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Abstract: Inrecent steel rolling mill system, according to the application of high response AC drive system,
the long shaft between the motor and the roll can no longer be assumed to be stiff. Vibration suppression and
disturbance rejection are today's most important issue, and various control strategies have been proposed. In
this paper, two relatively simple control techniques using the disturbance observer are proposed, analyzed and
compared. Oneisthe"resonanceratio control” based on the "fast disturbance observer”. Another isthe"slow
disturbanceobserver”. In both cases, by realizing "Manabe's Polynomial", the 2-mass non-stiff system can be
controlled effectively, although there is a clear difference between these two techniques.

INTRODUCTION

Vibration suppression and disturbance rejection in flexible
system must be an important issue in the future motion control.
It originates in the steel rolling mill system, where the load is
coupled to the driving motor by a long shaft. As the newly
required speed response is very close to the first resonant
frequency of such systems, only the conventiona techniques
based on P&I control are not effective enough. To overcome
the problems, various control strategies have been proposed
mainly for controlling the 2-mass system, the simplest model
of the flexible system.[4l5]  Here, we can see the history of
control theory: simple acceleration feedback, model following
control, observer and state feedback, and modern H¥ control.

In this paper, | will propose and compare two relatively simple
control techniqueswhich uses the disturbance observer. Oneis
the "resonance ratio control" based on the "fast disturbance
observer". Another is the application of "slow disturbance
observer". In both cases, by redizing "Manabe's
Polynomial", the 2-mass system connected by a flexible shaft,
the simplest model of flexible system, can be controlled
effectively, although there is a clear difference between these
two techniques.

First, the idea of "resonance ratio control” is explained.
Resonance ratio istheratio of the resonance and anti-resonance
frequencies in 2-mass system. By using the torsional torque
estimated by the "fast disturbance observer”, the virtual motor
inertia moment can be changed to any arbitrarily value. This
means that we can change the resonance frequency and the
virtual inertia ratio of the motor to the load. Yuki suggested
that vibration can be suppressed effectively by adjusting the
resonance ratio to be about v5.[81 | will show, in this paper,
that 0.8V5 is the optimal ratio in the speed control of the 2-
mass system by realizing Manabe's model polynomial for P&

speed regulator.

The disturbance observer applied to the motor side has three
design parameters, i.e, the cut-off frequency w,, the

compensation gain 1-K and the nominal inertiamoment ratio r.
o, of the "fast disturbance observer" is high enough so that its
dynamics can be neglected. Instead, the gain 1-K is not unity
S0 as to be used for "resonance ratio control”. In contrast, o,

of the "dow disturbance observer" and r are the design
parameters while the compensation gain is unity. "Slow
disturbance observer" was originaly proposed by Umida.l®
In this paper, | will show the optimal cut-off frequency and
other controller parameters by realizing Manabe's polynomial .

SYSTEM MODEL

Figs.l and 2 illustrate the typical steel rolling mill system
configuration and its simplest model using two masses
connected by a spring. Fig.3 shows the block diagram of the
2-mass system. Herel put

o+ =1, Ks=1 1), 2
These equations mean that the total inertiamoment of the motor
and the load, and the spring coefficient are fixed. Various 2-

mass systems with different inertia ratios will be considered
under these relations.

Fig.3 is the block diagram of the 2-mass system and Fig.4

illustrates the transfer function block diagram neglecting the
disturbance T, . Fig.4 is based on the coprime factorizations.
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Fig.1 Illustration of the Steel Rolling Mill System.

O 1

pinion
stand




as load dynamic:

<d-

stiffnes: packlash

motor dynamic

Fig.3 Block Diagram of the 2-Mass System.

™ wL wM

1 Wa‘ S‘ wa“

JMO 52 4wrce wa

Fig.4 Transfer Function Representation.

An example of the frequency characteristics from T, to w,, is
drawn in Fig.5. The resonant and anti-resonant frequencies

are given by
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At these frequencies, the phase characteristic changes
drastically.
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Fig.5 Frequency characteristicsfrom w,, to T,,,.
The resonance ratio of the original system is defined by eq.(5).

L= (IR ®)

HO :m =
Wa MO

where R, iscalled theinertiaratio given by R, = J, /0.

RESONANCE RATIO CONTROL
by FAST DISTURBANCE
OBSERVER

Resonance Ratio Control

Fig.6 depicts how to perform the resonance ratio control using
thedisturbance observer. Inusual disturbance rejection control
systems, 100% of the estimated disturbance is fed back to the
motor torque. In contrast, 1-K of the estimated disturbanceis
fed back in this case. One moreblock K is added in the path
from the new control input T,,".
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Fig.6 Block Diagram of the Resonance Control
based on the Fast Disturbance Observer.

Fig.7 The Effect of the Resonance Ratio Control.

Fig.7 shows the new system where the resonance ratio control
is applied. We can change the virtual motor inertia moment to
any arbitrary value as given by

v = Mok (6)

This means that we can change the resonant frequency to

_ TiLJ,L
Wy Ks I JL) (7)

and the resonance ratio to

1+

H =V 1+R =
Ny



= 1+
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From eq.(8), K torealizethe optimal resonanceratioH canbe
obtained as given by

- H2-1
K="%, ©)

Normalization

Fig.8 is the block diagram from the new input torque T,," to
the motor speed m,,.

™ wM

Fig.8 Block diagramfromT,,' to wy,.

For simplicity, the normalization using w,(=1) and J, (=1) is
introduced. Theresultisshownin Fig.9.
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Fig.9 Normalized System by Putting w,=1 and J, =1.
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Relations among some variables are summarized as follows.
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Fig.10 Design of Speed Controller C(s).

Using P&I controller C(s), the speed controller can be
designed considering the closed loop characteristics (See
Fig.10). When C(9) :Kp+K|/s, the characteristic equation of

the closed loop is given by
P(s) = s2(1+0s?) + (Kp s+K)(1-0)(1+s2)

= gs*+ Ky (1-0)s® + { 1+K| (1-)} s?
+Kp(1-9)s+ K (1-q)

sttt ps?tasta (15)

The relationship of Manabe's Polynomia (23] js given by
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By solving these equations, we obtain

:i :4 :L N = :
q 16 H 5\5, R 5 , IvdL =5:11 (20)
Eq.(20) means that 0.8V5 isthe optimal resonance ratio inthis
casel’l  Also, other normalized controller constants are
uniquely calculated as

(21),(22),(23)

T=

52 g -102 g -4
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The actua controller constants are given by

=52 1 -10/2
T 2 o’ Kp 11 JLwa (24),(25)
K= ﬁ Jow? (26)

SLOW DISTURBANCE OBSERVER

Slow Disturbance Observer

Fig.11 shows the "dow disturbance observer" application.
The disturbance observer applied to the motor side has three

design parameters, i.e, the cut-off frequency w, , the

compensation gain and thenominal inertiamoment ratior. The
inertiamoment used in the observer isrt J,,.
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Fig.11 Application of the Slow Disturbance Observer



In the "fast disturbance observer" shown in Fig.6, its cut-off
frequency was high enough so that the observer's dynamics

can be neglected. In contrast to this, the cut-off frequency o,

and the inertiamoment ratio r are the design parametersin the
"dow disturbance observer" while its compensation gain is 1.

The "slow disturbance observer" was originally proposed by
Umidd® and wasimproved by lwata.[¥@ Umida proposed that
the optimal cut-off frequency should be alittle lower than the

anti-resonant frequency o, lwata gave it as the simple
function of w, and R, the inertia ratio. Here, | will try to

derive the optimal cut-off frequency and the other parameters
simultaneously by applying Manabe's polynomial.

Normalization

In this case, as we can not change the motor-side inertia
moment, the normalization baseisonly w,. By putting =1,
the 2-mass system given by Fig.4 isnormalized as Fig.12.
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Fig.12 Normalized System by Putting w_=1.

Here, | put
p=HF = 1+Ro= - (27

By applying the slow disturbance observer, the transfer
function from T,,", the new controlled torque input, to w,, is
given by

om _ P (Stwo)(s*H1) (28)

Ty S S(SPP)T opls2+l)

Note that | use here the parameter r, the ratio of the inertia
moment used in the disturbance observer to the actual motor
inertiaJyg-

Controller Design using Manabe's Polynomid

Putting the P& | speed controller C(s) as

Ki _

+
Bl = K, 2L (29)

the characteristic equation of the closed loop system is given by

P(S) = 85 + (Kpp+r wo)s*+H Kpp(wo+ae)+p} s3
+H Kpp(wowct+1)+r w} s2+Kpp(wo+we)s
+KpPwowe

= S5+ st +agSdt @ S2+ray St &

(30)

The relationship of Manabe's Polynomia is given by the
following equations.
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We should find four parametersw,, o, Kp and r which satisfy
the design condition given by egs.(32)-(35).

The procedure to solve these equations are not very easy but
the results are relatively simple. First, the equivalent time

constantt is given as a constant:
©=125+10V5 » 6.882 (36)

| should omit the details, but one of the interesting results is
that v, is proportional to p, if other design conditions of

€0s.(32)-(34) are satisfied. Regardless of the choice of r, v, is
given by

:Ai2
Y4 B (c+B) p » 0.6973 p 37

A and B are given by egs.(40) and (41) below.

When p increases, y, becomes bigger. This means that the
robustnessisincreased. However, for systems with smaller p,
v, is smaller and the system becomes easily unstable. To
satisfy eq.(35): y,=2 exactly, p=2B(t+B)/A2~2.8 should hold.
This meansR,=1.8, which is very closeto the easiest casealso
in the fast disturbance observer application.

Anyhow we can choose r as we like. Herel put r = p. This
choice means that the disturbance observer uses the summation
of motor and load inertia moments as the nomina inertia
moment because

r o = PImo = (1+Ro)Ivo = Imo+dL (38)

By choosing r as this, other design parameters become
constants regardless of p.

| should omit the detailed derivation but the observer's cut-off
frequency o, is finaly given as the red root of the following
3rd order equation (39).

Bwd-Awd+tmwy-1=0 (39)

where
A= -1+1681+304/5 68?304@ » 17.944 (40)
B = V2A (1+A) -t » 19.193 (41)

By solving €q.(39), w,=0.3249 is obtained. Accordingly P&l

controller's parameterst and w are given by



Kp= é - wo » 0.6100 (42)
and

=1

We = meo » 0.2629 (43)

By multiplying w,, the actual w, and w, are obtained. As w, is

thefunction of p (actualy, w,=( p/(p-1) yvzy, o, and o varies
according to p.

SIMULATIONRESULTS

Simulation results are shown for four different cases wherethe
original systems' inertia ratios are 0.2, 1, 2 and 5. Fig.13
illustrates the simulation block diagram drawn by SIMULINK
in Macintosh. Simulation is performed with 10~20% model
errors, backlash (+/-0.01) and torque limiter (+/-1.2).
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Fig.13 Simulation block diagram with model error,
backlash and torque limit.

Fig.14 shows the results of the resonance ratio control using
the fast disturbance observer. From the various frequency
characteristics plots, we can see the principle of the resonance
control. In the time response simulation using SIMULINK,
we can observe excellent performances both in the vibration
suppression and the disturbance rejection. Moreover this

method is quite effective to wide range of inertiaratio. We can
see a dlight performance degradation in Fig.14(a) where the
inertiaratio is extremely small.

In Fig.14(a), we can also observe that the motor torque is
negative for awhilejust after the disturbance torque is added at
t=25. This means that the disturbance regjection and the
vibration suppression are not consistent requirements for 2-
mass systems with the inertiaratio R, smaller than 11/5=2.2.

In Fig.15, we can see the control performances of the "sow
disturbance observer". In thistype, we can not see any change
of the resonant frequency but big damping effect around the
resonant frequency is observed. The bigger the inertia ratio,
the more robust to the parameter variation and backlash

becausey, is big enough. In systemswith smaller inertiaratio,
robustness is weaker. This is because y, becomes smaller

when p issmaller asis given by eq.(37). However, too bigy,
may mean an over-specification.

CONCLUSION

| proposed and compared two simple but effective control
techniques for 2-mass system based on the disturbance
observer. One is the "fast disturbance observer" to redize
"resonance ratio control", and another is the "slow disturbance
observer". In both cases, | tried to redize "Manabe's
Polynomial” for their characteristic equations of the closed loop
system. Although the obtained controllers are of only 2nd
order system, their control performance is excellent. In
particular, the fast disturbance observer is superior in operation
through awide range of theinertiaratio.
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