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This article deals with the speed control of two-inertia system by fractional order PIαD controller which
means the order of I controller can not only be integer but also be any real number. The significance of
fractional order control is that it is a generalization and “interpolation” of the classical integer order con-
trol theory, which can achieve more adequate modeling and more direct design of robust control system.
However, most of fractional order control researches were originated and concentrated on chemical process
control, while in motion control the research is still in a primitive stage. In this article, a frequency-band
fractional order PIαD controller is proposed to the two-inertia speed control, which is a basic control prob-
lem in motion control. A frequency-band broken-line approximation method is also introduced to realize the
PIαDcontroller that has a satisfactory accuracy in frequency domain. The superior robustness performances
of PIαD control system against input torque saturation and load inertia variation are shown by comparison
of its experimental time responses with integer order PID control’s. This robustness highlights the promising
aspects of applying fractional order control to motion control.
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1. Introduction

The concept of expanding derivatives and integrals to
fractional (non-integer) orders is by no means new. In
fact, this concept had a firm and long standing the-
oretical foundation. Leibniz mentioned it in a letter
to Hospital over three hundred years ago (1695) and
the earliest more or less systematic studies seem to
have been made in the beginning and middle of the
19th century by Liouville(1832), Holmgren(1864) and
Riemann(1953) (1). At the same time, Fractional Order
Control (FOC) was introduced by Tustin for the posi-
tion control of massive objects half century ago, where
the actuator saturation requires the sufficient phase mar-
gin around and below the critical point (2).

However, the concept of FOC, in which the controlled
systems and/or controllers are described by fractional
order differential equations, was not widely incorporated
into control engineering mainly due to the conceptually
difficult idea of taking fractional order, the existence of
so few physical applications and the limited available
computational power at that time (3).

In last few decades, researchers pointed out that frac-
tional order differential equations could model various
real materials more adequately than integer order ones
and provide an excellent tool for the description of dy-
namical processes (4) (5). Those fractional order models
need the corresponding fractional order controllers to be

∗ Department of Electrical Engineering, School of Engineering,
University of Tokyo

∗∗ Information & System Division, Electrical Control System En-
gineering, Institute of Industrial Science, University of Tokyo

proposed and evoked resurging interest to various appli-
cations of FOC (6) (7) (8). With the remarkable progress
of computation power, modeling and realization of the
FOC systems also became possible and much easier than
before.

The significance of FOC is that it is a generalization
and “interpolation” of classical integral order control
theory, which could lead to more adequate modeling
of dynamic processes and more direct design of robust
control systems. However, most of these works were
originated and concentrated on chemical process control
while in motion control, the research is still in a primi-
tive stage (4) (8).

This article is organized as follows: in section II,
Mathematical aspects of FOC are mentioned; in section
III, an integer order PID controller is designed for the
two-inertia speed control; in section IV, a frequency-
band PIαD controller is proposed and its broken-line
realization method is also introduced; in Section V, Ex-
perimental results are presented to show the robustness
of proposed fractional order PIαD controller. Finally,
in section VI, conclusions are drawn.

2. Mathematical Aspects
2.1 Mathematical Definitions The mathemat-

ical definition of fractional derivatives and integrals has
been the subject of several different approaches (1) (4).
The most frequently encountered definition is called
Riemann-Liouville definition, in which the fractional or-
der integrals are defined as

t0D
−α
t =

1
Γ(α)

∫ t

t0

(t− ξ)α−1f(ξ)d(ξ) · · · · · · · · (1)
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while the definition of fractional order derivatives is

t0D
α
t =

dγ

dtγ

[
t0D

−(γ−α)
t

]
· · · · · · · · · · · · · · · · · · · · (2)

where

Γ(x) ≡
∫ ∞

0

yx−1e−ydy · · · · · · · · · · · · · · · · · · · · · · (3)

is the Gamma function, a and t are limits and α (α > 0
and α ∈ R) is the order of the operation. γ is an integer
that satisfies γ − 1 < α < γ.

The other approach is Grünwald-Letnikov definition:

t0D
α
t = lim

h→0
nh=t−t0

h−α
n∑

r=0

(−1)αf(t− rh) · · · · · · (4)

Where the binomial coefficients (r > 0)
(

α
0

)
= 1,

(
α
r

)
=

α(α− 1) . . . (α− r + 1)
r!

(5)

2.2 Laplace and Fourier Transforms The
Laplace transform of the Riemann-Liouville fractional
order derivative with order α > 0 is (1) (4)

L {0Dα
t } = sαF (s)−

n−1∑

j=0

sj
[
0D

α−j−1
t f(0)

]
· · (6)

where (n− 1) ≤ α < n. If

0D
α−j−1
t f(0) = 0, j = 0, 1, 2, . . . , n− 1 · · · · (7)

then

L {0Dα
t f(0)} = sαF (s) · · · · · · · · · · · · · · · · · · · · · · (8)

Namely, the Laplace transform of fractional order
derivative is fractional order Laplace calculator s. Obvi-
ously, the Fourier transform of fractional derivative can
be obtained by substituting s with jω in its Laplace
transform just like the classical integer order deriva-
tive’s. Fractional order calculus is also a generalization
of classical integer order calculus in Laplace and Fourier
transforms, which implies the future researches of FOC
can still make good use of extremely well-developed clas-
sical integer order control theory for reference.

3. Integer Order PID Control

3.1 Modeling Two-inertia System The most
simple model and block diagram of the two-inertia sys-
tems are shown in Fig. 1 and Fig. 2, where JM and JL

are driving side and load side’s inertias, Ks is shaft elas-
tic coefficient, ωM and ωL are driving side and load side’s
rotation speeds, TM and TL are are the input torque and
the disturbance torque respectively.

The open loop transfer function from TM to ωM is

G(s) =
s2 + ωh

2

JMs(s2 + ωo)
2 · · · · · · · · · · · · · · · · · · · · · · (9)

As depicted in Fig. 3 the resonance frequency ωo and
the anti-resonance frequency ωh are

ωo =

√
Ks

(
1

JM
+

1
JL

)
, ωh =

√
Ks

JL
· · · · · · (10)

Parameters of the experimental two-inertia system are
shown in Table. 1:
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Fig. 1. Two-inertia system model
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Fig. 2. Block diagram of two-inertia system
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Fig. 3. Bode plot of the two-mass plant

Table 1. Two-inertia System’s Parameters

JM JL Ks

(Kgm2) (Kgm2) (Nm/rad)

0.004 0.003 198.490

3.2 Design of PID Controller In order to
smooth the discontinuity of speed command ωr by the
integral controller, a set-point-I PID controller is intro-
duced to the speed control of the two-inertia system.

s
Ki

 

sKd

ω r

M 

e TM +  +  

pK
+  

+ 

ω

Fig. 4. Set-point-I PID controller

The PID controller is designed by Coefficient Dia-
gram Method (CDM) (9), a design method based on the
characteristic equations’ pole-placement:

Kp =
10
√

2
11

√
JsKs, Ki =

4
11

Ks, Kd =
5
11

JL−JM (11)

Based on Table. 1 and Equ. (11):

Kp = 0.979, Ki = 72.178, Kd = −0.003 · · · · (12)

Time responses by simulation show the designed
PID control system has satisfactory performances (see
Fig. 5). However as depicted in Fig. 6, in its frequency
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response the enough phase margin is not kept in the
neighborhood of the critical points, which will lower the
integer order PID control system’s robustness against
non-linearities such as saturation and parameter varia-
tion.
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Fig. 5. Time responses by simulation
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Fig. 6. Bode plot of designed integer order PID
control system

4. Fractional Order PI¸D Control

4.1 Frequency Band Iα Controller The most
direct way to improve the robustness of the designed
PID control system is to adjust I controller’s order for
giving the control system more phase margin around
the critical point. However, it is neither practicable
nor desirable to try to make the order be fractional in
all frequency range. The frequency-band fractional or-
der controllers are required and practical in real appli-
cations. As shown in Equ. (13) a frequency-band Iα

controller is propose to substitute classical integer order
I controller of the PID controller where the low band
frequency ωb = 10rad/sec and high band frequency
ωh = 1000rad/sec:

1
s

(
s

ωb
+ 1

s
ωh

+ 1

)1−α

· · · · · · · · · · · · · · · · · · · · · · · · · · · (13)

As depicted in Fig. 7, unlike their integer-order counter-
parts, by changing order α the PIαD control system’s
phase margin can be adjusted directly and continuously.
This flexibility in adjusting control systems’s frequency
responses makes it clear to design robust control systems
through the FOC approach.

4.2 Realization Method It is intuitive to ap-
proximate fractional order controllers by frequency do-
main approaches due to their clear geometric interpreta-
tions in this domain. In this paper, a broken-line approx-
imation method is introduced to realize frequency-band
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Fig. 7. Bode plots of fractional order PIαD con-
trol systems

fractional order Iα controller. Let

D(s) =

(
s

ωb
+ 1

s
ωh

+ 1

)α

≈ DN (s) · · · · · · · · · · · · · · (14)

with

DN (s) =
N∏

i=−N

s
ω
′
i

+ 1
s
ωi

+ 1
· · · · · · · · · · · · · · · · · · · · · · (15)
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Fig. 8. Broken-line approximation (N = 1)

Based on Fig. 8, two recursive factors x and y are intro-
duced to calculate ωi and ω

′
i:

x =
ωi

ω
′
i

, y =
ω
′
i+1

ωi
· · · · · · · · · · · · · · · · · · · · · · · · · (16)

Since

ω
′
−N = y

1
2 ωb, ωN = y−

1
2 ωh · · · · · · · · · · · · · · · · (17)

Therefore

xy =
(

ωh

ωb

) 1
2N+1

· · · · · · · · · · · · · · · · · · · · · · · · · · · (18)

with

ω
′
i = (xy)i+Nω

′
−N , ωi = x(xy)i+Nω

′
−N · · · · · (19)

The frequency-band Iα controller has 20αdB/dec gain
slope, while the integer order factors s/ω

′
i + 1 have

20dB/dec slope. For the same magnitude change ∆:

20α =
∆

logx + logy
, 20 =

∆
logx

· · · · · · · · · · · · · (20)

Thus
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(xy)α = x · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (21)

Therefore x and y can be expressed respectively by

x =
(

ωh

ωb

) α
2N+1

, y =
(

ωh

ωb

) 1−α
2N+1

· · · · · · · · · · · (22)

Finally

ω
′
i =

(
ωh

ωb

) i+N+ 1
2−

α
2

2N+1

ωb, ωi =
(

ωh

ωb

) i+N+ 1
2 + α

2
2N+1

ωb(23)

Figure. 9 shows the Bode plots of ideal frequency-band
D(s) (α = 0.4, ωb = 10Hz, ωh = 1000Hz) and its 1st-
order, 2nd-odes and 3rd-order approximations by the
broken-line approximation method. Even taking N = 2
can give a satisfactory accuracy in frequency domain.
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Fig. 9. Bode plots of ideal case and approximations

5. Experimental Results

Experiments of the two-inertia speed control by in-
teger order PID controller and frequency-band PIαD
controller are carried out based on the parameters set-
ting in Table. 1 with maximum input torque limitation
TM = 3.84NM and two encoders (8000pulse/rev) as
rotation speed sensors. The controllers are realized on
a digital computer with the sampling time 0.001sec. In
the experiment α is taken as 0.6 to give proper phase
margin around the critical point. The parameters Ki,
Kp, Kd of PID and PI0.6D controllers are kept as same
as the settings in Equ. (12).

For integral order PID controller the step response
changes greatly when the input torque TM saturation
occurs, while it can be seen the frequency-band PI0.6D
control systems showing better robustness against the
saturation non-linearity as depicted in Fig. 10.
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Fig. 10. Step responses with input torque saturation

Fig. 11 gives step responses of the two control sys-
tems with different inertia on load side. Compared to

the severe change of integer order PID control system’s
time responses with large overshoot and overswing, the
frequency-band PI0.6D control system shows better ro-
bustness against inertia variation with much smaller and
nearly constant overshoot.
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Fig. 11. Step responses with load inertia variation

6. Conclusions

In this paper, a frequency-band fractional order PIαD
controller is proposed for the speed control of two-inertia
system with input torque saturation and load side in-
ertia variation. An intuitive broken-line approximate
realization method of the frequency-band Iα controller
is also introduced which has a satisfactory accuracy in
frequency domain. The experimental results show the
robustness of proposed fractional order PIαD control
system. By changing the fractional order, control sys-
tem’s robustness can be directly improved which means
clearer design and less tuning efforts in real industrial
applications. Applying FOC to motion control is still
in a research stage, but its superior robustness against
parameter variation and non-linearities shown in the ex-
perimental results highlights the promising aspects while
future exploration of the applications to more complex
cases is needed.
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