
Fractional Order Control and Its Application of PIαD Controller for
Robust Two-inertia Speed Control

Chengbin Ma
Institute of Industrial Science

the University of Tokyo
4-6-1 Komaba, Meguro-ku, Tokyo, Japan

Email: ma@horilab.iis.u-tokyo.ac.jp

Yoichi Hori
Institute of Industrial Science

the University of Tokyo,
4-6-1 Komaba, Meguro-ku, Tokyo, Japan

Email: hori@iis.u-tokyo.ac.jp

Abstract— This paper deals with the speed control
of two-inertia system by fractional order PIαD con-
troller which means the order of I controller will not
only be integer but also can be any real number. The
significance of fractional order control is that it is
a generalization and “interpolation” of the classical
integer order control theory, which can achieve more
adequate modeling and clear-cut design of robust con-
trol system. However, most of fractional order control
researches were originated and concentrated on the
control of chemical processes, while in motion control
the research is still in a primitive stage. In this paper,
a frequency-band fractional order PIαD controller is
proposed to speed control of the two-inertia system,
which is a basic control problem in motion control.
A frequency-band broken-line approximation method
is introduced to realize the designed fractional order
PIαDcontroller that has a satisfactory accuracy in
frequency domain. The better robustness performances
of the PIαD control system against saturation non-
linearity and load inertia variation are shown by
the comparison of fractional order PIαD control’s
experimental time responses with integer order PID
control’s. The superior robustness and clear-cut control
design highlight the promising aspects of applying
fractional order control in motion control.
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I. I NTRODUCTION

A. History Review

Fractional Order Control (FOC) means controlled sys-
tems and/or controllers described by fractional order dif-
ferential equations. Expanding calculus to fractional orders
is by no means new and actually had a firm and long stand-
ing theoretical foundation. Leibniz mentioned it in a letter
to L’Hospital over three hundred years ago (1695). The
earliest more or less systematic studies seem to have been
made in the beginning and middle of the 19th century by
Liouville (1832), Holmgren (1864) and Riemann (1953),
although Eular, Lagrange, and others made contribution
even earlier [1] [2].

As one of fractional order calculus’s applications in
control engineering, FOC was introduced by Tustin for
the position control of massive objects half a century ago,
where actuator saturation requires sufficient phase margin
around and below the critical point [3]. For such kind of
1/sα system, taking fractional orderα (1 < α < 2) will
give a desirable tradeoff between control system’s stability
and robustness against saturation non-linearity. Some other

pioneering works were also carried out around 60’s by
Manabe [4]. However FOC was not widely incorporated
into control engineering mainly due to the unfamiliar idea
of taking fractional order, so few physical applications and
limited computational power available at that time [5].

B. Present Situation

In last few decades, researchers found that fractional
order differential equations could model various materials
more adequately than integer order ones and provide an
excellent tool for describing dynamic processes [1] [2]
[6]. The fractional order models need fractional order
controllers for more effective control of dynamic systems
[7]. This necessity motivated renewed interest in various
applications of FOC [8] [9] [10]. And with the rapid
development of computer performances, modeling and
realization of FOC systems also became possible and
much easier than before.

The researches on FOC are mainly centered in Euro-
pean universities at present. The CRONE (Non-integer
order robust control in France) team in France is leaded
by Alain Oustaloup and Patrick Lanusse from Bordeaux
University, France. Their practices include applying FOC
into car suspension control, flexible transmission, hy-
draulic actuator etc. Denis Matignon, a researcher from
ENST, Signal Dept.& CNRS, URA, France, contributed
to the theoretical aspects of FOC concept, such as sta-
bility, controllability, and observability of the fractional
order systems. Slovak researchers, Ivo Petras and Igor
Podlubny from the Technical University of Kosice, are
well-known for their efforts in modeling, realization and
implementation of fractional order systems. J. A. Tenreiro
Machado and Yangquan Chen, from Polytechnic Institute
of Porto, Portugal, and Utah State University, Logan, are
playing important roles in developing the implementation
methods for fractional order controllers and applying FOC
in robotics control, disturbance observer, etc.

Fractional differentiation’s applications in automatic
control is now an important issue for the international
scientific community. The First Symposium on Fractional
Derivatives and Their Applications (FDTA) of the 19th
Biennial Conference on Mechanical Vibration and Noise
was held from September 2 to September 6, 2003 in
Chicago, IL, USA [11]. This conference was part of the
ASME 2003 Design Technical Conferences. 29 papers
concerning FDTA in Automatic Control, Automatic Con-
trol and System, Robotics and Dynamic Systems, Analysis
Tools and Numerical Methods, Modeling, Visco-elasticity
and Thermal Systems were presented in the symposium.



A sub-committee called “Fractional Dynamic System”
under ASME “Multi-body Systems and Nonlinear Dy-
namics” committee was formed during the symposium.
And first IFAC Workshop on Fractional Differentiation
and its Applications will be held in this year’s summer,
July 19-21, in Bordeaux, France [12]. The following areas
will be covered by the workshop: Representation tools,
analysis tools, synthesis tools, simulation tools, modeling,
identification, observation, control, vibration insulation,
filtering, pattern recognition, edge detection. Besides the
presentation of theoretical works and applications, this
workshop can also give rise to benchmark, testing bench
and software presentations.

The article is organized as follows: in section II, mathe-
matical aspects of fractional order control are mentioned;
in section III, a integer orderPID controller is designed
for the speed control; in section IV, a frequency band
PIαD controller is proposed and its broken-line realiza-
tion method is also introduced; in Section V, Experimental
results are presented to show the robustness of proposed
fractional orderPIαD controllers. Finally, in section V,
conclusions are drawn.

II. M ATHEMATICAL ASPECTS

A. Mathematical Definitions

The mathematical definition of fractional derivatives
and integrals has been the subject of several different
approaches[1][2]. The most frequently encountered defi-
nition is called Riemann-Liouville definition, in which the
fractional order integrals are defined as

t0D−α
t =

1

Γ(α)

∫ t

t0

(t− ξ)α−1f(ξ)d(ξ) (1)

while the definition of fractional order derivatives is

t0Dα
t =

dn

dtn

[
t0D

−(n−α)
t

]
(2)

where

Γ(x) ≡
∫ ∞

0

yx−1e−ydy (3)

is the Gamma function,t0 and t are limits andα (α > 0
andα ∈ R) is the order of the operation.n is an integer
that satisfies(n− 1) < α < n.

The other approach is Grünwald-Letnikov definition:

t0Dα
t = lim

h→0
nh=t−t0

h−α

n∑
r=0

(−1)αf(t− rh) (4)

Where the binomial coefficients(r > 0)
(

α
0

)
= 1,

(
α
r

)
=

α(α− 1) . . . (α− r + 1)

r!
(5)

B. Laplace and Fourier Transforms

The Laplace transform of the Riemann-Liouville frac-
tional order derivative with orderα > 0 [1] [2] is

L {0Dα
t } = sαF (s)−

n−1∑
j=0

sj
[
0D

α−j−1
t f(0)

]
(6)

where(n− 1) ≤ α < n. If

0D
α−j−1
t f(0) = 0, j = 0, 1, 2, . . . , n− 1 (7)

then
L {0Dα

t f(0)} = sαF (s) (8)

Namely, the Laplace transform of fractional order deriva-
tive is fractional order Laplace operators. The Fourier
transform of fractional derivative can be obtained by
substitutings with jω in its Laplace transform just like
the classical integer order derivative’s. Fractional order
calculus is also a generalization of classical integer order
calculus in Laplace and Fourier transforms.

Obviously, the fractional order system’s frequency re-
sponses can be exactly known. The researches of FOC can
still make good use of extremely well-developed classical
integer order control theory for reference, especially in
frequency domain.

III. I NTEGERORDER PID CONTROL

A. Two-inertia Modeling

The testing bench of torsional system is depicted in
Fig. 1, which is a typical oscillatory system. Two flywheels
are connected with a long torsional shaft; while driving
force is transmitted from driving servomotor to the shaft
by gears with gear ratio 1:2. Some system parameters are
adjustable, such as gear inertia, load inertia, shaft’s elastic
coefficient and gears’ backlash angle. The encoders and
tacho-generators are used as position and rotation speed
sensors.
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Figure 1. Experimental setup of torsional system

The most simple model for the torsional system is the
two-inertia model, as shown in Fig. 2 and Fig. 3.JM

and JL are the inertias of driving side (including motor,
gear and driving flywheels) and load side,KS shaft elastic
coefficient,ωM and ωL motor and load rotation speeds,
TM input torque andTL disturbance torque. In this paper,
the backlash angle is set to be zero. Frictions between
components are neglected due to their small values.
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Figure 2. Two-inertia system model

The open loop transfer function betweenTM to ωM is

G(s) =
s2 + ωh

2

JMs(s2 + ωo)
2

(9)
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Figure 3. Block diagram of two-inertia system

As shown in Fig. 4 the resonance frequencyωo and the
anti-resonance frequencyωh are

ωo =

√
Ks

(
1

JM
+

1

JL

)
, ωh =

√
Ks

JL
(10)
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Figure 4. Bode plot of the two-mass plant

Parameters of the experimental two-inertia system are
shown in Table. I:

TABLE I. TWO-INERTIA SYSTEM’ S PARAMETERS

JM JL Ks

(Kgm2) (Kgm2) (Nm/rad)
0.004 0.003 198.490

B. Design ofPID Controller

A set-point-I PID controller is introduced to speed
control of the two-inertia system:
where thePID controller’s parameters are

Kp =
10
√

2

11

√
JsKs, Ki =

4

11
Ks, Kd =

5

11
JL − JM

(11)
which is designed by standard form of Coefficient Di-
agram Method [13] [14], a design method based on the
characteristic equations’ pole-placement. Based on Table. I
and Equ. (11):

Kp = 0.979, Ki = 72.178, Kd = −0.003 (12)

Time responses by simulation show the designedPID
control system has satisfactory performances (see Fig. 6).
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Figure 5. Set-point-I PID controller

While in its frequency response, the enough phase margin
is not kept in the neighborhood of the critical points,
which will lower the integer orderPID control system’s
robustness when non-linearities such as saturation and
parameter variations occur, as shown in Fig. 7.
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Figure 6. Time responses by simulation

10
0

10
1

10
2

10
3

10
4

-100

-50

0

50

M
a

g
n

it
u

d
e 

(d
B

)

10
0

10
1

10
2

10
3

10
4

-200

-150

-100

-50

0

Freq. (rad/sec)

P
h

a
se

 (
d

eg
.)

Figure 7. Bode plot of designed integer order PID control system

IV. FRACTIONAL ORDER PIαD CONTROL

A. Frequency BandIα Controller

The most clear-cut way to enhance the robustness of
designedPID control system is to adjustI controller’s
order for giving the control system more phase margin
around the critical point. However, it is neither practicable
nor desirable to try to make the order be fractional in
all frequency range. The frequency-band fractional order



controllers are required and practical in real applications.
As shown in Equ. (13) a frequency-bandIα controller is
propose to substitute classical integer orderI controller
where the low band frequencyωb = 10rad/sec and high
band frequencyωh = 1000rad/sec:

1

s

( s
ωb

+ 1
s

ωh
+ 1

)1−α

(13)

By changing the order ofα, the phase margin of proposed
fractional orderPIαD control system can be adjusted
directly to any desired amount (see Fig. 8). As shown in
Fig. 9 and Fig. 10, when uncertainties such as saturation
(gain variation) and load inertia variation occur, a enough
phase margin can be easily kept by choosing proper
fractional orderα.
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Figure 8. Bode plots of fractional orderPIαD control systems
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Figure 9. Bode plots with gain variation

B. Realization Method

Fractional order systems have an infinite dimension
while integer order systems are finite dimensional. Proper
approximation by finite difference equation is needed.
There are various way to realize designed fractional order
controllers, such as Short Memory Principle, Sampling
Time Scaling, Tustin Taylor Expansion and Lagrange
function interpolation, etc [15].

It is intuitive to approximate fractional order controllers
by frequency domain approach due to their clear geometric
interpretation in this domain. A broken-line approximation
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Figure 10. Bode plots withJL variation

method is introduced to realize frequency-band fractional
order controllers. Let

( s
ωh

+ 1
s

ωb
+ 1

)α

≈
N−1∏
i=0

s

ω
′
i

+ 1

s
ωi

+ 1
(14)

Based on Fig. 11, two recursive factorsζ and η are
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log
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∆  

ω
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O

Figure 11. An example of broken-line approximation (N = 3)

introduced to calculateωi andω
′
i :

ζ =
ωi

ω
′
i

, η =
ω
′
i+1

ωi
(15)

Since
ω
′
0 = η

1
2 ωb, ωN−1 = η−

1
2 ωh (16)

Therefore

ζη =
(

ωh

ωb

) 1
N

(17)

with
ω
′
i = (ζη)iω

′
0, ωi = ζ(ζη)iω

′
0 (18)

The frequency-band fractional order controller has
20αdB/dec gain slope, while the integer order factors
s

ω
′
i

+ 1 have 20dB/dec slope. For the same magnitude

change∆:

20α =
∆

logζ + logη
, 20 =

∆

logζ
(19)



Thus
(ζη)α = ζ (20)

Thereforeζ andη can be expressed respectively by

ζ =
(

ωh

ωb

) α
N

, η =
(

ωh

ωb

) 1−α
N

(21)

Finally

ω
′
i =

(
ωh

ωb

) i+ 1
2−

α
2

N
ωb, ωi =

(
ωh

ωb

) i+ 1
2 + α

2
N

ωb (22)

Figure. 12 shows the Bode plots of ideal frequency-band
case(α = 0.4, ωb = 200Hz, ωh = 1000Hz) and its 1st-
order, 2nd-order and 3rd-order approximations by broken-
line approximation method. Even takingN = 3 can give
a satisfactory accuracy in frequency domain.
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Figure 12. Bode plots of ideal case, 1st, 2nd and 3rd-order
approximations

The transfer function of the 2nd-order approximation
Cf (s) for the frequency-band 0.4 order controller is

6.3096(s + 15.85)(s + 73.56)(s + 341.5)

(s + 29.29)(s + 135.9)(s + 631)
(23)

The controller can be discretized by bilinear approxima-
tion. When the sampling time is0.001sec, the discrete
controllerZ{Cf (s)} is

5.415z3 − 14.2z2 + 12.29z − 3.508

z3 − 2.364z2 + 1.807z − 0.441
(24)

V. EXPERIMENTAL RESULTS

As shown in Fig. 13, the experimental torsional system
is controlled by a PC with 1.6GHz Pentium IV CPU and
512M memory. Control programs are written in RTLinux
C threads which can be executed with strict timing re-
quirement of control sampling time. A 12-bit AD/DA
multi-functional board is used whose conversion time per
channel is 10µsec.

Experiments are carried out with sampling time
T=0.001sec and 3rd-order broken-line approximation
(N = 2). Two encoders (8000pulse/rev) are used
as rotation speed sensors with coarse quantization
±0.785rad/sec.

Experiments of two-inertia speed control by integer or-
derPID controller and frequency-bandPIαD controller
are carried out based on the parameters setting in Table. I
with maximum output torque limitation±3.84NM . The
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Figure 13. Digital control system of the experimental setup

parametersKi, Kp, Kd of PID and PIαD controllers
are kept as same as the settings in Equ. 12.

As shown in Fig. 14 and 15, letting I controller’s order
be fractional can affect control system’s time response
greatly. It can be seen the frequency-bandPIαD systems
show better robustness to saturation non-linearity with
smaller overshoots.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

10

20

30

40

50

60

70

 ω
m

(r
a
d

/s
e
c)

time (sec)

α: from 1 to 0.2

    with 0.2 interval

Figure 14. Step responses of driving motor with input torque
saturation
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Figure 15. Step responses of load side with input torque
saturation

Fig. 16 gives the step responses of thePIαD control
systems with different inertia on load side. Compared to
the severe change of integer orderPID control system’s
time responses with large overshoot and overswing, the



frequency-bandPIαD control systems show better ro-
bustness against load inertia variation.
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Figure 16. Step responses ofPIαD system with load inertia
variation. (solid line: nominal case; dotted line: 0.3Jl; broken
line: 1.7Jl)

VI. CONCLUSIONS

In this paper, a frequency-band fractional orderPIαD
controller is proposed for the speed control of two-inertia
system with input torque saturation and load side inertia
variation. An intuitive broken-line approximate realization
method of frequency-band controllers is also introduced
which has a satisfactory accuracy in frequency domain.
The experimental results show the robustness of proposed
fractional orderPIαD control system. By changing the
fractional order, the robustness of control system can be
directly improved which means easier design process and
less tuning efforts in real industrial applications.

It can be seen that even a relative high-order controller
is actually introduced, the design process is really clear-
cut. Only two control parameters, the fractional orderα
and approximation orderN need to be decided during
the designing. The whole design process shows a good
prospect. Generally, there are three main advantages for
introducing FOC to control design:
• More adequate modeling of dynamic systems
• More clear-cut robust control design
• Reasonable implementation by approximation

By introducing FOC approach, control system’s phase and
gain responses can be easily offset to any desired amount.
Design process and experimental results demonstrate a
clear-cut and effective robust control design is possible
based on FOC approach. On the contrary to FOC control
design, the implementation of fractional order controllers
is not such straightforward. Some proper approximations
are needed. However, as verified in experimental results,
implementation issue is actually not problematic.

FOC should not be an independent concept of the well-
developed IOC. Knowledge and design methods developed
in IOC can still be made full use of in FOC research,
as demonstrated in this paper. It is interesting to notice

that even the theoretical analysis and design are based
FOC approach, the implementation of fractional order con-
trollers are certainly integer order controllers. Therefore,
FOC should not be thought as a novel and conceptually
difficult idea, but actually a natural and more effective
control design tool. By FOC, control system’s responses
can be designed with much more flexibility. The integer
order controller’s structure and parameters can be decided
by only one parameter, the fractional order. This enlarged
flexibility will provide more possibility to find excellent
solutions with less design effort. Some well-designed IOC
system might be looked as a good approximation of FOC
system. If this hypothesis can be established, it will further
verify FOC’s advantages in control field.

Fractional order control in motion control is still in a
research stage, but its superior robustness against param-
eter variation and non-linearities shown in the experimen-
tal results highlights the promising aspects; while future
exploration of the applications to more complex cases
is needed. Systematic and clear-cut FOC control design
methods are also important for promoting the application
of the novel FOC concept.
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