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Abstract

Visual servo system is a rapidly maturing approach to the control of robot manipulators

that is based on visual recognition of robot and workpiece location. While robotics has

thrived in certain environments, it has found challenges in environments that are not well

de�ned. Visual servoing was developed mainly due to these challenges.

Machine vision can extend the feedback measurement space to include the relative

position and orientation of the robot end-e�ector. The role of machine vision as the

feedback transducer strongly a�ects the closed-loop dynamics of the overall system. Until

now researches on visual servo system have focused mainly on preview control; only a

few papers have focused on prediction control. However, all of them have not considered

coordinate transformation problem caused by the multirate sampling characteristics of

visual servo system while performing a high speed tracking task.

In this paper, two novel visual servo prediction control schemes are proposed for achiev-

ing high speed tracking and high control accuracy. In view of diagnolization problem

and the coordinate transformation problem caused by low sampling frequency(long time-

delay) in high speed target motion tracking, the intersample prediction control scheme

based fastrate GPC controller with an intersample predictor and the intersample predic-

tion control scheme basd on multirate GPC controller are proposed to take care of external

uncertainties and compute the optimal intersample control inputs of the robotic system.

Considering the e�ects of noise in prediction, simulations are performed to discuss the

performance of noise suppression. Finally, simulation and experimental results are given

to show the drastic e�ectiveness of the proposed approaches.
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Chapter 1

Introduction

1.1 Background of the Research

Although human beings have �ve senses(touch, taste, hearing, eyesight, and smell),

more than 87% external information is obtained by eyes. Thus, it has no doubt that eyes

are the most important sensory organs for obtaining intellectual information. In future

direction of robotics, we can expect that visual servoing will play an important role.

Since 20 years ago, visual servo control started to be applied in robotics. In an auto-

matic manufacturing system incorporated with robots, all the work operations are taken

repeatedly in equipped environment. In this case, traditional robot control based only on

internal sensor, i.e. the angle encoder and tachometer, is suÆcient to take high accurate

control. However performing autonomous work operation in uncertain environment is

impossible.

Machine vision gives robots the ability to manipulate parts with uncertain charac-

teristics and locations. One of the most important applications is vision-based material

handling[1](shown in Fig. 1.1). In entertainment, the construction of robot player[16](shown

in Fig. 1.2) to play ping-pong against humans and machines is quite an interesting chal-

lenge. Besides, in ITS(Intelligent Transportation System)[2](shown in Fig. 1.3), a moni-

toring system which can recognize road lanes from vision is necessary. As a consequence,

no matter what kind of target motion, i.e. linear, circular, square or sinusoidal trajectory,

it must be able to be estimated and be predicted with suÆcient accuracy. Realizing a

high performance control system of tracking a high speed mobile target with the help of

dynamic visual feedback is the goal for all the applications in visual servo control system.

Thus we are confronted with a control problem of tracking a mobile target with the help

of dynamic visual feedback.
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Figure 1.1: The RTS PixCellTM concept Figure 1.2: Robot ping-pong player

Figure 1.3: MIT's Intelligent Transportation Research

1.2 Motivations of the Thesis

Some control strategies have been previously researched. Corke et al.[3][35][36] were

the �rst who studied the e�ects of the manipulator's dynamics in the visual loop. Nakabo

et al.[14] used a 1kHz sampling rate vision chip for visual servoing. Nam et al.[15] used

PSD sensor to perform high performance visual tracking. Hashimoto et al.[4][21] proposed

observer-based controller to overcome delay and nonlinear dynamics. Ganglo� et al.[5][6]

were the �rst that implemented GPC online to take into account the dynamics of the

manipulator and veri�ed that GPC controller has higher control performance than PI

controller. In recent years, multirate sampling control theories have been extensively

2



studied[12][13][19][20]. Based on it, some multirate visual servoing approaches[11][26][22]

were proposed.
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Feedback

V z( )

Vision
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Robot

W z( )
Target

>
> >

>

>>
-

U z( )

Reference >>

Figure 1.4: Visual feedback control system

In feedback control(shown in Fig. 1.4), machine vision has a number of signi�cant

disadvantages when used as a feedback sensor: a relatively low sampling rate, sensitive

to variations of the environment illumination and coarse quantization. As a result, direct

use of the visual data for robot control will lead to poor control accuracy.

To reduce these e�ects, some recent researches on visual servo system have focused

mainly on using a high-price machine vision system to obtain a high sampling rate, high

resolution machine vision system. Instead of using high performance vision system, some

other researches took a low speed motion control or small area motion control so the

robot only moves a little during sampling period. Although there are many researches

in visual servo control[23][28][31][32][33][34][38], most reseaches design visual servoing for

target tracking in equipped environment so that preview control theory(shown in Fig.

1.5) can be used to perform a high accuracy and high speed tracking work. But the merit

of machine vision applied in robotics is to make robots be able to operate autonomously

in uncertain environment is neglected.

In this paper, in order to focus on operating autonomous work, prediction control(shown

in Fig. 1.6) is considered here instead of preview control. A well-known characteristics in

prediction method is that the higher dynamic prediction performance the system has, the

lower is its stochastic performance. So the e�ects of noise in prediction is also considered

in this research. While performing high speed tracking in visual servo control, there exists

the coordinate transformation problem caused by multirate characteristic that is still not

considered. To overcome this problem, instead of using a high-priced machine vision sys-

tem, a web camera was used. Furthermore, intersample predictor control schemes based

on multirate GPC[13] for high-speed visual tracking tasks were proposed to solve low

3



sampling rate problem and improve the control accuracy in tracking trajectory.
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Figure 1.5: Visual servo with feedback and feedforward compensation
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Figure 1.6: Visual servo with feedback and estimated feedforward compensation

1.3 Outline of the Thesis

In chapter 1, the background of this research and the motivations of this thesis were de-

scribed. In chapter 2, fundamentals of visual servoing about machine vision and position-

based visual servoing are described. In chapter 3, the method to model the visual servo

loop is explained. The diagonalization problem and the coordinate transformation prob-

lem caused by the multirate characteristics of visual servo system are explained. Simula-

tion results are given to show the e�ects of these two problems. Chapter 4 is the discussion

4



of proposed novel visual servo control approaches, intersample prediction control schemes

based on multirate GPC for high-speed visual tracking tasks. In chapter 5, the simula-

tion and experimental results of circular target motion tracking task and square target

motion tracking task are given to show the drastic performance of our proposals. Finally,

a conclusion summarises the contributions made by this thesis and outlines directions for

future research.
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Chapter 2

Fundamentals of Visual Servoing

2.1 Abstract

Visual servoing is the fusion of results from many elemental areas including high-speed

image processing, kinematics, dynamics, control theory, and real-time computing. The

two major classes of systems, image-based visual servo systems and position-based visual

servo systems are discussed in Section 2.2. The reason why we choose position-based

control is also explained in this section. Since feature extraction occupies an important

position in visual servoing, Section 2.3 describes perspective model and the calibration

approach to obtain precise image features. Section 2.4 presents the control law of position-

based visual servoing. Finally a two-link manipulator case is derived in Section 2.5.

2.2 Image-Based versus Position-Based Visual Servo

Control

Image-based control(see Fig. 2.1) and position-based control(see Fig. 2.2) are the two

most classical categories of visual servoing[3][29] and they are di�erent in the nature of

the inputs used in their respective control schemes. Image-based visual servoing is well

known to be generally satisfactory, even in the presence of important camera calibration

errors[8]. It acts on an error signal which is de�ned by image features, such that when the

servoing goal is reached, the error is zero. The error may be calculated by comparison with

a pre-recorded image, i.e. a teach-by-showing approach. However in industrial settings,

the desired target location is likely to be unknown or mobile. In addition, there are some

stability and convergence problems as investigated by Chaumette et al[9]. Therefore, a

position-based approach is used in this research. A eye-in-hand camera con�guration is

7



chosen in our work since we are servoing mostly to a single point, bringing it to the center

where there is less distortion. Another merit of this con�guration is that the feature

extraction is assumed to be simple in order to focus more on the control problem of the

visual servo system.

-

-

Vision Loop
Controller

Robot
Dynamics

Camera

Target

Feature Ref.
Robot
Kinematics

Joint Loop
Controller

Feature
Extraction

Figure 2.1: Image-based visual servo control

-

-

Vision Loop
Controller

Robot
Dynamics

Camera

Target

Position Ref.

Position
Determination

Robot
Kinematics

Joint Loop
Controller

Inverse
Kinematics

Feature
Extraction

Figure 2.2: Position-based visual servo control

2.3 Machine Vision

2.3.1 Perspective Model

Suppose that the camera is mounted on the end-e�ector of the robot. In Fig. 2.3,

p
�
= (x; y; z) on the camera coordinate system is determined only by the relative position

between the camera position and object position. Therefore, the perspective model of the
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Figure 2.3: Perspective model

camera can be obtained because p is mapped to the feature point � on the image plane.

� =

2
4 �x

�y

3
5 = f

z

2
4 x

y

3
5 = f

z
(sc � so) (2.1)

Here, f is the focus distance, z is the distance between the object and camera in the

Z axis direction and � is the joint variable vector.

2.3.2 Calibration of Visual Sensor

The projective geometry of the camera on the end-e�ector is modeled by a perspective

projection. Further, the distortion introduced by the lens is also added to this model.

Thus, p = [x y z]T which are the coordinates of a point with respect to the camera coor-

dinate system, will project onto the image plane with coordinates � = (Xf ; Yf ) in pixels.

Here we take Tsai's approach[10](see Fig. 2.4) to solve for the camera's transformation

and distortion.

Viewport Calculation:

Calculate actual discrete pixel address location, (Xf ; Yf) within image, with given cen-

tering
2
6664

�x

�y

1

3
7775 =

2
6664

Xf

Yf

1

3
7775 =

2
6664

Sx 0 Cx

0 Sy Cy

0 0 1

3
7775

2
6664

Xd

Yd

1

3
7775 (2.2)

When the camera is mounted on the end-e�ector, Cx = Cy = 0. Sx and Sy are the

magni�cation factors for the x and y directions, respectively because the dimensions
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Rigid body
transformation

Projection
Matrix

Radial lens
distortion

Viewport
transform

Base
Coordinates

Camera
coordinates

Undistorted image
coordinate

Distorted image
coordinate

Image
coordinate

Figure 2.4: Camera calibration 
ow chart

of the pixels in vision chip are not square. We can obtain these information from the

speci�cations of camera. (Xd; Yd) is the distorted or true image coordinate on the image

plane.

Image plane
Camera

Coordinate
System

x

y

z

P(Xu, Yu)

(Xd, Yd)

Figure 2.5: Image distortion

Radial Distortion:

This distortion is caused because the focus of the lens is not always the same in any

part of the lens(See Fig. 2.5). (Xu; Yu) is the undistorted coordinate. The distortion is

calculated by
2
6664

Xd

Yd

1

3
7775 =

2
6664

1 0 Dx

0 1 Dy

0 0 1

3
7775

2
6664

Xu

Yu

1

3
7775 =

1

D

2
6664

Xu

Yu

1

3
7775 (2.3)

whereDx = Xd(Kdr
2), Dy = Yd(Kdr

2), D = 1�Kdr
2, r =

q
X2

d + Y 2
d , Kd is the distortion

coeÆcient.
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Perspective Projection:

Camera coordinates to ideal undistorted image coordinate, involves focal length, f , and

perspective foreshortening

2
6664

Xu

Yu

1

3
7775 =

2
6664

f

z
0 0

0 f

z
0

0 0 1
z

3
7775

2
6664

x

y

z

3
7775 (2.4)

From (2.4)(2.3)(2.2), the relational equation from camera coordinate to actual pixel ad-

dress location within the image is given by

2
6664

Xf

Yf

1

3
7775 =

2
6664

Gx

z
0 0

0
Gy

z
0

0 0 1
z

3
7775

2
6664

x

y

z

3
7775 = G

2
6664

x

y

z

3
7775 (2.5)

where Gx =
Sxf

D
, Gy =

Syf

D
and G is calibration matrix.

2.4 Position-Based Visual Servoing

2.4.1 Computing Mapping matrix and Kinematic Jacobian

Let � be the current joints' position vector. And let Mbc(�) be the homogeneous

transformation between the base coordinate system of the robot and camera coordinate

system.

2
4 so

1

3
5 =Mbc(�)

2
4 p

1

3
5 ; Mbc(�) =

2
4 Rbc(�) Tbc(�)

0 1

3
5 (2.6)

where Rbc is a rotation matrix and Tbc is a translation vector. We know so = sc+s. From

(2.6), the following equations are obtained

s = Rbc(�)p = Rbc(�)G
�1
� = �

�1(�)� (2.7)

sc = Tbc(�) (2.8)

where �(�) is the base coordinate system to camera coordinate system mapping matrix.

In servo control, control input should be transformed to angle coordinate system. Now,

let's de�ne J as the kinematic Jacobian linking _sc, the velocity screw of the camera, to _�

the velocity of the joint coordinate

_sc = J(�) _� (2.9)
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with _� = [ _�1; � � � ; _�n]. The kinematic Jacobian J(�) can be derived from the following set

of equations

J(�) =
h

@sc
@�1

� � � @sc
@�n

i
(2.10)

The inverse kinematic Jacobian J�1(�) can transform the control input from workspace

to joint space by the following equation

_� = J�1(�)_sc (2.11)

2.4.2 Deriving Control Law

The relative position, s, is the di�erence between the camera position, sc, and target

position st. The control law can be obtained by di�erentiating s

_s =
@s

@�

_� +
@s

@p
_p

�
= J(�) _� + L(p) _p (2.12)

where J(�) is the Kinematic Jacobian shown in (2.10), L(p) is the Target Motion Jacobian.

Discretizing equation(2.12), we can obtain the following equation

�sk = J(�k)��k + L(pk)�pk (2.13)

Because �� is independent from �p and p is uncontrollable, the position error �sk

should only be compensated by moving the manipulator as shown in the following equa-

tion:

��k = J�1(�k)�sk (2.14)

Using equation(2.14), we can construct the position based visual servo system as shown

in Fig. 2.6.

2.5 A Two-Link Manipulator Case

In this research, the experimental equipment is a 2-link DD robot. So an illustrative

example is described here. A 2-link eye-in-hand manipulator can move only in planar

surface, motion in z direction can be neglected. Thus, we can simplify the calculation by

omitting the z element. First, let us calculate the homogeneous transformation matrixMbc

between the base frame of robot and the camera frame. From Fig. 2.7 the homogeneous

coordinate transformation matrice is obtained by

12
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-1
i(qk-1)
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+

-
os k

sk
Ds kc

-1 zI
z-1

s kc

Pose determination

Integrator

Figure 2.6: Position-based visual servo structure
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L2
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y

Camera

Object

Joint
Base

Figure 2.7: Two-link manipulator

Mbj(�) =

2
6664

cos �1 � sin �1 L1 cos �1

sin �1 cos �1 L1 sin �1

0 0 1

3
7775 (2.15)

Mjc(�) =

2
6664

cos �2 � sin �2 L2 cos �2

sin �2 cos �2 L2 sin �2

0 0 1

3
7775 (2.16)

because Mbc =MbjMjc, therefore Mbj can be obtained by

Mbc(�) =

2
6664

cos(�1 + �2) � sin(�1 + �2) L2 cos(�1 + �2) + L1 cos �1

sin(�1 + �2) cos(�1 + �2) L2 sin(�1 + �2) + L1 sin �1

0 0 1

3
7775 (2.17)
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Thus Rbc(�) and Tbc(�) are

Rbc(�) =

2
4 cos(�1 + �2) � sin(�1 + �2)

sin(�1 + �2) cos(�1 + �2)

3
5 (2.18)

Tbc(�) =

2
4 L2 cos(�1 + �2) + L1 cos �1

L2 sin(�1 + �2) + L1 sin �1

3
5 (2.19)

Then the dynamic position of camera is sc = Tbc(�).

We can also simplify the calibration matrix from (2.5) by neglecting the z axis.

G =

2
4

Gx

z
0

0
Gy

z

3
5 (2.20)

From (2.7), (2.18) and (2.20), the mapping matrix �(�) and the inverse mapping matrix

�
�1(�) are given by

�(�) = GR�1bc (�)

=
1

z

2
4 Gx cos(�1 + �2) Gx sin(�1 + �2)

�Gy sin(�1 + �2) Gy cos(�1 + �2)

3
5 (2.21)

�
�1(�) = Rbc(�)G

�1

=
z

GxGy

2
4 Gy cos(�1 + �2) �Gx sin(�1 + �2)

Gy sin(�1 + �2) Gx cos(�1 + �2)

3
5 (2.22)

From (2.8),(2.10) and (2.19), the kinematic Jacobian J(�) and inverse kinematic Jacobian

J�1(�) are given by

J(�) =
h

@sc
@�1

@sc
@�2

i

=

2
4 �L2 sin(�1 + �2)� L1 sin �1 �L2 sin(�1 + �2)

L2 cos(�1 + �2) + L1 cos �1 L2 cos(�1 + �2)

3
5 (2.23)

J�1(�) =
1

L1L2 sin �2

�

2
4 L2 cos(�1 + �2) L2 sin(�1 + �2)

�L2 cos(�1 + �2)� L1 cos �1 �L2 sin(�1 + �2)� L1 sin �1

3
5 (2.24)
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2.6 Summary

Three basic areas, image processing, kinematics and control theory were described.

The reason why we chose position-based control as our control system was explained. The

general problem in position-based control was its diÆculty to perform position determi-

nation due to image distortion. The perspective model and the calibration approach we

used to conquer this problem were described. A brief derivation of the position-based

control law was explained. Finally, an illustrative example based on 2-link DD robot was

described.
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Chapter 3

Modeling the Visual Servo Loop

3.1 Abstract

Before designing a controller, deriving an open-loop transfer function from the lin-

earized dynamical model of the visual servo system shown in Fig. 3.2 is necessary. By

de�nition, position-based visual servoing requires a precise camera calibration model and

a precise knowledge of the kinematic robot model. Errors in these models can result in

large positioning errors. Thus in modeling the vision loop, we should take these two prob-

lems into consideration. The former problem is solved by Tsai's approach mentioned in

Chapter 2. Section 3.2 describes the approach used to solve the latter problem. Since the

e�ects of multirate sampling are remarkable in visual servo system, the multirate sampling

characteristics of visual servoing is introduced in Section 3.3. A diagonalization problem

occurs due to a long latency. Although modern researches solved it by utilizing multirate

characteristics but coordinate transformation problem occurs. Section 3.4 discusses these

two problems.

3.2 Linearized Model of Joint Servo System

In modeling the robot dynamics, we linearize this model by considering that the

nonlinear e�ects act like slow load disturbances on the joint servo loop. The assumption

is validated through the linear identi�cation of an industrial manipulator[30][37][40]. The

joint servo velocity controller is designed in order to control the robot as shown in Fig.

3.1. Because this controller employs the robust disturbance observer(DOB)[24] that is

constructed in the joint space, the total stability of motion controller is independent of

the con�guration of robot, so each joint is decoupled. Therefore, the transfer function from

the acceleration command ��ref to the robot velocity _� can be regarded as an integrator

17



system for the frequency region below the cut-o� frequency. Letting _�ref be the control

input u of the outer visual servo system, the joint servo system(robot) is modeled by the

continuous time system(analog system) because the sampling period of the joint servo

loop is very short with respect to the vision servo loop.

K

θref

+

-

+    Robot

with DOB

K θ
I

P

θref..

-

..

s

Figure 3.1: Joint servo system

C(z)
zI

z   I-1

sk-1

J (qk-1)

Joint Servo System

∆θk-1
ref

∆θk

J (qk) z-1P(z)

∆sk∆sk-1
ref H(z)

-1

G(z)

Workspace Servo System

Figure 3.2: Linearized dynamical model of the visual servo system

The transfer functions between _�ref and _� can be identi�ed using classical identi�cation

techniques. Let Pl(z) be the discrete time transfer function by the sampling period, Tf

from Pl(s).

Pl(z) =
_�l(z)

_�
ref
l (z)

l = 1; � � � ; n (3.1)

where Pl are normalized by assuming that limz!1Pl(z) = 1, n is the degree of freedom

of the robot. Now suppose that kinematic Jacobian, J and inverse kinematic Jacobian,

J�1 are given by

J(�k) =

2
6664

J11(�k) � � � J1n(�k)
...

. . .
...

Jn1(�k) � � � Jnn(�k)

3
7775 (3.2)
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J�1(�k�1) =

2
6664

J�111 (�k�1) � � � J�11n (�k�1)
...

. . .
...

J�1n1 (�k�1) � � � J�1nn(�k�1)

3
7775 (3.3)

Moreover, the discrete open loop transfer function G(z) and workspace transfer func-

tion H(z) can be written as

G(z) =
I

z

zI

z � 1
H(z) (3.4)

H(z) = J(�k)P(z)J
�1(�k�1) (3.5)

where

H(z) =

2
66666664

D11(z) C12(z) � � � C1n(z)

C21(z) D22(z) � � � C2n(z)
...

...
. . .

...

Cn1(z) Cn2(z) � � � Dnn(z)

3
77777775

(3.6)

Cik(z) =
nX
i=1

JilPl(z)J
�1
il l = 1; � � � ; n (3.7)

Dii(z) =
nX
i=1

JilPl(z)J
�1
il l = 1; � � � ; n (3.8)

Since the DC gain of G(z) is the identity matrix, n degree-of-freedom robot(MIMO)

can be considered in practice as n decoupled systems by neglecting the cross terms of

G(z). Using open-loop transfer function G(z), we can design a controller for the visual

servo loop.

3.3 Multirate Sampling Characteristics of Visual Servo

System

A conventional multirate sampling visual servo control diagram is shown in Fig. 3.3.

Two feedback loops are in this system. One is the visual servo loop and another one is

the joint servo loop. However, the vision servo loop sampling period, Tf , of vision sensor

such as a CCD camera is comparatively slow(over 33ms). The joint servo loop sampling

period, Tj, of inner sensor such as the angle encoder is quiet fast(less than 1ms). The

control input period Tu is generally decided by the speed of the actuator, D/A converter,

or the calculation on the CPU.

Although there exists many time periods in visual control system, the conventional

visual servo control make all periods equal to the longest one, Tf , for simpli�cation(shown

in Fig. 3.4(a)) because the rates that are not integrally related are diÆcult to analyze.
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Object
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Integrator
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Figure 3.3: Multirate sampling visual servo system

It is also called single-rate sampling control. In recent years, multirate sampling control

have been developed well. The control input period(�iTf ; �i =
i
N
, where N means the

control input is changed N times during Tf) is shorter than the longest period(shown in

Fig. 3.4(b)).

x

x

fkT f(k+1)T

u

(a)

k
k

k+1

u

f(k+n)T

x

1 f(k+ n  ) T2 f(k+n )TN-1f(k+     n )TN-2

. . .

k+n1

uk+n2

uk+nN-1

uk+nN

fkT f(k+1)T

(b)

x

x

k

k+1
k+n1

xk+n2

xk+nN-2 xk+nN-1

Figure 3.4: (a)Single-rate (b)Multirate sampling control
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3.4 Diagonalization Problem and Coordinate Trans-

formation Problem
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Figure 3.5: Low speed tracking �=3[rad=s]
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Figure 3.6: High speed tracking 1�[rad=s]
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Figure 3.7: Low speed tracking 200[mm=s]
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Figure 3.8: High speed tracking 400[mm=s]

In the previous subsection, we know if H can be diagonalized if

limz!1H(z) = I (3.9)
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We can design controller for each joint individually and only need to calculate it once

o�-line. But if it is not, the controller design problem will become complicated and the

calculation load will become drastically because it is updating every sampling period

[5] [6]. A usual argument against GPC is its demand for processing power, especially

in multiaxial-joint robot control. The higher calculation load it has, the lower control

frequency it would have.

3.4.1 Conventional Visual Servoings

In the past, in order to avoid this problem, the method used to diagonalize H(z) is

to consider a sampling interval that is short enough(Use a high sampling but expensive

machine vision system or perform low speed tracking) so that the target and the robot

moves only a little during this interval and assume that J is constant between the two

sampling instants. That is to say, if jj�k � �k�1jj � 0, then H(z) can be diagonalized

appropriately(see Fig. 3.5 and Fig. 3.7).

Actually, in industrial applications, i.e. a material handling robot workstation, wide-

area operation and high speed moving are always the case. What we are interested in

is which problems will occur while performing high speed visual tracking without using

high sampling rate machine vision. These problems will be discussed later. Now, let us

de�ne two relational expressions in continuous form as follows:

Diagonalization : lims!1J(�)P(s)J
�1(�) = I (3.10)

Coordinate transformation : �̂
ref = J�1(�)�ŝref (3.11)

If (3.10) can be satis�ed, we consider that the workspace servo system can be diagonalized.

If (3.11) can be satis�ed, we consider that the control input of joint servo system can be

transformed correctly from the calculated control input of vision loop.

Single-rate Sampling Visual Servoing

The block diagram of workspace servo system is shown in Fig. 3.9. H(z) cannot be

diagonalized to I due to jj�k � �k�1jj 6= 0. The control accuracy will become worse while

performing high speed tracking(see (i) in Fig. 3.6 and Fig. 3.8).

Diagonalization : limz!1J(�k)P(z)J
�1(�k�1) 6= I (3.12)

Coordinate transformation : �̂
ref
k�1 = J�1(�k�1)�ŝ

ref
k�1 (3.13)
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-1
P(z)

^
^

Figure 3.9: Workspace servo system without updating angle

Multirate Sampling Visual Servoing

To update the J
�1 and J using joint servo loop sampling rate is another approach.

The block diagram of workspace servo system is shown in Fig. 3.10.

Diagonalization : limz!1J(�k�1+�i+1)P(z)J
�1(�k�1+�i) � I (3.14)

Here, �i means i� �Tf where �Tf is the control period of joint loop.

Although diagonalization is satis�ed in order to solve the serious diagonalized prob-

lem(discussed in 4.1.1), oppositely inaccurate coordinate transformation will occur during

Tf (see (ii) in Fig. 3.6 and 3.8). Therefore, the positioning error will accumulate and �nally

result in poor control accuracy.

Inaccurate coordinate transformation : �̂
ref
k�1+�i

6= J�1(�k�1+�i)�ŝ
ref
k�1 (3.15)

Accurate coordinate transformation : �̂
ref
k�1 = J�1(�k�1)�ŝ

ref
k�1 (3.16)

∆sk-1+v 0
ref

ref
∆θk-1+vi+1

J (qk-1+vi+1)
Dsk-1+vi+1

-1
P(z)

^
^

J (qk-1+vi)

∆θk-1+vi

Figure 3.10: Workspace servo system with updating angle

Some researchers considered the delay problem of visual servoing and incorporated

prediction method into their systems . The block diagram of workspace servo system is

shown in Fig. 3.11. We can know there still exists the inaccurate coordinate transforma-

tion problem because of the inaccurate coordinate transformation..

Inaccurate coordinate transformation : �̂
ref
k+�i

6= J�1(�k+�i)�ŝ
ref
k (3.17)

Accurate coordinate transformation : �̂
ref
k = J�1(�k)�ŝ

ref
k (3.18)
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Figure 3.11: Workspace servo system with updating angle and prediction

3.4.2 Alternative Visual Servoing

Up to now, we have mentioned about some problems that will occur while performing

a high speed visual servo control. If we can design a control scheme as Fig. 3.12, the

following two relational expressions will be satis�ed, we can solve both the diagonalized

problem and coordinate transformation problem appropriately at the same time.

Diagonalization : limz!1J(�k�1+�i+1)P(z)J
�1(�k�1+�i) � I (3.19)

Coordinate transformation : �̂
ref
k�1+�i

= J�1(�k�1+�i)�ŝ
ref
k�1+�i

(3.20)

∆sk-1+v i
ref

ref
∆θk-1+vi+1

J (qk-1+vi+1)
Dsk-1+vi+1

-1
P(z)

^
^

J (qk-1+vi)

∆θk-1+vi

Figure 3.12: Workspace servo system with updating angle and intersample prediction

However it a new problem exists, that is how to obtain the intersample control inputs.

If we neglect the delay problem of visual servoing, interpolation[4] can be a good method

to solve this problem. However the delay of machine vision is an important problem that

cannot be neglected, since tracking task will fail if the target is out of �eld of the camera.

That is to say, solving this problem means we need an intersample predictor to implement

this idea.

3.5 Summary

The approach used to model the visual servo loop was described. The multirate

sampling characteristics of visual servo system was introduced. The delay of camera

and the e�ects of multirate sampling characteristics were taken into consideration. Then

computer simulations were carried out to examine that past conventional visual servo

control schemes exhibit the diagonalization problem and the coordinate transformation
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problem. Finally, the alternative design idea of visual servoing was introduced. The

problem, the need od an intersample predictor that occurs in doing the alternative design

was also mentioned.
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Chapter 4

Intersample Prediction Control

Schemes Based on Multirate GPC

for High-Speed Tracking Tasks

4.1 Abstract

In this chapter, the conventional visual servo control scheme and the conventional vi-

sual servo control scheme with prediction are de�ned �rst for comparison. The concepts

of proposed approaches, fastrate controller with intersample predictor and multirate con-

troller with estimator, are described brie
y in Section 4.2. Kalman �lter[39] is used to

estimate target state due to its excellent performance in �ltering the noise. The ba-

sic Kalman �lter and its derivatives are introduced in Section 4.3. By using the lifting

technique, the intersample plant model can be established. From this model, fastrate

controller and multirate controller can be derived. In Section 4.4, the derivations of the

controllers are explained in detail.

4.2 The Concepts of Proposed Approaches

In the previous section, we have mentioned about some problems that will occur while

performing a high speed visual servo control and an intersample predictor is necessary

to implement a perfect visual servoing. In this section we will explain our proposed

intersample predictor visual servo control schemes.

Corke[35][36][41] and Hashimoto[21][31] has already studied the delay of vision in

view of control theories but the controller they used is PID controller. In the visual

servoing[5][6], Ganglo� showed drastic improvement of the loop performance with respect
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to more classical control strategies like PID type control and the experimental results on a

6 DOF industrial robot are presented that validate the proposed model. However, it needs

to update the controller every sampling period. Thus to do a real-time control is diÆcult

because of huge calculation load. In this paper, we design an intersample predictor based

on multirate GPC using discrete-time lifting to let the control period of vision loop equal

to intersample prediction period. Consequently, our proposed control system(see Fig. 4.3

and Fig. 4.4) based on the idea of perfect visual servoing can satisfy both equation(3.19)

and equation(3.20) and then solve the mentioned problems while performing a high-speed

visual servo control. Moreover, the calculation load will be reduced drastically because

we only have to calculate it once o�-line.

Now, let's explain the comparison approach in this paper. The comparison approach

in this paper is shown in Fig.4.1. It was proposed by Ganglo� et al.[5][6]. In view of the

long time delay problem, we introduced a predictor into Fig. 4.1 and modi�ed it as Fig.

4.2.

  Workspace
Servo System-

Camera

-

Target
Ref =0

Controller

Estimator

GPC

Figure 4.1: Conventional visual servo con-

trol scheme

  Workspace
Servo System-

Camera

-

Target
Ref =0

Controller

Predictor

GPC

Figure 4.2: Conventional visual servo con-

trol scheme with prediction

4.2.1 Fastrate controller with Intersample Predictor

The control scheme using fastrate GPC controller with an intersample predictor is

proposed. In this work, we used discrete-time lifting to design a fastrate GPC controller

and combined it with an intersample predictor to let the control period of vision loop

equal to intersample prediction period. The block diagram is shown in Fig. 4.3.

4.2.2 Multirate controller with Estimator

In this work, we used discrete-time lifting to design a multirate GPC controller. The

use of the predictor in the algorithmic basis of GPC makes this multirate GPC controller
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  Workspace
Servo System- Controller

CameraPredictor

Fastrate GPC -

Target
Ref =0

Intersample

Figure 4.3: Proposed visual servo control

scheme-fastrate GPC controller with inter-

sample predictor

  Workspace
Servo System- Controller

Camera

Multirate GPC -

Target
Ref =0

Estimator

Figure 4.4: Proposed visual servo control

scheme-taking multirate GPC controller as

intersample predictor

act as an intersample predictor. In this approach, a multirate GPC controller is combined

with an estimator to let the control period of vision loop equal to intersample prediction

period. The block diagram is shown in Fig. 4.4.

4.3 Target State Estimation

The machine vision could occasionally fail to generate any useful data but noise due to

variations of the environment illumination, and accidental obstruction of the camera. The

uncertainty of visual data comes basically from the high sensitivity of computer vision

to its environment and computational errors in image digitization and processing. Image

processing algorithms are always time-consuming and there also exists some execution

time for the robot end-e�ector to arrive at a set point. Thus it is inappropriate to use

received visual data directly.

Studies on target state estimates based on Luenberger observer, � � � � 
 �lter,

Kalman �lter, and AR model were carried out by many authors[7]. Kalman �lter is used

as estimator. Predictive Kalman �lter is used as predictor, combined with polynomial

interpolation algorithm to establish an intersample predictor. The relations between them

are shown in Fig. 4.5. In this paper, we established a 3-ordered dynamical model(see (4.3))

based on Taylor series for the target motion. Then incorporated it into Kalman �lter to

estimate the target state.

In discrete-time state-space form, the target dynamics consisted of two matrix equa-

tions: a transition equation and a measurement equation

Signal process:

xk+1 = Fxk + !k (4.1)
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Figure 4.5: Block diagram of Kalman Filter
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Figure 4.6: Basic structure of Kalman Filter

Measurement process:

yk = Hxk + �k (4.2)

The vectors !k and �k are the process noise sequence with covariance Q and the

measurement noise sequence with covariance R respectively.

The target motion is unmodeled. Thus the state-transition matrix F cannot be known

in advance. In this research, we model this matrix according to Taylor series so that the

elements of states can be considered as the position, velocity and acceleration of target

motion. Furthermore, the target position is chosen as the output for position-based visual

servoing. Thus the state-transition matrix F and the observation matrix H are

F =

2
6664

1 Tf
T 2
f

2!

0 1 Tf

0 0 1

3
7775 ; H =

h
1 0 0

i
(4.3)

where Tf is the sampling period of vision sensor, the frame period.

For each Cartesian coordinate, one iteration of the Kalman �lter algorithm at time

step k is given by

Filtering process:

State update

x̂k=k = x̂k=k�1 +Kk[yk �Hx̂k=k�1] (4.4)
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Gain matrix

Kk = Pk=k�1H
T [HPk=k�1H

T +R]�1 (4.5)

Covariance update

Pk=k = Pk=k�1 �KkHPk=k�1 (4.6)

Prediction process:

State prediction

x̂k+1=k = Fx̂k=k (4.7)

Covariance prediction

Pk+1=k = FPk=kF
T +Q (4.8)

where K is the Kalman gain matrix, P is the error covariance matrix. If we only used

the output of �ltering process, the optimal target state estimation at time k is x̂k=k. The

Kalman �lter can be considered as an estimator and used in Fig. 4.1 and Fig. 4.4. If we

used the output of prediction process, the optimal target state predicted value at time k

is x̂k+1=k. The Kalman �lter can be considered as a predictor and be used in Fig. 4.2. It is

also called predictive Kalman �lter. In this paper, the interpolating polynomial of degree

2 through three past predicted target states, x̂k+1=k, x̂k=k�1, x̂k�1=k�2 is used to construct

an intersample predictor based on Kalman �lter. Then, using it we can interpolate the

intersample target states for Fig. 4.3. The basic structure of Kalman �lter is shown in

Fig. 4.6.

4.4 Lifting GPC Controller

 

Optimizer Plant

Reference
signal

Control
signal

Control
output

Predictor

Generalized Predictive Control

Figure 4.7: Block diagram of GPC

31



Traditionally, GPC has been derived using a transfer function model through Dio-

phantine equations [17][5][6]. A proof[18] was provided to show that the state space

approach is equivalent to polynomial approach. Thus, we consider a state space formula-

tion, which has the advantage that taking discrete-time lifting[20] to be multirate form is

straightforward.
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^ k

k k
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k

y
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G(z) Past

y

∆u
k-i

k-i

future
reference

future
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Figure 4.8: Basic structure of single-rate GPC

Time k

Measure Plant outputs

Minimize Cost Function

Current & Future
Control signals

Future Plant
Outputs

Optimal Current & Future Control Signals

Implement Current Control Signal

Time k+1

Figure 4.9: Basic algorithm of single-rate GPC

GPC is a simpler version of the LQG controller that uses model predictive method

to construct a predictor and uses least squares method to construct an optimizer. Thus,
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GPC is a control strategy that uses knowledge of the future behavior of the output for

calculating the feedback signal(see Fig. 4.7). That is to say, it generates a sequence of

future control signals within each sampling interval to optimize the control e�ort of the

controlled system.

Let us lift variables by some sampling time that is shorter than frame period, then

the lifted GPC will be able to generate a sequence of future intersample control signals

within each sampling interval. Now we will introduce the lifted GPC algorithm that is

established by plant model, prediction formulation and control law. In order to compare

with the conventional single-rate GPC in state space approach, its basic structure and

algorithm are shown in Fig. 4.8 and Fig. 4.9.

Intersample plant model:

Consider a controllable and observable LTI system represented in discrete time by

xk+�j+1 = Axk+�j +B�uk+�j + Edk+�j

yk+�j = Cxk+�j (4.9)

where A;B;C are derived from G(z) in equation(3.5) using sampling time �Tf , � =

Tf=N; �i =
Tf
N
� i, N is the intersample prediction input times during Tf . Here we

consider the target motion act as the disturbance, dk+�j , included in system.

Prediction formulation:

Let's solve the state space equations recursively, the following j-step intersample future

output prediction can be derived.

yk+�j = CAjxk +
j�1X
i=0

CAj�i�1B�uk+�i +
j�1X
i=0

CAj�i�1Edk+�i (4.10)

Since the spectral properties of disturbances are unknown(arbitrary target motion), we

remove them and consider them as the variance of system. Thus, the minimum variance

estimator of yk+�j is given by

ŷk+�j = CAjxk +
j�1X
i=0

CAj�i�1B�uk+�i (4.11)

Control law:

The objective of the GPC is to synthesize a set of optimal control input increments

�uk+�i�1 , i = 1; : : : ; Nu. Using equation(4.11), we can obtain the following cost function:

J =
N2X

j=N1

eTk+�jek+�j + �

NuX
i=1

�uTk+�i�1�uk+�i�1

= (Ŷk �Y�k)
T (Ŷk �Y�k) + ��UT

k�Uk (4.12)
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where ek+�j is the future j-step intersample predicted tracking error ek+�j = ŷk+�j�y
�
k+�j

,

N1, N2 and Nu are the minimum, maximum and control costing horizons respectively, �

is the constant control input costing factor and y�k+�j is the future reference.

� Fastrate GPC Controller

By minimizing cost function, we can obtain the following optimal control increments:

Predictor

Optimizer

model

Plant

intersample future
      reference

intersample future
       response

intersample future
       errors

G(z)

dJ(∆U , Y , ...)
d∆U

Past

^
k

k

k

y∆uνk νk

y
∆u

νk-i

νk-i

y...

y

^

^

νk

νk+N-1

y...

νk

yνk+N-1

*

*
∆Uk

Figure 4.10: Basic structure of fastrate GPC

Predict Lifted Plant outputs

Minimize Cost Function

Time νk

Time νk+1

Current & Future
intersample control
signals

Future Lifted
Plant Outputs

Optimal Current & Future Intersample Control Signals

Implement Current Intersample Control Signals

Figure 4.11: Basic algorithm of fastrate GPC

�Uk = (GTG+ �I)�1GT (Y�k ��x̂�k) (4.13)
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where

Ŷk = [ ŷ�k+N1 ; : : : ; ŷ�k+N2 ]
T (4.14)

�Uk = [ �u�k ; : : : ;�u�k+Nu�1
]T (4.15)

Y�k = [ y��k+N1
; : : : ; y��k+N2

]T (4.16)

Since the camera con�guration in our work is end-e�ector mounted, the reference should

always be 0 for target tracking, Y�k = 0. The same as standard single rate GPC, fastrate

GPC also only used the �rst element, �u�k of the calculated control input matrix, �Uk.

In this work, �u�k are applied to the plant for performing intersample control. Its basic

structure and algorithm are shown in Fig. 4.10 and Fig. 4.11.

�u�k = [ 1; 0; : : : 0 ]�Uk (4.17)

� Multirate GPC Controller

By minimizing cost function, we can obtain the following optimal control increments:

�Uk = (GTG+ �I)�1GT (Y�k ��xk) (4.18)

where

Ŷk = [ ŷk+�N1 ; : : : ; ŷk+�N2 ]
T (4.19)

�Uk = [ �uk; : : : ;�uk+�Nu�1
]T (4.20)

Y�k = [ y�k+�N1
; : : : ; y�k+�N2

]T (4.21)

Since the camera con�guration in our work is end-e�ector mounted, the reference

should always be 0 for target tracking, Y�k = 0. Then the intersample optimal control

inputs can be obtained by the following equations.

�uk = [ 1; 0; : : : 0 ]�Uk (4.22)

�uk+�1 = [ 0; 1; : : : 0 ]�Uk (4.23)
...

�uk+�N�1 = [ 0; 0; : : : 1 ]�Uk (4.24)

In standard single-rate GPC controller, only the �rst element, �uk is used to perform

control(see Fig. 4.8). However, in this work, �uk � �uk+�N�1 are applied sequentially

to the plant for performing intersample controls. Its basic structure and algorithm are
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Figure 4.13: Basic algorithm of multirate GPC

shown in Fig. 4.12 and Fig. 4.13.

where

G =

2
666666666666664

CAN1�1B : : : CB 0 : : : 0
...

. . .
. . .

. . .
. . .

...

CANu�2B
. . .

. . .
. . .

. . . 0

CANu�1B
. . .

. . .
. . .

. . . CB
...

. . .
. . .

. . .
. . .

...

CAN2�1B : : : : : : : : : : : : CAN2�NuB

3
777777777777775

(4.25)
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(4.26)

� =

2
66666664

CAN1

CAN1+1

...

CAN2

3
77777775

(4.27)

4.5 Summary

In the comparison, the conventional visual servo control scheme and the conventional

visual servo control scheme with prediction were de�ned. The concepts of proposed ap-

proaches, fastrate controller with intersample predictor and multirate controller with es-

timator, were described brie
y in Section 4.2. The basic Kalman �lter and its derivatives

for target state estimation were introduced in Section 4.3. Their relationships were also

introduced. The algorithms based on lifting technique used to derive fastrate controller

and multirate controller were explained. Three pairs of basic structure and basic algo-

rithm �gures showed the relations and di�erences between single-rate GPC controller,

fastrate GPC controller and multirate GPC controller. The detailed mathematical model

of multirate GPC derived by discrete-time lifting was also explained.
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Chapter 5

Veri�cations of the E�ects on

Proposed Schemes

5.1 Abstract

In this chapter, computer simulations and experiments using a 2-link DD robot are

carried out to examine the e�ectiveness of the proposed methods. While performing

experiments, the e�ects of noise in prediction control is quite remarkable. So two pairs of

simulations(without noise and with noise) are carried out in order to discuss this problem.

This research focuses on unknown target motion, thus two kinds of target motions(circle

and square) are performed both in simulations and experiments to show its expand in

application.

5.2 Simulation Veri�cations

In the following simulations, the parameter values selected for the GPC controller are

� = 1, N1 = 1, N2 = 10, Nu = 5 and N = 5. In order to emphasize the e�ectiveness

of prediction control, two kinds of visual tracking tasks, circular target motion tracking

and square target motion tracking are performed. Generally speaking, we can have good

dynamic prediction performance by weighting covariance but the stochastic performance

will deteriorate due to the ampli�cation of measurement noise. We need to discuss the

e�ects of noise in prediction control. So the simulations are also performed with noise

and without noise.
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5.2.1 Circular Target Motion Tracking without noise

In this simulation, the camera mounted on the 2-link DD robot manipulator tracks a

moving target. The initial position of the target is (420, 270), target will start a circular

movement with radius = 150[mm], ! = 1�[rad=s] at t = 2:0. The sampling period of

vision sensor is 100[ms]. �(�) is given by

�(�) =
f

z

2
4 cos� sin�

�sin� cos�

3
5 (5.1)

where � =: �1 + �2.

The conventional approach is the visual control scheme proposed in [5] and [6], in-

corporated with a Kalman �lter. Moreover, the conventional approach with prediction is

also the visual control scheme proposed in [5] and [6], but incorporated with a predictive

Kalman �lter. In order to simplify the discussion of the e�ects of di�erent control schemes

in coordinate transformation problem, the parameters we adjusted to let these approaches

have the same prediction performance(see Fig. 5.2 and Fig. 5.3). Fig. 5.1 shows that al-

though the conventional approach with prediction has higher prediction performance than

conventional approach there also exists the coordinate transformation problem. Further-

more, the proposed fastrate and multirate approach have much higher control accuracy

than the conventional approach with prediction.
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Figure 5.1: Tracking trajectory for circular target motion(simulation without noise)
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Figure 5.2: Tracking response for circular tar-

get motion(simulation without noise)
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Figure 5.3: Tracking error for circular target

motion(simulation without noise)

5.2.2 Square Target Motion Tracking without noise

In this simulation, the initial position of the target is (350, 150), target will start

a square movement with length = 200[mm], velocity = 200[mm=s] at t = 2:0. The

sampling period of vision sensor is 100[ms].

We adjust the parameters to let these approaches have the same predicted perfor-

mance(see Fig. 5.5 and Fig. 5.6) in order to emphasize on the coordinate transformation

problem. Fig. 5.4 shows that although the conventional approach with prediction have

higher prediction performance than conventional approach but there also exists the coordi-

nate transformation problem. Furthermore, the proposed fastrate and multirate approach

have much higher control accuracy than the conventional approach with prediction.

5.2.3 Circular Target Motion Tracking with noise

In the following two simulations, all the conditions are the same as 5.2.1 but a white

noise introduced into the extracted feature. Here we want to discuss the e�ects of noise

in prediction control. First, a comparison simulation is taken to choose the better one

from our proposed approaches to be used to compare with the conventional approaches

and �nd the hidden problem in our proposed approaches. Although fastrate approach

and multirate approach have almost the same performance while system contain very

small noise, Fig. 5.7 and Fig. 5.8 show that taking multirate GPC as an intersample

predictor has much higher noise suppression performance than fastrate GPC controller

with intersample predictor(using interpolation).
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Figure 5.4: Tracking trajectory for square target motion(simulation without noise)
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Figure 5.5: Tracking response for square tar-

get motion(simulation without noise)
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Figure 5.6: Tracking error for square target

motion(simulation without noise)

Second, simulations are taken to compare with the conventional approaches. Fig. 5.9,

Fig. 5.10 and Fig. 5.11 show that taking multirate GPC as an intersample predictor not

only compensates the time delay but also has higher control accuracy than the conven-

tional approach with sacri�cing a little noise suppression. On the other hand, proposed

approach has higher control accuracy than the conventional approach with prediction

without sacri�cing the performance of noise suppression.
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Figure 5.7: Tracking trajectory for cir-

cular target motion in proposed ap-

proaches(simulation with noise)
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Figure 5.8: Tracking trajectory for

square target motion in proposed ap-

proaches(simulation with noise)

5.2.4 Square Target Motion Tracking with noise

In this simulation, all the conditions are the same as 5.2.2 but a white noise is intro-

duced into the extracted feature. Simulations are taken to compare the e�ects of noise

with the conventional approaches. Fig. 5.12, Fig. 5.13 and Fig. 5.14 show that taking

multirate GPC as an intersample predictor not only compensates the time delay but also

has higher control accuracy than the conventional approach with sacri�cing a little noise

suppression. On the other hand, proposed approach has higher control accuracy than

the conventional approach with prediction without sacri�cing the performance of noise

suppression.

5.3 Experimental Veri�cations

In these experiments, the parameter values selected for the GPC controller are � = 1,

N1 = 1, N2 = 10, Nu = 5 and N = 5. The same as simulation veri�cations, two kinds of

visual tracking tasks, circular target motion tracking and square target motion tracking

are performed in order to emphasize the e�ectiveness of the prediction control.
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Figure 5.9: Tracking trajectory for circular target motion(simulation with noise)
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Figure 5.10: Tracking response for circular target motion(simulation with noise)

5.3.1 Experimental Hardware and Software

The con�guration of experimental setup is shown in Fig. 5.15. The important components

of the experimental system are

� Processor and operating system

� Robot control hardware
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Figure 5.11: Tracking error for circular target motion(simulation with noise)
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Figure 5.12: Tracking trajectory for square target motion(simulation with noise)

� Machine vision system

The photograph of our experimental equipment is shown in Fig. 5.16. A personal

computer(CPU:Celeron 300MHz) is used both for real-time control of servomotors and

development of software. In the PC, a D/A converter and a counter board are imple-

mented to output the reference current and to input the motor angle. The servomotors

are reluctance motors, where the current is controlled by the motor driver. The encoders

generate 38400 pulses per revolution. In order to perform multi-control tasks, RTLinux

is installed as the real-time operating system[27]. A schematic of our software is shown

in Fig. 5.19. Visual servo loop control task and joint servo loop control task are carried
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Figure 5.13: Tracking response for square target motion(simulation with noise)
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Figure 5.14: Tracking error for square target motion(simulation with noise)

out in RT-kernel space. Image capture and feature extraction are carried out in the usr

space.

The image acquisition process: For our experiments, we used a web camera that

only acquired a general frame grabber board with a Analog to Digital Converter(about

9 MPixels/s). Although this device didn't allow us to know precisely which line in the

image was currently being acquired, we made an RTlinux program to synchronize the

beginning of a sample of the visual servoing controller with the acquisition.

Two frames were used to capture images. When a sample of the visual loop controller

began, the last image was already in the frame grabber's memory. So image processing

and feature extraction could be performed on the last image while the next image was

being acquired. Then, when this acquisition was completed, image processing and feature
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Camera
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board
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Motor driverComputer
2 Link DD Robot

Figure 5.15: Experimental setup

Figure 5.16: Photographs of 2-link DD robot

with webcam

Figure 5.17: Circular motion target

extraction could begin on this image.

We used this strategy in our work to minimize the delay due to image acquisition and

image processing. If we considered that the mean sampling instant of an image was at

the middle of the integration process (i.e. the middle of an image acquisition if no shutter

is used), then the acquisition and image processing of the visual measurement yielded a

delay of exactly 2 samples. The �rst delay was due to the transmission of the image, the

second delay was due to the computation of the control inputs. So we slowed down the

sampling rate from 30[Hz] to 10[Hz] in order to cover these delays.
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Figure 5.18: Structure of square motion target
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Figure 5.19: Experimental Software

5.3.2 Circular Target Motion Tracking

In the experiments, the most common CCD camera: webcam and capture board for PC

was used for generating 200�200 pixels image per 100[ms]. The target(shown in Fig. 5.17)

is rotating at a circular trajectory with constant rotational velocity 1�[rad=s] and radius

100[mm]. Fig. 5.20, Fig. 5.21 and Fig. 5.22 show that although the conventional approach

with prediction can compensate the delay of vision sensor drastically, the accuracy of
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tracking trajectory is sacri�ced because it enlarges the measurement noise caused from

quantization error. Moreover, Fig. 5.20, Fig. 5.21 and Fig. 5.22 also show the drastic

e�ectiveness of our proposed intersample predictor control scheme. It can compensate the

delay of vision sensor without sacri�cing the accuracy of tracking trajectory.
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Figure 5.20: Tracking trajectory for circular target motion(experiment)
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Figure 5.21: Tracking response for circular target motion(experiment)

5.3.3 Square Target Motion Tracking

In the experiments, the setup of hardware and software is the same as in 5.3.2. The

square motion target(shown in Fig. 5.18) is made by rotating a plate with a rectangular
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Figure 5.22: Tracking error for circular target motion(experiment)

hole with constant rotational velocity of �=3[rad=s] to show the square trajectory of the

background. Fig. 5.23, Fig. 5.24 and Fig. 5.25 show that although the conventional ap-

proach with prediction can compensate the delay of vision sensor drastically, the accuracy

of tracking trajectory is sacri�ced because it enlarges the measurement noise caused from

quantization error. Moreover, Fig. 5.23, Fig. 5.24 and Fig. 5.25 also show that the dras-

tic e�ectiveness of our proposed intersample predictor control scheme. It can compensate

the delay of vision sensor without sacri�cing the accuracy of tracking trajectory.
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Figure 5.23: Tracking trajectory for square target motion(experiment)
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Figure 5.24: Tracking response for square target motion(experiment)
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Figure 5.25: Tracking error for square target motion(experiment)

5.4 Summary

In this chapter, computer simulations and experiments using a 2-link DD robot were

carried out to examine the e�ectiveness of the proposed methods. The results showed that

the conventional approach has long time delay and worse control accuracy. Although

the results showed that the conventional approach with prediction could compensate

the delay of vision sensor drastically, the accuracy of tracking trajectory was sacri�ced

because it enlarges the measurement noise caused from quantization error. Moreover, the

actual drastic e�ectiveness of our proposed intersample predictor control scheme based on

multirate GPC was con�rmed from both simulation results and experimental results. It

could compensate the delay of vision sensor without sacri�cing the accuracy of tracking

trajectory.
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Chapter 6

Conclusion

6.1 Summary

In this paper, focus on the most outstanding merit of machine vision, to make robot be

able to operate autonomously in uncertain environment. Thus, instead of preview control,

prediction control was discussed. There exists several problems when machine vision is

used as feedback sensor. The well-known and remarkable problem is the relatively low

sampling rate. That is to say, the visual system exhibits a long time delay. In preview

control, it is relatively easy to compensate this delay by feedforwarding future values.

In visual servoing, since the target motion is unknown, prediction is needed to eliminate

time delay.

In this paper, we explained the cause of coordinate transformation problem is due

to the multirate sampling characteristics of visual servo system from a viewpoint of pre-

diction control while performing a high-speed tracking. Simulations were carried out to

examine that this problem occurred in the conventional approaches(single-rate and mul-

tirate, without prediction and with prediction). Then two novel approaches, intersample

prediction control schemes based on multirate GPC for high-speed visual tracking tasks,

were presented. The fastrate GPC controller had good control performance while the

measurement noise was small. In this work, we used a web camera as the machine vi-

sion in place of expensive machine system, so measurement noise due to quatinization

error become larger. Fastrate controller was not appropriate. However, another proposed

approach, multirate controller, could solve this problem. The drastic performances of

proposed approach, higher control accuracy and lower phase delay, were demonstrated

through computer simulations and experiments using two-link direct drive robot and by

comparing the conventional control approach and the conventional prediction control ap-

proach.
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6.2 Problems and Future Works

6.2.1 Timing Problem of RTLinux

Video field time

Video blanking time

Active
video

Pixels
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Joint angles
read
Pixel transport
and processing
Control law
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Current
command sent

Time flow

Time delay between vision and joint
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Figure 6.1: Details of single-rate system timing
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Figure 6.2: Details of multirate system timing

Fig. 6.1(From[3]) shows details of the important timing relationships involved. The

actual instant of camera sampling is not generate by the camera. A short exposure time is

required in order for the camera to approximate an ideal sampler of the visual state which

is assumed for the control design. The robot's joint angles are sampled by a task during
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the vertical blanking interval and combined with the image plane centroid to estimate the

target position.

Fig. 6.2 shows details of the important timing relationships involved in 2 feedback

loops of visual servoing. In single-rate system, all tasks can be scheduled by one direct


ow. In multirate system, it is impossible to take several tasks at the same time. Real

Time Linux must be used to solve this problem. From Fig. 6.2, we can see there exists

a time delay between pixels exposed and joint angles read. It is quiet a serious problem

both in single-rate and multirate systems based on position-based control. The equation

used to estimate the target position is given by

so[k] = sc[k] + se[k] (6.1)

where so is target position, sc is the camera position(the end-e�ector of robot), se is the

position di�erence between target and camera.

Because of the time delay between pixels exposed and joint angles read, (6.1) is rewrit-

ten as

so[k] = sc[k + Te] + se[k] (6.2)

As a result, the estimation of target position will be inaccurate especially when Te cannot

be neglected. It is necessary for our further task to eliminate it by determining the delay

experimentally with respect to the video waveform and using the RTLinux program.

6.2.2 High-Ordered Predictive Model

Some predictive methods were mentioned in 4.3. Their common point is the need for

a precise predictive model. When the dynamics of target motion is known, analyzing the

dynamics to establish a predictive model is possible. However it is hard to decide a pre-

dictive model if target motion is unknown. We know any function(target trajectory) can

be presented by Taylor series. In 4.3 we only used third order predictive model for target

state estimation. By de�nition, the higher order the predictive model is, the higher preci-

sion it will have. Therefore, to use a high-order predictive model(see equation(6.3)) based

on Taylor series is a possible method to establish precise predictive model for unknown

target motion. However the e�ects of noise will become serious in high-ordered predictive

model due to the calculus of �nite di�erences. Incorporation of a phase-compensated

parameter, �, into predictive Kalman �lter and �nally forming an intersample predictor

using polynomial interpolation(see Fig. 6.3) could eliminate noise drastically. Here we

examine it by several simulations(see Fig. 6.4).
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The high-ordered state-transition matrix with �, F (�) and the observation matrix,

H are given by

F =

2
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Figure 6.3: Predictive model incorporated a phase-compensated parameter

where Tf is the sampling period of vision sensor.

Fig. 6.4 shows the trend of tuning R and �. The sum of jjejj2 can be lowered

to hundredth of its original value due to tuning �. Using this predictor with fastrate

controller can perform a high performance visual servo system in the further tasks.
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Figure 6.4: Prediction error while tuning K and �
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Appendix A

The Experimental Setups of Machine

Vision

Machine vision is the key channel that a visual servo system used to connect with the

surrounding. The performance of machine vision is obviously in
uenced by the methods

used to set up it. In this section, a detailed explain is given according to the machine

vision we used.

Table A.1: Softwares used for visual servoing

Name Version

Red Hat Linux 7.2

RTLinux Kernel 2.2.19

RTLinux 3.1

I2C 2.7.0

BTTV 0.7.80

Table A.2: Elements of machine vision

Hardware Name Type

CCD Camera CK-200

Capture Board GV-VCP/PCI

Table A.1 shows the softwares used for visual servoing. The OS of the workstation is

Red Hat Linux 7.2. RTLinux Kernel 2.2.19 is used for RTLinux 3.1 to build and compile

with. The �le system used to partition HDD is ext2 because ext3 is not supported. I2C

is used to enable I2CBus for BTTV. BTTV is a linux driver for TV cards based on the

bt848 and bt878 chips. The image processing chip in our capture board is bt878(shown

in table A.2).
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The calibration method of visual sensor was introduced in 2.2.1. We didn't worry too

much about distortion since we were servoing mostly to a single point, bringing it to the

center where there is very little distortion. The radial distortion could be neglected in

our work. From viewpoint of calculation, according to the speci�cation of CCD Camera

CK-200 and a veri�ed experiment, the projection matrix G was given by

G =

2
4 0:2152 0

0 0:1582

3
5 (A.1)
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Appendix B

The Software for Visual Servoing

Fig. B.1 shows the real time tasks and FIFO interlinked diagram of the software for

visual servoing. Two threads are created and 6 RT-FIFO devices are opened. Thread 1

is for the control calculation of joint servo loop. Thread 2 is for the control calculation

of visual servo loop. Rtf3, rtf4 and rtf5 are input control channels. Rtf1 is a output data

channel for thread 1 to send data from RT-kernel space to user space. Rtf2 and rtf3 are

input data channels for user space to send data(extracted feature and angles) to RT-kernel

space.

rtf3my_handler

Thread 1

Thread 2

rtl1

rtl2

rtl6

rtl4

rtl5

GPC_Usr.c

GPC_Module.c

RT-kernel space

User space

Figure B.1: Real time task create, FIFO interlinked diagram

Fig. B.2 shows the actions of camera. This process is carried out in user space. In the

step of Initial Video, there are �ve ioctl[42] commands are performed: get the capabilities

of the framegrabber, get the information from the input channel, select the video input

channel, set the properties of the video stream and get information of the video bu�ers of
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the driver. The step, Capture Image, starts a capture to one of the video bu�ers(frames)

of the driver. The following step, Read Angles is used to obtain the right timing angles

for estimating target position. In the step, Wait Capture, waits for a grab started with

Capture Image to be completed. In last step, Feature Extraction, obtains the position of

the target in camera coordinate system and sends it to thread 2 in RT-kernel space for

calculating the visual servo loop control inputs.

Capture Image Frame#1

Wait Capture Frame#0

Frame#0 Feature Extraction

Initial Video

Read Angles Frame#1

Capture Image Frame#0

Wait Capture Frame#1

Frame#1 Feature Extraction

Read Angles Frame#0

Capture Image Frame#0

Read Angles Frame#0

RT-
kernel
space

send angles

send angles

send angles

send feature

send feature

Figure B.2: Camera action 
ow chart
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