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ABSTRACT
This article proposes a geometric interpretation of discrete

fractional order controllers based on sampling time scaling
property. Due to its clear interpretation, satisfactory accuracy
and easy programming, the property could be used as a reliable
simulation and realization method for fractional order control
systems. The experiments of one-inertia speed control with frac-
tional order integral controllers realized by the proposed sam-
pling time property are also carried out to verify the theoretical
robustness of fractional1/sα systems. The experimental results
show the superior robustness performances of fractional1/sα

systems against saturation non-linearity and inertia variation,
which highlights the promising aspects of fractional order con-
trol.

1 INTRODUCTION
The concept of expanding derivatives and integrals to frac-

tional (non-integer) orders is by no means new. In fact,Leibniz
mentioned this concept in a letter toL′Hospital over three hun-
dred years ago (1695) and the earliest more or less systematic
studies seem to have been made in the beginning and middle
of the 19th century byLiouville(1832),Holmgren(1864) and

Riemann(1953) [1]. However, the concept of fractional order
control, in which the controlled systems or controllers are de-
scribed by fractional order differential equations, was not widely
incorporated into control engineering mainly due to the concep-
tually difficult idea of taking fractional order and to the existence
of so few physical applications at that time [2].

In last few decades, researchers pointed out that fractional
order differential equations could model various real materials
more adequately than integer order ones and provide an excellent
tool for the description of dynamical processes [1, 3, 4]. Those
fractional order models need the corresponding fractional order
controllers to be proposed and evoked the interest to various ap-
plications of fractional order control [5–8]. The significance of
fractional order control is that it is a generalization and “inter-
polation” of classical integral order control theory, which could
lead to more adequate modeling and easier design of robust con-
trol systems against uncertainties.

It is well known that integer order derivatives and integrals
have clear physical and geometric interpretations, such as slope
or velocity for derivatives and area or distance for integrals gen-
erally. These clear and easily understandable interpretations sim-
plified their applications to various problems in different fields,
including control theory that is extremely well developed based
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on integer order differential equations. On the contrary, for frac-
tional order derivatives and integrals, it was not so. The notori-
ous lack of clear geometric interpretations made fractional order
derivatives and integrals conceptually difficult and greatly ob-
structed their real applications.Podlubnyproposed a simple geo-
metric interpretation of fractional integrals as “changing shadows
on the wall” and some pictures describing this changing process
were given [9]. But for the applications of fractional order con-
trollers to discrete control systems, how to interpret the role of
these controllers in discrete domain is much more concerned.

The paper is organized as follows: in section II, basic mathe-
matical aspects are mentioned in order to show that the fractional
order control is a generalization of classical integer order con-
trol theory; in section III, an interpretation for discrete fractional
order controllers based on “sampling time scaling” property is
proposed and its application to reliable simulation of fractional
order control systems is mentioned; in section IV, most empha-
sis is placed on the reliable realization of fractional order1/sα

one-inertia speed control system by proposed “sampling time
scaling” property and its robustness against parameter variation
and saturation non-linearity; finally, in section V, conclusions are
drawn.

2 MATHEMATICAL ASPECTS
2.1 Mathematical Definitions

The mathematical definition of fractional calculus has been
the subject of several different approaches [1, 3]. The most fre-
quently encountered definition is calledRiemann−Liouville def-
inition, in which the fractional order integrals are defined as

aD−α
t =

1
Γ(α)

Z t

a
(t−ξ)α−1 f (ξ)d(ξ) (1)

while the definition of fractional order derivatives is

aDα
t =

dγ

dtγ

[
aD−(γ−α)

t

]
(2)

where

Γ(x)≡
Z ∞

0
yx−1e−ydy (3)

is the Gamma function,a andt are limits andα (α > 0 andα∈R)
is the order of the operation.γ is an integer that satisfiesγ−1 <
α < γ.

The other approach for fractional order calculus’ definition
is Grünwald−Letnikovdefinition:

aDα
t = lim

h→0
nh=t−a

h−α
n

∑
j=0

(−1)r
(

α
j

)
f (t− jh) (4)

Where the binomial coefficients(r > 0)

(
α
0

)
= 1,

(
α
j

)
=

α(α−1) . . .(α− j +1)
j!

(5)

2.2 Laplace and Fourier Transforms
The Laplace transforms [1, 3] of theRiemann−Liouville

fractional derivative with orderα > 0 is

L{0Dα
t }= sαF(s)−

n−1

∑
j=0

sj
[

0Dα− j−1
t f (0)

]
(6)

where(n−1)≤ α < n. If

0Dα− j−1
t f (0) = 0, j = 0,1,2, . . . ,n−1 (7)

then

L{0Dα
t f (0)}= sαF(s) (8)

Obviously, the Fourier transform of fractional order calculus
could be obtained by settings= jω in its Laplace transform just
like the classical integer order calculus’.

Fractional order calculus is also a generalization of classical
integer order calculus in Laplace and Fourier transforms, which
would mean that extremely well developed classical integer order
control techniques could still be fully referred in fractional order
control.

3 SAMPLING TIME SCALING
By Riemann−Liouville definition, fractional order integral

with order between 0 and 1 is

0Iα
t f (t) =

Z t

0
f (τ)dgt(τ), 0 < α < 1 (9)

where

gt(τ) =
1

Γ(1+α)
[tα− (t− τ)α] (10)

Let
t = nts (11)

wherets is the sampling time andn is the step currently under
execution. Then,

gnts(kts) =
nα− (n−k)α

Γ(1+α)
tα
s , k = 1, ...,n (12)
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Therefore, the “real” sampling timeT of thekth step in discrete
fractional integral controller is

Tnts(kts) = ∆gnts(kts) = gnts(kts)−gnts[(k−1)ts]

=
(n−k+1)α− (n−k)α

Γ(1+α)
ts

α (13)

Thus,

Tnts(nts) =
1α−0α

Γ(1+α)
ts

α

Tnts[(n−1)ts] =
2α−1α

Γ(1+α)
ts

α

. . .

Tnts(ts) =
nα− (n−1)α

Γ(1+α)
ts

α (14)

Finally, based on the trapezoidal integration rule

0Iα
nts ≈

n

∑
k=1

f (kts)+ f [(k−1)ts]
2

Tnts(kts) (15)

and

0Iα
nts = lim

ts→0
t=nts

n

∑
k=1

f (kts)+ f [(k−1)ts]
2

Tnts(kts) (16)

Similarly, for fractional order derivatives

0Dα
t f (t) =

1
Γ(1−α)

d
dt

Z t

0

f (τ)
(t− τ)α dτ, 0 < α < 1

=
d[
R t

0 f (τ)dgt(τ)]
dt

(17)

where

g
′
t(τ) =

1
Γ(2−α)

[t1−α− (t− τ)1−α] (18)

Thus,

T
′
nts(nts) =

11−α−01−α

Γ(2−α)
ts

1−α

T
′
nts[(n−1)ts] =

21−α−11−α

Γ(2−α)
ts

1−α

. . .

T
′
nts(ts) =

n1−α− (n−1)1−α

Γ(2−α)
ts

1−α (19)

and

Z nts

0
f (τ)dg

′
t(τ)≈

n

∑
k=1

f (kts)+ f [(k−1)ts]
2

T
′
nts(kts) (20)

Therefore,

0Dα
nts f (nts) ≈

{
n

∑
k=1

f (kts)+ f [(k−1)ts]
2

T
′
nts(kts)

−
n−1

∑
k=1

f (kts)+ f [(k−1)ts]
2

T
′
(n−1)ts(kts)

}
/
ts

(21)

and

0Dα
nts f (nts) = lim

ts→0
t=nts

{
n

∑
k=1

f (kts)+ f [(k−1)ts]
2

T
′
nts(kts)

−
n−1

∑
k=1

f (kts)+ f [(k−1)ts]
2

T
′
(n−1)ts(kts)

}
/
ts

(22)

From Eqn. (14) and Eqn. (19), the interpretation of discrete frac-
tional order controllers is seen to be that they consist in the
derivatives and integrals with scaled sampling time decided by
the fractional order and the step currently under execution. It
can be seen in Fig. 1 and Fig. 2 that the constant sample time is
greatly deformed by the step it belongs to. For the discreteI0.5

fractional order integral controllers with sampling time 0.01sec,
the scaled sampling time of the latest step is 0.1128sec, over 11
times of the constant sampling time, while in the past 1000th
step, it is 0.0018sec, only 18 percent of the constant sampling
time. The length of scaled sampling time fades away quite
rapidly (Fig. 2). Even in past 50th step the scaled sampling time
is 0.008sec, only 7 percent of the latest one’s. The past values
are somewhat “forgotten” in discrete fractional order controllers
due to the scaled tiny sampling time, while in their integer or-
der counterparts all the values are “remembered” with the same
weights.

Clearly, when the order is integer, the existing time scal-
ing effect disappears and all the sampling time is kept constant,
rightly equals the classical interpretation of integer order ones,
which shows in discrete domain fractional order control is also a
generalization and “interpolation” of integer order control theory
based on the proposed interpretation.

This time scaling property could explain the robustness of
fractional order controllers against saturation and other nonlin-
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Figure 2. DISCRETE I0.5 CONTROLLER’S SCALED SAMPLING TIME

earities and be an easy way to understand the essence of frac-
tional order control systems as being linear time varying sys-
tem actually. Due to its clear interpretation and easy program-
ming, the property could be a reliable simulation and realization
method for some simple fractional order control systems.

The Short Memory Principle is being used intensively in the
simulation and realization of discrete fractional order systems by
several authors in the literature [3], [10–12]. The principle takes
into account the behavior off (t) only in the “recent past”, i.e. in
the interval [t−L, t], whereL is the length of “memory”:

aDα
t f (t)≈t−L Dα

t f (t), t > (a+L) (23)

By using the Short Memory Principle, the discrete equivalent of

the fractional order controller in discrete domain is given by

(ω(z−1))±α = T∓α
[L/T]

∑
j=0

c(±α)
j (24)

whereT is sampling time and the binomial coefficients are:

c(±α)
j = (−1) j

(±α
j

)
=

(
1− 1+(±α)

j

)
c±α

j−1, c±α
0 = 1 (25)

However from the sampling time scaling property, it can be
clearly seen that even though the past values are forgotten
rapidly, due to the large quantities, their influences should not
be simply neglected.

In order to show Short Memory Principle’s accuracy prob-
lem, the fractionalα order integralc(t) of the unit step function:
f (t) = 0, −∞ < t < 0; and f (t) = 1, t ≥ 0 simulated by the
principle (L=50) is compared with the real values that could be
accurately arrived at based on theRiemann−Liouvilledefinition:

c(t) =
1

Γ(α)

Z t

0
(t−ξ)α−1 ·1 ·dξ

=
1

Γ(α)
· (t−ξ)α

α

∣∣∣∣
0

t

=
1

Γ(1+α)
tα (26)

Figure. 3 shows that Short Memory Principle simply discards the
past steps’ value beyond the memory length and the output be-
comes saturation immediately. This shortcoming would greatly
lower its approximate accuracy and lead to fatal static-state er-
ror especially if the fractional order integral controller is realized
by this method. At the same time, using the proposed sampling
time property could give satisfactory accuracy and be a reliable
and easy programming simulation and realization method for dis-
crete fractional order controllers and systems.

4 REALIZATION OF 1/sα SYSTEMS
4.1 Robustness against Gain Variation

The characteristic equation of close-loop1/sα system with
variable gain factorA is

1+Asα = 0 (27)

For 1 < α < 2, Eqn. (27) has two complex-conjugate domi-
nant poles in the principle sheet of theRiemannsurface−π <
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arg(s) < π:

s1,2 = A
1
α e± jπ/α (28)

The relative damping ratioζ is

ζ = cos
(

π− π
α

)
=−cos

( π
α

)
(29)

This result shows that the relative damping ratioζ is exclusively
decided by orderα and independent of the gain factorA.

In frequency domain, the characteristic equation is:

1+AG( jω) = 0 (30)

Equation. (30) can be rewritten in the form:

G( jω) =− 1
A

(31)

The movement of−1/A can be considered to be the locus of the
critical point (Fig. 4) when the gain variation occurs. For the in-
teger order systems, this movement usually leads to less phase
margin and low damping of over-swings. But for fractional1/sα

systems, phase margin and relative damping ratio can be kept
constant in wide range of frequencies below and in the neigh-
borhood of the critical point. This characteristic highlights the
hopeful aspect of applying fraction order controllers to real con-
trol problems.

4.2 Time responses of 1/sα Systems
In order to reliably verify the robustness of frac-

tional 1/sα systems based on the above theoretical analy-
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sis, fractional order integral controllers realized by the sam-
pling time scaling property on a digital computer are in-
troduced to achieve the speed control of an electric motor
with nominal inertiaJm0=6.53×10−4kgm2, friction coefficient
Dm=1.25×10−3Nm· sec/rad, controller’s coefficientKi=0.11,
sampling timeT=0.001secand an encoder (8000pulse/rev) as
feedback velocity sensor. Non-linearity of torque saturation is
also introduced in the unity feedback control system (Fig. 5).
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Figure 5. FRACTIONAL r ORDER I CONTROL LOOP WITH NON-

LINEAR FACTOR

It can be seen clearly that in their time responses, fractional
order systems are also the “interpolation” between integer order
ones and the time domain performances, such as overshoot and
settling time, are changed greatly with different orders (Fig. 6).
In Fig. 7 a constant overshoot can be ensured in face of inertia
variation, showing a good robustness of fractional1/sα systems
in time domain. In the same line, Fig. 8 also shows that fractional
order controller is robust for saturation non-linearity, which is
one of the most ordinary non-linear phenomena in control sys-
tems.

5 CONCLUSIONS
The recent progress in the area of more adequate modeling

of control plants by fractional order models reveals promising
aspects for future development and application of fractional or-
der control. Some preliminary works have been proposed but
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the clear interpretation of discrete fractional order controllers re-
mained unknown. In this paper, the sampling time scaling prop-
erty is proposed to give an interpretation of fractional order con-
trollers in discrete domain. This interesting property might be an
important point to understand the essence of fractional order con-
trol in discrete domain as linear time varying systems and be a
helpful hint for exploring the connections between fractional or-

der control and existing modern digital control methods such as
multi-rate sampling control and its applications to digital control
systems. Some more preferable approximate realization methods
of fractional order controllers could also be developed based on
this property. Experiments of fractional1/sα systems were also
carried out to verify fractional order controllers’ superior robust-
ness against parameter variation and saturation non-linearity that
highlights their promising aspects while future exploration of the
applications to more complex cases is needed.
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