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Abstract

In this paper, novel multirate feedback controllers

are proposed for digital control systems with rela-

tively long sampling period. The proposed controllers

achieve vibration suppression and disturbance rejec-

tion even in the semi-Nyquist frequency region. First,

the continuous-time vibration suppression controller is

exactly discretized by the multirate sampling control

based on the closed-loop characteristics. Second, the

multirate repetitive controllers are proposed both by

the feedback and feedforward approaches. Moreover,

the inter-sample disturbance rejection performance is

optimized by the fast sampling approach. The pro-

posed controllers are applied to the settling and follow-

ing modes of hard disk drive, and the advantages of

these approaches are demonstrated by simulations.

1 Introduction
A digital control system generally has a sampler for

the plant output y(t), and one holder of the control in-

put u(t). The sampling period of the output Ty is gen-

erally decided by the speed of the sensor or the A/D

converter. On the other hand, the control period of the

input Tu is also determined by the speed of the actu-

ator, D/A converter, or the calculation on the CPU.

In practical control systems, these periods are usually

restricted by the hardware. In this paper, the digital

control systems with longer sampling period (Tu < Ty)

are considered. This restriction may be general be-

cause D/A converters are usually faster than the A/D

converters. Especially, head-positioning systems of the

hard disk drive (HDD) or the visual servo systems of

robot manipulator belong to this category, because the

sampling rates of the measurement are relatively slow

[1]{[3].

For these systems, it is di�cult to suppress vibra-

tion and to reject disturbance in high frequency re-

gion because the Nyquist frequency is relatively low.

In this paper, multirate sampling control is introduced,

in which the plant input is changed N times during one

sampling period. This scheme is also called the multi-

rate input control. Using this scheme, novel multirate

feedback controllers are proposed, which achieve vibra-

tion suppression and disturbance rejection even in the

semi-Nyquist frequency region. Moreover, the proposed

methods are applied to the head-positioning system of

hard disk drive.

Vibration suppression controllers have been proposed

by the various approaches in the continuous-time sys-

tem. To implement them in the digital control systems,

the designed analog controllers are discretized by the

Tustin transformation or other methods. Because these

transformations are based only on the open-loop char-

acteristics of the controller, the closed-loop becomes low

performance or unstable when the resonance mode is

close to the Nyquist frequency.

On the other hand, introducing multirate sampling

control, the authors proposed a novel discretization

method of controllers based on the closed-loop char-

acteristics [4]. In this paper, this approach is extended

to the hardware restriction of (Tu < Ty) and applied

to the vibration suppression controller. The advan-

tages of the proposed method are that the controller

is discretized based on the closed-loop characteristics,

and the plant state of the digitally controlled system

completely matches that of the original continuous-time

system at M inter-sample points during Ty .

In the repetitive control system [5], conventional

single-rate controllers do not have enough inter-sample

performance to reject disturbance in the semi-Nyquist

frequency region [6]. On the other hand, authors

proposed a novel multirate feedback controller, which

achieves the perfect disturbance rejection at M inter-

sample points [3]. In this paper, the proposed approach

is modi�ed to repetitive control, and applied to reject

high order repeatable run-out of hard disk drive.

Repetitive feedback controllers based on the internal

model principle have disadvantages that the closed-loop

characteristics become worse and di�cult to assure sta-

bility robustness [6]. Therefore, this paper proposes

novel approach that never has these problems, based

on the open-loop estimation and disturbance rejection

by feedforward approach.

2 Discretization of controller based on

multirate control
In this section, novel discretization method of an ana-

log controller is proposed for the system with longer
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Figure 1: Multirate sampling control.

sampling period (Tu < Ty) base on the multirate input

control. The proposed method is applied to vibration

suppression controller in section 4.1. In the proposed

multirate scheme, the plant input is changed N times

during Ty and the plant state is evaluated M times in

this interval as shown in Fig. 1. The positive integersM

and N are referred to as input and state multiplicities,

respectively. N is determined by the hardware restric-

tion. In this paper, the state multiplicity is de�ned as

M = N=n except for section 3.3, where n is the plant

order.

In Fig. 1, �j(j = 0; 1; � � �; N ) and �k(k = 1; � � � ;M )

are the parameters for the timing of the input changing

and the state evaluation, which satisfy the conditions

(1) and (2).

0 = �0 < �1 < �2 < ::: < �N = 1 (1)

0 < �1 < �2 < ::: < �M = 1 (2)

If Ty is divided at same intervals, the parameters are

set to �j = j=N; �k = k=M .

For simpli�cation, the continuous-time plant is as-

sumed to be SISO system in this paper. The proposed

methods, however, can be extended to deal with the

MIMO system by the same way as [4].

2.1 Plant Discretization by Multirate Sampling

Consider the continuous-time plant described by

_x(t) = Acx(t) + bcu(t) ; y(t) = ccx(t): (3)

The discrete-time plant discretized by the multirate

sampling control (Fig. 1) becomes

x[i+ 1] = Ax[i] +Bu[i] ; y[i] = Cx[i]; (4)

where x[i] = x(iT ), and matrices A;B;C and vectors

u are given by�
A B

C O

�
:=

�
e
AcTy b1 � � � bN

cc 0 � � � 0

�
; (5)

bj :=

Z (1��(j�1))Ty

(1��j)Ty

e
Ac�bcd� ; u := [u1; � � � ; uN ]

T
;

(6)

The inter-sample plant state at t = (i+ �k)Ty is repre-

sented by

~x[i] = ~Ax[i] + ~Bu[i]; (7)

�
~A ~B

�
:=

2
64

~A1
~b11 � � � ~b1N

...
...

...
~AM

~bM1 � � � ~bMN

3
75 ; (8)

~Ak := e
Ac�kTy ; ~x := [x1; � � � ;xM ]T ; (9)

xk[i] = x[i+ �k] = x((i + �k)Ty); (10)

~bkj :=

8><
>:

�j < �k :
R (�k��(j�1) )Ty

(�k��j )Ty
e
Ac�bcd�

�(j�1) < �k � �j :
R (�k��(j�1) )Ty

0
e
Ac�bcd�

�k � �(j�1) : 0

;

2.2 Design of continuous-time controller

In this section, the continuous-time controller is de-

signed based on the regulator and the disturbance ob-

server. Consider the continuous-time plant model de-

scribed by

_xp(t) = Acpxp(t) + bcp(u(t)� d(t)) (11)

y(t) = ccpxp(t); (12)

where d(t) is the disturbance input. Let the disturbance

model be

_xd(t) = Acdxd(t) ; d(t) = ccdxd(t): (13)

For example, the sinusoidal type disturbance with fre-

quency !d is modeled by

Acd =

�
0 1

�!
2
d

0

�
; ccd = [1; 0]: (14)

The continuous-time augmented system consisting of

(11) and (13) is represented by

_x(t) = Acx(t) + bcu(t); y(t) = ccx(t); (15)

Ac :=

�
Acp �bcpccd

O Acd

�
; bc :=

�
bcp

0

�
;x :=

�
xp

xd

�
;

where cc := [ccp;0]. For the plant (15), the continuous-

time observer is designed from the Gopinath's method

by

_v(t) = Âcv̂(t) + b̂cy(t) + Ĵcu(t) (16)

x̂(t) = Ĉcv̂(t) + d̂cy(t): (17)

In order to regulate the plant state and reject the dis-

turbance, the continuous-time regulator is designed by

u(t) = f
cp
x̂p(t) + ccdx̂d(t) = f

c
x̂(t); (18)

where f
c
:= [f

cp
; ccd]. Letting ev be the estimation er-

rors of the observer (ev = v̂�v), the following equation

is obtained.

x̂(t) = x(t) + Ĉev(t): (19)

From the above equations, the closed-loop system is

represented by2
4 _xp(t)

_xd(t)

_ev(t)

3
5 =

2
4 Af O bcpfcĈc

O Ad O

O O Âc

3
5
2
4 xp(t)

xd(t)

ev(t)

3
5 ; (20)

where Af := Acp+bcpf cp. The transitions of the states

xp;xd from t = iTy to t = (i + �k)Ty are represented

by"
xp[i+ �k]
xd[i+ �k]
ev[i+ 1]

#
=

2
64 eAf �kTy

O �

O eAd�kTy
O

O O e
^
AcTy

3
75
"
xp[i]
xd[i]
ev[i]

#
: (21)
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Figure 2: Multirate control with disturbance observer.

2.3 Discretization of the controller by multirate

control

In this section, the digital controller is obtained from

the continuous-time controller designed in section 2.2

using multirate input control. Discretizing (15) by the

multirate sampling control, the inter-sample plant state

at t = (i+ �k)Ty can be calculated from the kth row of

(7) by

x[i+ �k] = ~Akx[i] + ~Bku[i] (22)

~Ak =

�
~Apk

~Apdk

O ~Adk

�
; ~Bk =

�
~Bpk

O

�
:

For the plant (15) discretized by (4), the discrete-time

observer on the sampling points is obtained by

v̂[i+ 1] = Âv̂[i] + b̂y[i] + Ĵu[i] (23)

x̂[i] = Ĉv̂[i] + d̂y[i]: (24)

As shown in Fig. 2, let the feedback control law be

u[i] = F px̂p[i] + F dx̂d[i] = F x̂[i]; (25)

where F := [F p;F d]. From (22) to (25), the closed-

loop system is represented by2
4 xp[i+ �k]

xd[i+ �k]

ev[i+ 1]

3
5 =

2
4 ~Apk + ~BpkF p

~Apdk + ~BpkF d
~BpkFĈ

O ~Adk O

O O Â

3
5
2
4 xp[i]

xd[i]

ev[i]

3
5 :

(26)

Comparing (21) and (26), if the following conditions

are satis�ed, the plant state (xp) of the digitally con-

trolled system completely matches that of the original

continuous-time system at M inter-sample points on

t = (i + �k)Ty .

~Apk + ~BpkF p = e
Af�kTy ; (27)

~Apdk + ~BpkF d = O; (28)

ev[i] = O: (29)

The simultaneous equations of (27) and (28) for all k(=

1; � � � ;M ) become

~Ap + ~BpF p = E; ~Apd + ~BpF d = O; (30)

where ~Ap;
~Apd;

~Bp and E are de�ned by

2
64

~Ap1

...
~ApM

3
75 ;
2
64

~Apd1

...
~ApdM

3
75 ;
2
64

~Bp1

...
~BpM

3
75 ;
2
664

e
Af�1Ty

...

e
Af�MTy

3
775 :

Because non-singularity of the matrix ~Bp can be as-

sured on M = N=n [3, 7], F p and F d are obtained

by

F p = ~B
�1

p
(E � ~Ap); F d = � ~B

�1

p
~Apd: (31)

Moreover, [4] proposed the discretization for observer

based on multirate output control, where the plant out-

put is detected more frequently than the control period

(Ty < Tu). However, in this paper, discrete-time ob-

server (23) is simply obtained, so that the eigenvalues

of Â become identical to those of exp(ÂcTy), because

the plant is assumed to have longer sampling period

(Ty > Tu). Substituting (23) for (25), the feedback

type controller is obtained by�
v̂[i+ 1]

u[i]

�
=

�
Â+ ĴF Ĉ b̂+ ĴF d̂

F Ĉ F d̂

� �
v̂[i]

y[i]

�
: (32)

2.4 Initial value compensation

In this section, the initial value of the controller (32)

is considered in order to eliminate the estimation error

of the observer and satisfy (29). From (24), if x[0] is

known, the initial value of controller should be set by

Ĉv̂[0] = x[0]� d̂y[0]: (33)

By this compensation, it is possible to prevent the over-

shoot of the step (or initial value) response because the

plant state converges only by the mode of the regulator.

Therefore, f
cp

should be designed to assign the eigen-

values of Af to the small (or zero) overshoot region.

3 Repetitive control based on multirate control
In this section, two multirate repetitive controllers

are proposed, which are 1) feedback approach based on

internal model principle and 2) feedforward disturbance

rejection approach based on the open-loop estimation.

3.1 Feedback repetitive control

The periodic disturbance of T0 := 2�=!0 is repre-

sented by

d(t) = a0 +

1X
k=1

ak cos k!0t+ bk sin k!0t; (34)

where !0 is known and ak; bk are unknown parameters.

Letting the disturbance model (13) be (34), the repet-

itive feedback controller is obtained by (32), which has

internal model s2 + (k!0)
2 in discrete-time domain.

From (26) and (28), the inuence from disturbance

xd[i] to the inter-sample state xp[i + �k] becomes zero
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Figure 3: Feedforwad repetitive control.

at t = (i+�k)Ty. Moreover, xp[i] and ev[i] converge to

zero at the rate of the eigenvalues of ~ApM+ ~BpMF p and

Â (the poles of the regulator and observer). Therefore,

the repetitive disturbance is perfectly rejected (xp[i +

�k] = 0) at M inter-sample points in the steady state.

3.2 Feedforward repetitive control

The repetitive feedback control based on the internal

model principle has disadvantages that the closed-loop

characteristics become worse and di�cult to assure sta-

bility robustness [6]. Therefore, in this section, novel

repetitive controller based on the open-loop estimation

and feedforward disturbance rejection are proposed as

shown in Fig. 3

The repetitive disturbance is estimated by the open-

loop disturbance observer. When the estimation con-

verges to the steady state, the switch turns on at t = t0.

After that, the switch turns o� immediately. The repet-

itive disturbance is calculated by (35) from the initial

value x̂d[t0] which has the amplitude and phase infor-

mation of the disturbance.

x̂d[i+ 1] = Addx̂d[i]; (35)

where Add = e
AcdTy . Because the disturbance feedfor-

ward F d is obtained by (31), the perfect disturbance

rejection is achieved at M inter-sample points. The

advantage of this approach is that the stability robust-

ness can be guaranteed easily only by the conventional

feedback controller C2[z].

Moreover, by introducing the initial value compen-

sation of the feedback controller C2[z] at t = t0, the

transient response can be improved after this switching

action. It is possible to prevent the overshoot by set-

ting the initial state v̂[t0] to be (33) using the estimated

value of open-loop observer x̂[t0].

3.3 Optimization of the inter-sample distur-

bance rejection performance

In section 3.1 and section 3.2, the state multiplicity is

de�ned as M = N=n in order to reject the disturbance

perfectly at M inter-sample points. In this section, M

is selected more than N=n to optimize the inter-sample

performance. This approach is referred to as the fast

sampling technique in the modern sampled-data control

theory [8, 9, 10].

When M is selected more than N=n, it is impossi-

ble to satisfy (30) because the number of row of ~Bp is
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Figure 4: Frequency responses.

larger than that of column. Therefore, the inter-sample

performance can be optimized by minimizing ~Bp for all

k(= 1; � � � ;M ). Thus, the problem is formulated by

min
F d

k ~Apd+ ~BpF dk s. t. ~ApdM + ~BpMF d = O: (36)

The above constraint is the condition that the controller

includes the disturbance model, which assures the con-

vergence of xp[i] at the sampling points (k = M ).

From the Lagrange's undetermined multiplier

method, the solution of (36) is obtained by

Fd = Z[Y T (Y ZY T )�1Y ZXT
� X

T
;�Y

T (Y ZY T )�1] ~Apd;

(37)

where X := [ ~B
T

p1; � � �

~B
T

p(M�1)]
T
;Y := ~BpM ;Z := (XT

X)�1
;

and the Frobenius norm is adopted in (36). M should

be selected more than N to assure the non-singularity

of Z.

4 Applications to HDD
In the head-positioning control of hard disk drives ,

the control strategy is divided into three modes; seek-

ing mode, settling mode, and following mode. In the

seeking mode, the head is moved to the desired track as

fast as possible. Next, the head is settled to the track

without overshoot in the settling mode. After that, the

head need to be positioned on the desired track while

the information is read or written. In the following

mode, the head is positioned �nely on the desired track

under the vibrations generated by the disk rotation and

disturbance.

In this section, the proposed feedback controllers are

applied to the settling and following modes. While

servo signals are detected at a constant period about

100 [�s], the control input can be changed 2�4 times

between one sampling period in the recent hardware [3].

Therefore, the proposed approaches are applicable.

4.1 Vibration suppression control based on mul-

tirate control

Let the nominal model of this plant be

Pc(s) =
K

Ms2

!
2
1n

s2 + 2�1n!1ns+ !
2
1n

; (38)

where !1n = 2:7 � 103[rad/sec] and �1n = 0:1. This

model is obtained from the experimental setup of 3.5-in

hard disk drive [3]. The sampling time and input mul-

tiplicity of this drive are Ty = 138:54 [�s] and N = 4.
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As shown in Fig. 4(a), the actual plant has the �rst

mechanical resonance mode around 2.7 [kHz], and its

variation range is � 500 [Hz]. The Nyquist frequency

(3.6 [kHz]) is close to this resonance mode. Therefore,

it is very di�cult to suppress the vibration in the con-

ventional single-rate controller.

Continuous-time controller is designed by regulator

and disturbance observer, in which the disturbance is

modeled by the step type function d(s) = 1=s, the poles

of the regulator are set to (s + !c)
4, and those of the

observer are set to (s + !c)
2(s2 + 2�1!1ns + !

2
1n). As

shown in Fig. 4(b), this controller has notch character-

istic at the resonance frequency. The parameter !c is

tuned so that the bandwidth of the closed-loop system

is set as high as possible, and stabilize the � 1 [kHz] res-

onance variation. Fig. 4(b) also shows that the Tustin

transformation has large approximation error because

the resonance mode is close to the Nyquist frequency.

Simulated results are shown in Fig. 5, which indicates

that the proposed method has better performance than

the Tustin transformations. In Fig. 5(b), "Multirate

Tustin" method is composed of the digital controller

discretized by Tustin transformation on Ty=N and the

interpolator which has an up-sampler and a zero-order-

hold [11]. While the responses of the Tustin transfor-

mations are oscillated, that of the proposed method

has no vibration and identical step response with ideal

continuous-time system.

Fig. 6 shows the sensitivity and complementary sen-

sitivity functions S[z]; T [z] of the closed loop systems.

As shown in Fig. 6(a), the proposed method can remain

the ideal characteristics of the original continuous-time

controller, because the proposed method is based on the

closed-loop system. On the other hand, in the conven-

tional Tustin transformations (Fig. 6(b)), the closed-

systems are quite di�erent from the original analog

system, because those controllers are discretized based
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only on the open-loop characteristics.

4.2 Repetitive control based on multirate con-

trol

In this section, the proposed multirate repetitive con-

trollers are applied to the following mode. In the fol-

lowing mode, two kinds of disturbance at the output

of the plant dy(t) should be considered; repeatable and

non-repeatable runout. Repeatable runout (RRO) is

synchronous with the disk rotation, and non-repeatable

runout (NRRO) is not synchronous. In this paper, the

RRO is perfectly rejected by the proposed repetitive

controllers at M inter-sample points.

For simpli�cation, the plant is modeled by

Pc(s) =
K

Ms2
; (39)

and RRO are considered at 1st, 10th, and 20th order1.

d(t) =
X

k=1;10;20

ak cos k!0t + bk sin k!0t; (40)

where !0 = 2�120[rad/sec].

Fig. 7 shows the closed-loop characteristics both of

the feedback (Fig. 2) and feedforward (Fig. 3) repeti-

tive control systems. Fig. 7(a) indicates the disadvan-

tages of the feedback repetitive controller, where the

closed-loop characteristics become worse and di�cult

to assure stability robustness. On the other hand, in

the proposed feedforward repetitive control (Fig. 3),

the closed-loop characteristics depends only on C2[z]

which do not need to have the internal model of (40).

Therefore, the feedback characteristics are better than

the feedback approach as shown in Fig. 7(b).

Fig. 8 shows the simulated results of the proposed

repetitive feedforward control on M = N=n under the

20th order sinusoidal runout. The switch turns on at

just t0 = 10[ms]. As shown in Fig. 8(a), the posi-

tion error converges quickly after the switching action.

Moreover, it is shown that the proposed initial value

compensation (IVC) can prevent the large overshoot.

Fig. 8(b) shows that the inter-sample response of the

conventional single-rate controller has large error in the

steady state. On the other hand, the errors of the plant

position and velocity become zero at every Ty=2 by the

1In practice, these modes should be selected by the experi-

mental analysis.
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Figure 8: Feedforward repetitive control.

dy(t) = Tp sink!0t; Tp = 3:6�m; k = 20:
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Figure 9: Error ratio ER(k).

(20th order corresponds to 2.4 [kHz].)
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Figure 10: Optimized inter-sample response.

proposed controllers2. Moreover, the inter-sample po-

sition error of the proposed multirate method is much

smaller than that of the single-rate controller.

Fig. 9 shows analyzed results of the error ratio ER(k)

for the disturbance order k. Considering the inter-

sample response, the error ratio is calculated by

E
2
R
(k) :=

R
ts+kT0

ts
e
2(t)dtR

ts+kT0

ts
d2
y
(t)dt

; (41)

where dy(t) = Tp sin k!0t; T0 = 2�=!0, and ts is se-

lected as 20[s] in order to evaluate the steady state. In

the high frequency region close to the Nyquist frequency

(3.6[kHz]), the disturbance rejection performance is

much improved by the proposed multirate control, com-

pared with the single-rate controller. Therefore, it is

found that the proposed method can demonstrate much

e�ective performance for high-order disturbance.

In the above simulations (Fig. 7 � 9), the state mul-

tiplicity is selected as M = N=n(= 2) to reject the

disturbance perfectly atM inter-sample points. In Fig.

10, however, the inter-sample performance is optimized

by (37).

2In the proposed method, the perfect disturbance rejection is

assuredM(= N=np = 4=2 = 2) times during Ty.

As shown in Fig. 10(a), the optimized inter-sample re-

sponse on M = 10 is not improved so much compared

with the case of without the optimization on M = 2.

Therefore, it can be said that the selection ofM = N=n

proposed in section 3.1 is valid in engineering sense be-

cause F d of (31) is simpler than that of (37). However,

the optimization approach is valuable because it is ap-

plicable to the case that N=n is non-integer. As shown

in Fig. 10(b), the inter-sample performance is improved

in higher input multiplicity N .

5 Conclusion
In this paper, the digital control systems which had

hardware restrictions of Tu < Ty were assumed, novel

multirate feedback controllers were proposed, which

achieved vibration suppression and disturbance rejec-

tion in the semi-Nyquist frequency region. Moreover,

the inter-sample disturbance rejection performance has

been optimized by the fast sampling approach.

Furthermore, the proposed methods were applied to

the settling and following modes of the hard disk drive.

The advantages of these approaches were demonstrated

by the simulations.

Finally, the authors would like to note that part of

this research is carried out with a subsidy of the Scien-

ti�c Research Fund of the Ministry of Education.
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