(s) = s 2(1+qs 2) + (Kp s+K I)(1-q)(1+s 2) 

            = qs 4+ Kp (1-q)s 3 + {1+K I (1-q)}s 2      
                                   + Kp (1-q)s + K I (1-q)

        = a4s 4 + a3 s 3 + a2 s 2 + a1 s  + a0        (15)

The relationship of Manabe's Polynomial[1][2][3] is given by

 = a1
a0

 = 
Kp (1-q)
K I (1-q)

 = 
Kp 

K I 
(16)

1 = 
a1

2

a0 a2 
 = 

Kp (1-q) 2

 1+K I (1-q)  K I (1-q)
 = 2.5 (17)

2 = 
a2

2

a1 a3 
 = 

1+K I (1-q) 2

Kp (1-q) 2
 = 2 (18)

3 = 
a3

2

a2 a4 
 = 

Kp (1-q) 2

 q 1+K I (1-q)  
 = 2 (19)

By solving these equations, we obtain

q = 5
16

 ,   H = 4
5

5  ,   R = 11
5

 ,  JM:JL = 5:11 (20)

Eq.(20) means that 0.8 5 is the optimal resonance ratio in this
case.[7] Also, other normalized controller constants are
uniquely calculated as

 = 5 2
2

 ,   Kp = 10 2
11

 ,   K I = 4
11

            (21),(22),(23)

The actual controller constants are given by

 = 5 2
2

 1
a
 ,   Kp = 10 2

11
 JL a   (24),(25)

K I = 4
11

 JL a
2 (26)

SLOW DISTURBANCE OBSERVER

Slow Disturbance Observer

Fig.11 shows the "slow disturbance observer" application.
The disturbance observer applied to the motor side has three

design parameters, i.e., the cut-off frequency o , the

compensation gain and the nominal inertia moment ratio r. The
inertia moment used in the observer is r JM0 .
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Fig.11 Application of the Slow Disturbance Observer



In the "fast disturbance observer" shown in Fig.6, its cut-off
frequency was high enough so that the observer's dynamics

can be neglected. In contrast to this, the cut-off frequency o

and the inertia moment ratio r are the design parameters in the
"slow disturbance observer" while its compensation gain is 1.

The "slow disturbance observer" was originally proposed by
Umida[8] and was improved by Iwata.[9] Umida proposed that
the optimal cut-off frequency should be a little lower than the

anti-resonant frequency a. Iwata gave it as the simple

function of a and R0, the inertia ratio. Here, I will try to

derive the optimal cut-off frequency and the other parameters
simultaneously by applying Manabe's polynomial.

Normalization

In this case, as we can not change the motor-side inertia

moment, the normalization base is only a. By putting a=1,

the 2-mass system given by Fig.4 is normalized as Fig.12.
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Fig.12 Normalized System by Putting a=1.

Here, I put
p = H0

 2 = 1+R0 = 1
JM

(27)

By applying the slow disturbance observer, the transfer

function from TM', the new controlled torque input, to M is

given by

M

 TM
'  

  =  
p

 s   
(s+ o)(s 2+1)

s (s 2+p)+r o(s 2+1)
(28)

Note that I use here the parameter r, the ratio of the inertia
moment used in the disturbance observer to the actual motor
inertia JM0.

Controller Design using Manabe's Polynomial

Putting the P&I speed controller C(s) as

Kp + K I
s   =  Kp  s + c

s (29)

the characteristic equation of the closed loop system is given by

P(s) = s 5 + (Kpp+r o)s 4+{Kpp( o+ c)+p}s 3

            +{Kpp( o c+1)+r }s 2+Kpp( o+ c)s 
 +Kpp o c                                    

   = a5s 5+ a4s 4 +a3 s 3 + a2 s 2 +a1 s  + a0    

(30)

The relationship of Manabe's Polynomial is given by the
following equations.

  = a1
 a0  =  o+ c 

o c
 (31)

1 = 
a1

2

a0 a2 
 = 

Kpp( o+ c) 2

 Kpp o c Kpp( o c+1)+r 
 = 2.5 (32)

2 = 
a2

2

a1 a3 
 = 

Kpp( o c+1)+r 2

Kpp( o+ c) Kpp( o+ c)+p
 = 2 (33)

3 = 
a3

2

a2 a4 
 = 

Kpp( o+ c)+p 2

 Kpp( o c+1)+r o Kpp+r o  
 = 2 (34)

4 = 
a4

2

a3 a5 
 = 

Kpp+r o
2

 Kpp( o+ c)+p  
 = 2 (35)

We should find four parameters o, c, Kp and r which satisfy

the design condition given by eqs.(32)-(35).

The procedure to solve these equations are not very easy but
the results are relatively simple. First, the equivalent time

constant is given as a constant:

 = 25+10 5  ≈ 6.882 (36)

I should omit the details, but one of the interesting results is

that 4 is proportional to p, if other design conditions of

eqs.(32)-(34) are satisfied. Regardless of the choice of r, 4 is

given by

4 = A 2

 B ( +B) 
 p  ≈ 0.6973  p (37)

A and B are given by eqs.(40) and (41) below.

When p increases, 4 becomes bigger. This means that the

robustness is increased. However, for systems with smaller p,

4 is smaller and the system becomes easily unstable. To

satisfy eq.(35): 4=2 exactly, p=2B( +B)/A2~2.8 should hold.

This means R0=1.8, which is very close to the easiest case also

in the fast disturbance observer application.

Anyhow we can choose r as we like. Here I put r = p. This
choice means that the disturbance observer uses the summation
of motor and load inertia moments as the nominal inertia
moment because

r JM0  =  p JM0 = (1+R0)JM0 = JM0+JL (38)

By choosing r as this, other design parameters become
constants regardless of p.

I should omit the detailed derivation but the observer's cut-off

frequency o is finally given as the real root of the following

3rd order equation (39).

B o
3 - A o

2 +  o -1 = 0 (39)

where

A =  -1+ 681+304 5  
2

 ≈ 17.944 (40)

B  =  2A (1+A)  -   ≈ 19.193 (41)

By solving eq.(39), o=0.3249 is obtained. Accordingly P&I

controller's parameters Kp and c are given by



Kp = A
 B 

 - o ≈ 0.6100 (42)

and

c = 1
B Kp o

  ≈ 0.2629 (43)

By multiplying a, the actual o and c are obtained. As a is

the function of p (actually, a=( p/(p-1) )1/2 ), o and c varies

according to p.

SIMULATION RESULTS

Simulation results are shown for four different cases where the
original systems' inertia ratios are 0.2, 1, 2 and 5. Fig.13
illustrates the simulation block diagram drawn by SIMULINK
in Macintosh. Simulation is performed with 10~20% model
errors, backlash (+/-0.01) and torque limiter (+/-1.2).
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Fig.13 Simulation block diagram with model error,
backlash and torque limit.

Fig.14 shows the results of the resonance ratio control using
the fast disturbance observer. From the various frequency
characteristics plots, we can see the principle of the resonance
control. In the time response simulation using SIMULINK,
we can observe excellent performances both in the vibration
suppression and the disturbance rejection. Moreover this

method is quite effective to wide range of inertia ratio. We can
see a slight performance degradation in Fig.14(a) where the
inertia ratio is extremely small.

In Fig.14(a), we can also observe that the motor torque is
negative for a while just after the disturbance torque is added at
t=25. This means that the disturbance rejection and the
vibration suppression are not consistent requirements for 2-
mass systems with the inertia ratio R0 smaller than 11/5=2.2.

In Fig.15, we can see the control performances of the "slow
disturbance observer". In this type, we can not see any change
of the resonant frequency but big damping effect around the
resonant frequency is observed. The bigger the inertia ratio,
the more robust to the parameter variation and backlash

because 4 is big enough. In systems with smaller inertia ratio,

robustness is weaker. This is because 4 becomes smaller

when p is smaller as is given by eq.(37). However, too big 4

may mean an over-specification.

CONCLUSION

I proposed and compared two simple but effective control
techniques for 2-mass system based on the disturbance
observer. One is the "fast disturbance observer" to realize
"resonance ratio control", and another is the "slow disturbance
observer". In both cases, I tried to realize "Manabe's
Polynomial" for their characteristic equations of the closed loop
system. Although the obtained controllers are of only 2nd
order system, their control performance is excellent. In
particular, the fast disturbance observer is superior in operation
through a wide range of the inertia ratio.
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