
Real-time Collision-free Path Planning for Robot
Manipulator Based on Octree Model

Lu Wu
The University of Tokyo

Department of Electrical Engineering
4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan

E-mail: frank@horilab.iis.u-tokyo.ac.jp

Yoichi Hori
The University of Tokyo

Department of Electrical Engineering
4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan

E-mail: hori@iis.u-tokyo.ac.jp

Abstract— This paper presents a real-time approach to gener-
ate the path of robot manipulator. In this approach, Octree model
is used to express environment and detect collision. The arms of
robot in space are expressed by a set of points on the surface
of them. Then the distance between manipulator and obstacle is
estimated by the potential generated by Octree modeling. Based
on the distance estimated, graph search is executed to find a path.
The effectiveness of the approach is proved by simulations and
the experiments realized by a FANUC robot, LR Mate 200iB. At
last, the calculation time of proposed approach is compared with
the result of typical graph search approach. The result shows
that our approach is faster. It can act as real-time path planner.
Whereas the approach of typical graph search is slow for real-
time path planning.

I. I NTRODUCTION

Path planning of a robot manipulator refers to find a
collision-free path from a starting configuration to a goal
configuration. The issue is important because every robotics
system with manipulator requires the path planning.

However, this problem becomes complex and time-
consuming as a many-DOF robot manipulator executes task
in cluttered environments. In factory, collision-free trajectory
for industrial robot is usually done by human. There are
few practical path planners that is simple enough and quick
enough.

On the other hand, many of future robot tasks, such as
assembly and disassembly, tele-operation, and medical surgery,
will be executed in dynamic environments. Therefore, a real-
time path planner for many-DOF manipulator is necessary.
A robot with manipulator can not react to dynamic changes
in environment if it has not the capability of real-time path
planning.

In this paper, we propose a real-time path planner of robot
manipulator for the above reasons.

In the approaches about this research, the most popular
approach is based on graph search in discretized C-space. C-
space is a space that specifies any configuration of a robot
uniquely using a point in this space.

Because the calculation of graph search in high dimensions
C-space is time-consuming, some approaches try to lower the
dimension of C-space. Hasegawa proposed a C-space charac-
terization approach based on arm and hand separately.[5] The

approach tries to decrease the dimensions of C-space from 6
dimensions to 3 dimensions.

Kondo pointed out that describing entire C-space representa-
tion is waste of time when the environment frequently changes,
because it is not always necessary prior to path searching
[4]. In his method, collision is checked only on cells of the
discrete C-space while searching for the path. This can speed
up calculation of search.

The strategy of global path planning and local path planning
is also proposed to decrease calculation time.[3] According
to the strategy, a global planner constructs a subgoal net-
work. Then, a local planner checks the reachability between
subgoals. The primary advantage of this approach is that
computational time is decreased greatly.

Ando succeeds the approach of Chen’s.[2] He did not
calculate the distance between manipulator and obstacle and
limited the sphere of local search. Therefore the calculation is
faster.

However, the approaches above have to face the problem of
the high dimensions space when DOF is more than 3. There
will be 3n −1(n is the number of DOF) possibilities for every
step in graph search. They can hardly act as real-time path
planning for enormous calculation quantity of them.

Our approach doesn’t relate to the calculation of a high
dimensions space. Therefore, its calculation time is very fast.

In this paper, it is shown that the approach in [1] is suc-
ceeded and developed. In one hand, the points on robot arms
are taken to check collision. On the other hand, a prediction
strategy in search is used in order to ensure the success of
search. In addition, we developed simulators for path planning
and did experiment using FANUC robot, LR Mate 200iB
to confirm the efficiency of this approach. Moreover, we
compared the result of our approach with the results using
the approach in [2]. The comparison shows that our method
can find paths faster.

II. PLANNING APPROACH

Generally, our approach uses three main ideas. One is using
Octree model. The second one is artificial potential. The third
one is search to find a path.

Octree model– Octree is used to generate potential and
detect collision.



Artificial potential – Based on Octree model, artificial
potential can be generated. After generating potential, robot
will be repelled by obstacle, and be attracted by goal.

Search– Path planning is executed by a search step by step.
In search process, the action of artificial potential will decide
which step will be taken.

All of them will be stated as below.

A. Octree Model

a b c

d e f g

h

i j k l

m

x

y

a

b

c

d

e

f

g

h

i

j

k

l

m

32 4 7 85 60 1
0

1

2

3

4

5

6

7

8

(a) (b)

Fig. 1. Octree in 2-D space. (a) is a space divided by Octree. (b) is data
structure of Octree model.

Fig.1 shows Octree model in 2-D space (Octree in 2-D
space is also called Quadtree). Octree divides the space into
subspaces smaller and smaller. For example, ’h’ and ’m’ is the
first level of Octree. The first level of Octree will be divided
into the second level, such as ’a’, ’b’, ’c’, and so on. Then
this level will be divided again into next level. They are ’d’,
’e’, ’f’, and so on.

Then obstacle can be expressed in the model. For example,
in (a) of Fig.1, the subspace‘ e’is full of the obstacle. In (b)
of Fig.1, the color of node ’e’ is black, which expresses the
subspace is full of obstacle. The node can be stored by 1 in
computer. The white nodes which express that the subspaces
are empty can be saved by 0 in computer. Therefore the
information of obstacle can be stored in computer by this tree
data-structure model.

In the approach, Octree model for obstacle in work space
is built. Using Octree model, surrounding information is
transformed into computer.

B. Generation of Potential

Based on Octree model, artificial potential is generated.
Take 2-D space as example. Fig. 2 shows a two-link manipu-
lator in 2-D space which divides by Octree. The points on the
surface of them are selected. Using kinematics, the positions of
the points are calculated. Then check whether there is obstacle
in the space of this level. The checks are done from the lowest
level until the highest level. If there is obstacle in the space
of this level, potential is generated by calculating (1).

P = 2n−1 (1)

In this equation,P means the potential generated by Octree
model.n means the level of Octree model.

Obstacle.

Select points 

on arm.

Fig. 2. A two-link manipulator in 2-D space which is divided by Octree. In
the figure, the solid lines divide the space into level 1. The chain lines divide
the space into level 2. The dot lines divide the space into level 3.

If there is obstacle in the space for the highest level, the
robot collides with the obstacle. This can act as a collision
checker.

Summing up the values generated by the points which
compose a manipulator by calculating (1), whole artificial
potential can be calculated. When its value is small, the
distance between manipulator and obstacle is long. When its
value is big, the distance between manipulator and obstacle is
short.

C. Search Process

Search is guided by two kinds of ’strength’. One repels
manipulator from obstacle. The other leads manipulator to aim
configuration.

The qualification of the two kinds of ’strength’ can be
expressed separately by two evaluation functionsJ1, J2. J1
can be

J1 =
∑

Every point on arms.

P (2)

In the equation,P is the value of potential which can be
calculated by (1).

Another ’strength’ can be expressed by

J2 = αi

∑
DOF

(θi − Goali)2 (3)

In this function, θi is current configuration.J2 is the error
between current configuration and goal configuration. The
manipulator is driven to the goa1 posture so thatJ2 becomes
smaller. αi is the weight of every axis. It expresses the
proportion of approach to object for every joint. It decides
’flexibility’ of joint in search.

Then comprehensive evaluation function can be written as:

J = J1 + J2 (4)

It is better for consideringJ1 and J2 as two kinds of
’strength’ rather than considering as cost function. Like two
kinds of ’strength’,J1 and J2 pull arms from start to goal,



avoiding collision.J1 rejects arms from obstacle.J2 attracts
arms to goal.

The ratio ofJ1 and J2 expresses the ratio of two kinds of
’strength’ for collision avoidance and task execution.

WhenJ1>>J2, the strength of attraction will be very little,
making the arms abandon the search in the halfway. The
phenomenon is that the path of search recycles.

When J2>>J1, the strength of attraction will be so big
that let the arms neglect the rejection of obstacle, striking the
obstacle.

In the approach, the ratio ofJ1 andJ2 is holded in a range.

Start

O
A

C

Goal

The Obstacle in C-space.

θ2

θ1

B

D

Fig. 3. Search process.

After having evaluation functions, the search is executed.
Fig. 3 shows the search process for 2-DOF manipulator. The
shadow area is the mapping in C-space for the obstacle in
example1 . In every step, there are 3 possibilities. In the state
of the point O, they are OA, OB, OC. (The step of OD is the
return of last step.) The evaluation function will be calculated
separately for OA, OB, and OC. The best step will be selected
by the value of the evaluation function (4). There will be 11
possibilities in the case of 6-DOF manipulator.

In the search, a prediction strategy is used. It means that the
next step of current step along same direction is calculated. If
manipulator collides with obstacle in the next step, the function
J1 will be increased.

The reason of this design is in the fact that, if manipulator
collides with obstacle in the next step, it means robot has
come very near to obstacle.J1 should be increased. In other
words, it is better not to select this step since a smallerJ
will be selected. This calculation can supply to path planner
more information about the distance between manipulator and
obstacle.

Moreover, in some cases, subgoals in C-space are set
because the search is not always successful. Recycling will
happen in the search when the contradiction between collision
avoidance and approach to object can not be dealt with so well.
In order to solve the problem, the length of step is added when

a path can not be searched directly. It means that global search
is executed to find subgoals. Then local search is executed
between the subgoals.

III. S IMULATION RESULT

A. Simulation of 2-DOF Manipulator

The proposed path planning for 2-DOF robot manipulator
is simulated. The model of the robot in the simulation is based
on link 2 and link 3 of FANUC Robot, LR Mate 200iB. We
developed a simulator for 2-DOF Manipulator using Visual
C++ 6.0. In Fig. 4, the obstacle is a rectangle. The whole
process is shown in the figure.

Start

Goal

Fig. 4. The simulation result of 2-DOF robot manipulator.

Another simulation is shown in Fig. 5. One more obstacle
is added in the surrounding. Then two obstacles need to be
avoided. One is a rectangle, another is a circle.

Start

Goal

Fig. 5. Another simulation of 2-DOF robot manipulator. One more obstacle
is added in surrounding.

B. Simulation of 3-DOF Manipulator

The path planning for 3-DOF manipulator is simulated. In
order to simulate path planning in 3-D space, we developed a
3-D simulator using DirectX 9.0.



(2) (5)

(1) Start (4)

(3) (6) Goal

Fig. 6. The simulation result of 3-DOF robot manipulator.

As shown in Fig. 6, the rectangle is an obstacle. From (1) to
(6) in the figure, we can see the robot’s links is going around
the obstacle in order to avoid collision. The calculation time
is 0.8s with 1.0GHz CPU. The time for building Octree is
contained in it.

C. Simulation of 5-DOF Manipulator

A simulator for 5-DOF Manipulator is built. As shown in
Fig. 7, there is a cubic object and a box which is on the
top of the cubic object. It is shown that the manipulator is
entering into the box and avoiding collision from (1) to (6) in
the figure. The calculation time of path planning is 1.3s with
1.0GHz CPU. The time for building Octree is also contained
in it.

IV. EXPERIMENT RESULT

Using FANUC robot, LR Mate 200iB, some experiments
were executed to prove the effectiveness of our approach.

The generated path is not smooth. If it was used as the
instruction to a robot, the velocity and acceleration would be
very big. Therefore the path must be smoothed before a real
experiment.

In the experiments, a path is generated at first. Then the path
is smoothed to get the trajectory of the robot. The method
of B-Spline is used to generate a trajectory. The trajectory
instruction is sent to the robot as reference. The robot actuates
the instruction. The robot is controlled by a PC, 700 MHz, 256
MB RAM.

(2) (5)

(1) Start (4)

(3) (6) Goal

Fig. 7. The simulation result of 5-DOF robot manipulator.

The experiment of obstacle avoidance for 2 joints is realized
by only using joint 2 and joint 3 of the FANUC robot. The
result is shown in Fig. 8.

Fig. 9 shows the experiment of obstacle avoidance for 3
joints (using joint1, joint 2 and joint 3). As shown in the
continuous photos, the robot is going around the obstacle in
order to avoid collision.

V. COMPARISON WITH TYPICAL GRAPH SEARCH

APPROACH

We use another approach to compare with our approach.
The approach is a graph search approach using A* algorithm.
Moreover, the approach uses the concept of global path plan-
ning and local path planning to speed up calculation. Therefore
’A* + Subgoal’ is the main character of the approach. If only
A* is used, the calculation time will be very long. In this
approach, A* algorithm is used in both global planning and
local planning.

The result of comparison is shown in Table I. The data in the
table are based on a few examples we did. The discretization
angles for search are both 2 Degrees for two approaches. The
simulations is done on a same PC with 1.0GHz CPU. The
result shows our approach is faster. It can act as real-time path
planner. On the other hand, it may take dozens of seconds for
another approach to find a path. It can hardly act as real-time
path planning.

In addition, we can see graph search approach has much



(1) Start

(2)

(3)

(5)

(6)

(7) Goal

(4)

Fig. 8. The experiment result of 2-DOF robot manipulator.

TABLE I

COMPARISON OF TWO APPROACHES FOR A5-DOF MANIPULATOR

`````````Approaches
Data

Calculation Time Collision Check Points

Octree Approach <2 Second 103

Graph Search Approach 3-40 Seconds 104 - 105

more collision check points. This is because there is3n − 1(n
is the number of DOF) possibilities for every step in graph
search approach. But there is only 2×n-1 possibilities in our
approach. This leads to the result that our approach is faster
than graph search approach.

VI. CONCLUSIONS

In this paper, a real-time path planning approach is pro-
posed. The merit of the approach is very fast and simple. It
can be applied to industrial robot working in very changeable
environment.

In the approach, Octree model is built according to sur-
rounding. Using Octree model, collision is checked and arti-
ficial potential is created. The search in C-space is executed
to find a collision-free path. Two factors are considered in the
search. One is collision avoidance. Another is task execution.

(1) Start

(2)

(3)

(4)

(5)

(6)

(7)

(8) Goal

Fig. 9. The experiment result of 3-DOF robot manipulator.

The two factors are embodied in the evaluation function of the
search.

The effectiveness of the approach is proved by simulations
and experiments.

Moreover, we did comparison between our approach and
another quick approach. The result shows our approach has
advantage in calculation time.

REFERENCES

[1] K. Hamada and Y. Hori, ”Octree-based approach to real-time collision-
free path planning for robot manipulator” , AMC ’96-MIE. IEEE vol.2,
1996 4th International Workshop on Robotics and Automation, pp. 705
- 710, Mar. 1996.

[2] Shingo Ando, ”A fast collision-free path planning method for a general
robot manipulator”, Proceedings. ICRA ’03. IEEE International Confer-
ence on Robotics and Automation, Vol, 2, pp. 2871 - 2877, Sep. 2003.

[3] P.C. Chen and Y.K. Hwang, ”SANDROS: a dynamic graph search
algorithm for motion planning”, IEEE Transactions on Robotics and
Automation, Vol. 14, NO.3, Jun. 1998.

[4] K. Kondo, ”Motion planning with six degrees of freedom by multistrate-
gic bidirectional heuristic free-space enumeration ”, IEEE Transactions
on Robotics and Automation, Vol. 7, pp. 267 - 277, Jun. 1991.

[5] Tsutomu Hasegawa, ”Collision Avoidance of a 6DOF Manipulator
Based on Empty Space Analysis of the 3-D Real World”, Proc. of IEEE
IROS’90, pp. 583 - 589, 1990.


