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Abstract. In this paper, the time-scaled trapezoidal integration rule for discretizing
fractional order controllers is discussed. This interesting proposal is used to interpret
discrete FOC systems as control with scaled sampling time. Based on this time-scaled
version of trapezoidal integration rule, discrete FOC can be regarded as some kind
of control strategy, in which strong control action is applied to the latest sampled
inputs by using scaled sampling time. Namely, there are two time scalers for FOC
systems: a normal time scale for ordinary feedback and a scaled one for fractional
order controllers. A new realization method is also proposed for discrete fractional
order controllers, which is based on the time-scaled trapezoidal integration rule.
Finally, a one mass position 1/sk control system, realized by the proposed method,
is introduced to verify discrete FOC systems and their robustness against saturation
non-linearity.

Keywords: discrete, fractional order control, scaled sampling time, trapezoidal
integration rule

1. Introduction

The concept of Fractional Order Control (FOC), in which the con-
trolled systems and/or controllers are described by fractional order
differential equations, is by no means new. In fact, it has a long history.
The concept was firstly introduced by Tustin for the position control
of massive objects half a century ago, where the actuator saturation
requires sufficient phase margin around and below the crossover fre-
quency (Tustin, 1958). Some other pioneering works were also carried
out around 60’s (Manabe, 1960). However, FOC was not widely in-
corporated into control engineering mainly due to the conceptually
difficult idea of taking fractional order, the existence of so few physical
applications and limited computational power available at that time
(Axtell and Bise, 1990).

In last few decades, researchers pointed out that fractional order
differential equations could model various materials more adequately
than integer order ones and provide an excellent tool for describing dy-
namic processes (Oldham and Spanier, 1974; Podlubny, 1999a; Vinagre,
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Feliú and Feliú, 1998). The fractional order models need fractional order
controllers for more effective control of the dynamic systems (Podlubny,
1999b). This necessity motivated renewed interest in various applica-
tions of FOC (T. Machado, 1997; Oustaloup, Sabatier and Moreau,
1998; Petras and Vinagre, 2001). Thanks to the rapid development of
computational power, modeling and realization of FOC systems also be-
came much easier than before. By changing FOC controller’s fractional
order, control system’s frequency response can be adjust directly and
continuously. This advantage can lead to more straightforward design
of robust control systems against uncertainties.

While it is not difficult to understand FOC’s theoretical superiority
in frequency-domain, control system’s performance is more directly
measured by its time-domain characteristics. At the same time, it is
well-known that the discrete integer order controllers have clear time-
domain interpretation as the changing ratio or area of sampled input
to time, which significantly simplify their use in various applications
including control engineering. Classical control theory was extremely
well developed based on integer order differential equations. On the con-
trary, for fractional order controllers, it was not so. Podlubny proposed
a simple geometric interpretation of fractional integrals as “chang-
ing shadows on the wall” and some pictures describing this changing
process were given (Podlubny, 2002). However, since most modern
controllers are realized by digital computers, clear interpretation of
fractional order controllers’ roles in discrete domain is much more
concerned and with practical importance. Especially insights in dis-
crete fractional order controllers would be enlightening for the future
development of FOC researches.

The sampling time scaling property of discrete fractional order con-
trollers was firstly proposed by the authors (Ma and Hori, 2003). In
this paper, this interesting property, the time-scaled version of well-
known trapezoidal integration rule, is discussed further to gain more
insight into discrete FOC systems. Explanation of discrete FOC system
as “passive adaptive” control system is proposed. A new realization
method, time-scaled trapezoidal integration rule, and its frequency per-
formances with different memory lengths are also investigated. Finally,
a one mass position 1/sk control system is introduced to verify discrete
FOC systems realized by the time-scaled trapezoidal integral rule. The
1/sk control system’s robustness again saturation non-linearity is also
examined.
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2. Mathematical Aspects

2.1. Mathematical Definitions

The mathematical definition of fractional derivatives and integrals
has been the subject of several different approaches(Oldham and Spanier,
1974; Podlubny, 1999a). The most frequently encountered definition
is called Riemann-Liouville definition, in which the fractional order
integrals are defined as

t0D
−α
t =

1
Γ(α)

∫ t

t0
(t− ξ)α−1f(ξ)d(ξ) (1)

while the definition of fractional order derivatives is

t0D
α
t =

dn

dtn

[
t0D

−(n−α)
t

]
(2)

where

Γ(x) ≡
∫ ∞

0
yx−1e−ydy (3)

is the Gamma function, t0 and t are limits and α (α > 0 and α ∈ R) is
the order of the operation. n is an integer that satisfies (n−1) < α < n.

The other approach is Grünwald-Letnikov definition:

t0D
α
t = lim

h→0

nh=t−t0

h−α
n∑

r=0

(−1)α
(

α
r

)
f(t− rh) (4)

Where the binomial coefficients (r > 0)
(

α
0

)
= 1,

(
α
r

)
=

α(α− 1) . . . (α− r + 1)
r!

(5)

2.2. Laplace and Fourier Transforms

The Laplace transform of Riemann-Liouville fractional order derivative
with order α > 0 (Oldham and Spanier, 1974; Podlubny, 1999a) is

L {0D
α
t } = sαF (s)−

n−1∑

j=0

sj
[
0D

α−j−1
t f(0)

]
(6)

where (n− 1) ≤ α < n. If

0D
α−j−1
t f(0) = 0, j = 0, 1, 2, . . . , n− 1 (7)
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then
L {0D

α
t f(0)} = sαF (s) (8)

Namely, the Laplace transform of fractional order derivative is frac-
tional order Laplace operator s. Obviously, the Fourier transform of
fractional derivative can be obtained by substituting s with jω in its
Laplace transform just like classical integer order derivative’s.

3. Scaled Sampling Time

There are many ways to discretize fractional order controllers for digi-
tal implementation. Frequency-band fractional order controller can be
realized by broken-line approximation in frequency-domain, but fur-
ther discretization is required for this method (Oustaloup, Levron and
Nanot, 2000). As to direct discretization, several methods have been
proposed such as Short Memory Principle (Podlubny, 1999a), Tustin
Taylor Expansion (T. Machado, 2001) and Lagrange Function Inter-
polation method (T. Machado, 1997), while all these approximation
methods need truncation of the expansion series.

However all the above direct discretization methods for fractional
order controllers have a common shortcoming of lacking clear time-
domain interpretation. A clear time-domain interpretation was pro-
posed by the authors using sampling time scaling property (Ma and
Hori, 2003). Based on this interpretation, discrete fractional order in-
tegral can be considered as integral with scaled sampling time; while
discrete fractional order derivative is the derivative of the sampling time
scaled discrete integral. For completeness, the derivations are repeated
below.

From Riemann-Liouville definition, fractional order integral with
order between 0 and 1 is

0I
α
t f(t) =

∫ t

0
f(τ)dgt(τ), 0 < α < 1 (9)

where

gt(τ) =
1

Γ(1 + α)
[tα − (t− τ)α] (10)

Let t := nT , where T is sampling time and n is the step currently under
execution, then

gnT (kT ) =
nα − (n− k)α

Γ(1 + α)
Tα, k = 1, ..., n (11)
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Based on the same consideration of trapezoidal integration method,
the constant sampling time T is adjusted to Tn(k) for the kth step in
fractional order discrete integral controller:

Tn(k) = ∆gnT (kT )
= gnT (kT )− gnT [(k − 1)T ]

=
(n− k + 1)α − (n− k)α

Γ(1 + α)
Tα (12)

Thus

Tn(n) =
1α − 0α

Γ(1 + α)
Tα

Tn(n− 1) =
2α − 1α

Γ(1 + α)
Tα

. . .

Tn(1) =
nα − (n− 1)α

Γ(1 + α)
Tα (13)

Finally, based on the trapezoidal integration rule

0I
α
nT ≈

n∑

k=1

f(kT ) + f [(k − 1)T ]
2

Tn(k) (14)

and if T → 0, then

0I
α
nT =

n∑

k=1

f(kT ) + f [(k − 1)T ]
2

Tn(k) (15)

From Equation (13), the interpretation of discrete fractional order inte-
grals is the “deformation” of their integer order counterparts by internal
sampling time scaling. As depicted in Figure 1, with the same sampled
inputs f(kT ) as integer order integral, the scaled sampling time Tn(k)
leads to different value of fractional order integral. Based on this time-
scaled version of trapezoidal integration rule, it is easily to understand
that the past values are “forgotten” gradually in discrete fractional
order integral due to their scaled tiny sampling time while in integer
order ones all the values are “remembered” with same weights.

Similarly, discrete fractional order derivatives with order between 0
and 1 is

0D
α
t f(t) =

1
Γ(1− α)

d

dt

∫ t

0

f(τ)
(t− τ)α

dτ

=
d[

∫ t
0 f(τ)dgt(τ)]

dt
, 0 < α < 1 (16)
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Figure 1. Fractional order integral’s sampling time scaling

where

g
′
t(τ) =

1
Γ(2− α)

[t1−α − (t− τ)1−α] (17)

Thus

T
′
n(n) =

11−α − 01−α

Γ(2− α)
T 1−α

T
′
n(n− 1) =

21−α − 11−α

Γ(2− α)
T 1−α

. . .

T
′
n(1) =

n1−α − (n− 1)1−α

Γ(2− α)
T 1−α (18)

Again based on the trapezoidal integration rule

∫ nT

0
f(τ)dg

′
t(τ) ≈

n∑

k=1

f(kT ) + f [(k − 1)T ]
2

T
′
n(k) (19)

and if T → 0, then

∫ nT

0
f(τ)dg

′
t(τ) =

n∑

k=1

f(kT ) + f [(k − 1)T ]
2

T
′
n(k) (20)

The interpretation of discrete fractional order derivatives is the deriva-
tives of fractional (1−α) order integrals

∫ nT
0 f(τ)dg

′
t(τ). Namely, it can

be understood geometrically as the changing ratio of the “scaled inte-
gral area” due to the scaled sampling time, as depicted in the shadow
area of Figure 2.

Clearly, when the discrete controller’ order α equals 1, the sam-
pling time will not be scaled any more. From the viewpoint of sam-
pling time scaling, in discrete domain FOC is also a generalization and
“interpolation” of the classical integer order control theory.
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Figure 2. Changing of the “scaled integral area”

4. Control with Scaled Sampling time

Viewing in terms of sampling time scaling can gain more insight into
discrete FOC systems. The fractional order controllers are controllers
with self-adjustable parameters and a mechanism for adjusting the
parameters. As depicted in Figure 3, a fractional order controller can
be considered as the series of sampling time scaler and classical integer
order controller conceptually. Namely, the sampling time of input se-
quence is pre-adjusted by sampling time scaler before entering integer
order controller.

 

Sampling 
time scaler  

Integer order 
 

control 
plant 

Fractional order controller 

+ 
y 

r u e 
controller

Figure 3. Sampling time scaler of FOC systems

Therefore, fractional order control can be regarded as a special con-
trol strategy, which apply strong control action to latest sampled inputs
by using “forgetting factors” λn(k). Large scaled sampling time of latest
values means small “forgetting factors” and vice versa. For example,
the control law of a pure fractional order integral controller can be
rewritten in “forgetting factor” form, where λn(k) equal 2/Tn(k) in
Equation (13):

u(n) =
n∑

k=1

1
λn(k)

[e(k) + e(k − 1)] (21)

It can be seen in Figure 4 that in fractional order integral controllers
the input values are memorized with time-scaled weights, while the
integer order controllers give all the values with same weights. Farther
fractional order differs from the integer order 1, more obvious the sam-
pling time is scaled. The rapidly fading influences of the old values
and dominance of the latest ones make fractional order controllers
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“passively adaptive”to present changes of dynamic processes. This can
also be a time domain explanation for FOC systems’ robustness against
uncertainties.
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Figure 4. Discrete Iα controller’s scaled sampling time (T = 0.001sec)

5. Realization by scaled sampling time

It is common knowledge that the fractional order systems have an
infinite dimension while the integer order systems are finite dimen-
sional. Discretization of fractional order controllers by the time-scaled
trapezoidal integration rule is not an exception. Proper approximation
by finite difference equation is needed to realize fractional order con-
trollers. Based on the observation that the lengths of scaled sampling
time near “starting point” t0 is small enough to be “forgotten” for
large t (see Figure 4), a new realization method is proposed to take
into account only the behavior of f(t) in the “recent past”, i.e. in the
interval [t− L, t], where L is the length of “memory”:

t0D
k
t f(t) ≈t−L Dk

t f(t), t > t0 + L (22)

Therefore this realization method can be considered as a kind of “short
memory principle” approach but based on Riemann-Liouville definition
(Podlubny, 1999a).

From Equation (14) and Equation (19), it is easy to give the discrete
equivalent of fractional α order integral or derivative controllers as
follows:

Z(Dα[x(t)]) ≈ 1
Tα

[L/T ]∑

j=0

cjz
−j (23)
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Figure 5. Bode plots of Z(1/s0.5) with different memory lengths

For integral controllers (α < 0), coefficients cj are

c0 =
1

2Γ(1 + |α|)

cj =
(j + 1)|α| − (j − 1)|α|

2Γ(1 + |α|) , j ≥ 1 (24)

And the coefficients of derivative controllers (α > 0) are

c0 =
1

2Γ(2− α)

c1 =
21−α − 1
2Γ(2− α)

cj =
1

2Γ(2− α)

[
(j + 1)1−α − j1−α

− (j − 1)1−α − (j − 2)1−α
]
, j ≥ 2 (25)

Figure 5 shows the Bode plot of discrete Z(1/s0.5) controller for sam-
pling time T = 0.001s realized by different [L/T] (solid) compared with
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the ideal case of continuous controller 1/s0.5 (dash). Clearly, in order
to have a better approximation in discrete domain, smaller sampling
time and larger [L/T ] (memory length) are preferable.

6. Example: One Mass Position Control

In order to verify discrete FOC systems realized by proposed realization
method, one mass position control is introduced as a simple prototype,
where Jm = 0.001kgm2 and Kd = 0.01 (see Figure 6). Time responses
with fractional order derivative controllers Dα is simulated using full
memory length. Namely, all the past sampled input will be remembered.

 

sKd
msJ

1+ qr
qm

a
2

Figure 6. The position control loop with fractional α order derivative controller

The time responses with different α order derivative controllers are
depicted in Figure 7. It can be seen clearly that the FOC systems’ time
responses are an interpolation of the classical integer order ones. The
scaled sampling time directly leads to the change of the time responses.
As depicted in the figure, the important quantities of step response,
maximum overshoot, delay time, rise time and settling time, can be
adjusted continuously by changing fractional order α.
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Figure 7. Time responses with fractional α order derivative controllers

For one mass position control with Dα controllers, its open-loop’s
phase margin is 180 − (2 − α) × 90 degree. That is the phase margin
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can be continuously adjustable by changing fractional order α. This
superiority of FOC in frequency domain make control systems robust
against uncertainties, especially gain variation. The time responses also
give same results (see Figure 8). An output torque limitation of ±2NM
is introduced to the α order derivative controllers. Comparison of the
responses shows that fractional order 1/sk (k = 2 − α) system’s ro-
bustness against saturation non-linearity can be adjusted continuously
between the classical integer order ones. Among them, 1/s1.6 system
(α = 0.4) has the best time-domain performance.
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Figure 8. Time responses with saturation non-linearity

This proposed realization method was also applied to implement
fractional order Dα controller for gear backlash vibration suppression
in torsional system’s speed control, where 100 past values are memo-
rized (Ma and Hori, submitted for publication). In real applications,
the necessary memory length, namely how good the approximation is
needed, should be decided by the demand of specific control problem.

7. Conclusions

In this paper, the time-scaled trapezoidal integration rule for discretiz-
ing fractional order controller is discussed. This interesting proposal is
used to interpret discrete FOC systems as control with scaled sampling
time. A new realization method is also given for discrete fractional order
controllers with clear geometric interpretation. Based on this time-
scaled version of well-known trapezoidal integration rule, discrete FOC
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can be regarded as some kind of control strategy, in which strong control
action is applied to the latest sampled inputs by sampling time scaling.
Namely, there are two time scalers for FOC systems: a normal time scale
for ordinary feedback and a scaled one for fractional order controllers.
The explanation of discrete FOC as “passive adaptive control” can give
more insight into understanding the essence of FOC and its robustness
against uncertainties; while further research is still needed in this field.
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