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Abstract

In this paper, a novel perfect tracking control

method based on the multirate feedforward control is

proposed. Moreover, by generalizing the relationship

between the sampling period of the plant output and

the control period of the plant input, the proposed

method can be applied to various systems with

hardware restrictions of these periods, and achieve

higher performance. Next, it is shown that the

structure of the proposed perfect tracking controller

is very simple and clear. Illustrative examples of

position control using a dc servo motor are presented,

and simulations and experiments demonstrate the

advantages of this approach.
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1 Introduction

In the digital motion control system, the tracking

controllers are often employed for high speed and

high precision servo systems because the controlled

plant follows the smoothed desired trajectory. The

best tracking controller is ideally the Perfect Tracking

Controller (PTC) which controls the controlled object

with zero tracking error [1]. The perfect tracking

can be achieved using the feedforward controller

C1[z] which is realized by the inverse system of the

closed-loop system Gcl[z].

C1[z] =
1

zdGcl[z]
(1)

where d is the relative degree of Gcl[z].

However, the discrete-time plant discretized by

the zero-order-hold usually has unstable zeros [2].

Thus, C1[z] becomes unstable because Gcl[z] has the
unstable zeros. Therefore, in the conventional digital

control systems utilizing the zero-order-holds, the

perfect tracking is usually impossible.

From this viewpoint, two feedforward control

methods are proposed for the discrete-time plant

with unstable zeros in [1]. First, the Stable Pole Zero

Canceling (SPZC) controller cancels all poles and

stable zeros of the closed-loop system, which has both

phase and gain errors caused by the uncancellable

unstable zeros. Second, Zero Phase Error Tracking

Controller (ZPETC) adds the factors which cancel

the phase error to SPZC. However, the gain error

caused by the unstable zeros remains. Moreover, [3],

[4], and [5] have attempted to compensate for the

gain error of ZPETC. However, these methods are

not able to realize the perfect tracking because the

zero-order-holds are employed.

Authors have proposed a novel perfect tracking

control method using multirate feedforward control

instead of the zero-order-hold [6]. On the other

hand, a lot of industrial systems often have hardware

restrictions both on the sampling periods to detect

plant outputs and the control periods to generate

plant inputs. For example, in head-positioning

control of hard disk drives and visual servo systems,

the sampling periods of the plant output should be

longer, because the servo signals and video signals are

detected at slower periods than the control inputs.

In contrast, systems with low speed D/A converters

or CPUs have restrictions that the periods of the

plant inputs are slower than the sampling periods of

the plant outputs. In this paper, the perfect tracking

control is extended to be applied to various systems

with such hardware restrictions by generalizing the

output sampling period. Next, it is shown that the

structure of the proposed controller is very simple

and clear.

The unstable zeros problems of the discrete-time

plant have been resolved by zero assignment in use

of multirate control [7, 8]. However, [9] shows that

those methods have disadvantages of large overshoot

and oscillation in the inter-sample points because the

control input changes back and forth very quickly.

On the other hand, the proposed method never

has this problem because all of the plant states

(e.g. position and velocity) are controlled along the

smoothed desired trajectories.

2 Generalizationsof the sampling

periods

A digital tracking control system usually has two

samplers for the reference signal r(t) and the output
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Figure 1. Two-degree-of-freedom control system.
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Figure 2. Multirate sampling control.

y(t), and one holder on the input u(t) as shown in Fig.
1. Therefore, there exist three time periods Tr; Ty,
and Tu which represent the period of r(t); y(t), and
u(t), respectively. The input period Tu is generally

decided by the speed of the actuator, D/A converter,

or the calculation on the CPU. Moreover, the output

period Ty is also determined by the speed of the

sensor or the A/D converter.

Actual control systems usually hold the restrictions

on Tu and/or Ty. Thus, the conventional digital

control systems make these three periods equal to

the longer period between Tu and Ty.

On the other hand, authors showed that the perfect

tracking can be achieved on every sampling point Tr
by letting Tr = nTu, where n is the plant order [6].

In the following discussions, Tr = nTu is regarded

as the condition for the perfect tracking. Moreover,

the following two cases are considered, which are

very ordinary in industries. First, although Tu is

decided in advance by the hardware restrictions,

the plant output can be detected at same or faster

period (Ty � Tu), as shown in Fig. 2(a). This

case is referred to as case 1 in this paper, which

includes usual servo systems of Ty = Tu without

special hardware restrictions. Second, although Ty is

decided in advance, the plant input can be changed

N times during Ty, as shown in Fig. 2(b). This

case is also referred to as case 2, which includes

systems with special hardware restrictions such as

hard disk drives [10], visual servo systems, and servo

systems with low precision encoder. In this case,

the perfect tracking can be assured N=n(
4
= L) times

during inter-sample points of Ty.

For the above multi-period systems, the longer
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Figure 3. Generalized multirate sampling control.

period between Tr and Ty is de�ned as the ame

period Tf [11]. Moreover, z-operator is also de�ned as

z
4
= esTf . By using these de�nitions, case 1 and 2 can

be dealt with together in the following discussions.

The positive integers M and N are input and output

multiplicities during Tf , respectively. In this paper,

N have to be selected so that N=n(= L) becomes an

integer.

3 Designs of the proposed con-

troller

In this section, the proposed perfect tracking

control method is presented. For simpli�cation, the

plant is assumed to be SISO system. The proposed

method, however, can be extended to deal with the

MIMO system by the same way as [12].

3.1 Plant Discretization and Parame-

terization

In order to deal with cases 1 and 2 together, the

multirate control scheme is represented by Fig. 3 in

use of input and output multiplicities N and M .

Thus, in case 1, N should be set to n. Moreover, in

case 2, M also have to be set to 1.

Consider the continuous-time nth order plant Pc(s)
described by

_x(t) = Acx(t) + bcu(t) ; y(t) = ccx(t): (2)

The discrete-time plant P [z] discretized by the

generalized multirate sampling control (Fig. 3) be-

comes

x[i+ 1] = Ax[i] +Bu[i]; (3)

y[i] = Cx[i] +Du[i]; (4)

where x[i] = x(iT ), and where matrices A;B;C;D
and vectors u;y are given by

�
A B

C D

�
4
=

2
6664

eAcTf b1 � � � bN

c1 d11 � � � d1N
...

...
...

cM dM1 � � � dMN

3
7775 ; (5)

u
4
= [u1; � � � ; uN ]

T ; y
4
= [y1; � � � ; yM ]T ; (6)



bj
4
=
R (1��(j�1))Tf

(1��j)Tf
eAc�bcd� ; ck

4
= cce

Ac�kTf ; (7)

dkj
4
=

8><
>:

�j < �k : cc

R (�k��(j�1))Tf

(�k��j)Tf
eAc�bcd�

�(j�1) < �k � �j : cc

R (�k��(j�1))Tf

0
eAc�bcd�

�k � �(j�1) : 0

0 = �0 < �1 < �2 < ::: < �N = 1; (8)

0 � �1 < �2 < ::: < �M < 1; (9)

where �j(j = 0; 1; � � � ; N) and �k(k = 1; � � � ;M) are

the parameters for the multirate sampling as shown

in Fig. 3. If Tf is divided at same intervals,

�j = j=N; �k = (k � 1)=M .

In the most simple case of Ty = Tu, �j is equal to
�k�1 and P [z] of (5) can be calculated more simply

by2
666664

A
n

s
A
n�1
s

bs A
n�2
s

bs � � � bs

cs ds 0 � � � 0

csAs csbs ds � � � 0
...

...
...

csA
n�1
s

csA
n�2
s

bs csA
n�3
s

bs � � � ds

3
777775 ; (10)

where P [zs] = fAs; bs; cs; dsg is the plant discretized

by the zero-order-hold on Ty(= Tu) and zs
4
= esTy .

The proposed method employs the multirate-

input control as the two-degree-of-freedom control,

as shown in Fig. 1. In the �gures, HM and

SM represent the multirate hold and the multirate

sampler respectively. The functions of HM and SM
are shown in Fig. 3.

In the ideal tracking control system, the transfer

characteristic (Gyr) from the command r to the

output y is generally 1. In this paper, the feedforward
controller C1[z] is considered so that the transfer

characteristic from the desired state xd to the plant

state x can be I .

3.2 Design of the feedback controller

C2[z]

Before the perfect tracking controller C1[z] is

designed, the feedback controller C2[z] has to be

determined. Here, the C2[z] must be a robust

controller which let the sensitivity function S[z] =
(I � P [z]C2[z])

�1 be small enough in the frequency

of the desired trajectory. The reason is that the

sensitivity function S[z] represents the variation of

the command response Gyr[z] under the variation of

P [z] [13].

First, for systems without special hardware restric-

tions, in which the feedback loop is single-rate (Ty =
Tu), the feedback controller C2[zs] = fAs; bs; cs; dsg
is designed for Pc(s) on single-rate sampling period

Ty(= Tu), where zs = esTy . After that, C2[zs] is
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Figure 4. Basic structure of TDOF control.

transferred to n inputs n outputs system C2[z] by
(10) in order to realize C1[z] and C2[z] together,
where z = esTf = zn

s
and Tf = nTy.

Second, systems with special hardware restrictions

are considered, in which the feedback-loop also may

become multirate (Ty < Tu or Ty > Tu). [10]

and [14] proposed the multirate feedback controllers

by the inter-sample observer and the sampled-data

theory respectively. These multirate controllers may

improve the feedback characteristics. However, the

perfect tracking can be achieved, even if the single-

rate feedback controller is simply designed on the

longer period between Ty and Tu, and transferred to

M inputs N outputs controller C2[z] on Tf .

3.3 Design of thePerfectTrackingCon-

troller C1[z]

In this section, the multirate feedforward controller

C1[z] is designed so that the perfect tracking can be

assured at every sampling point Tr.

(3) can be transferred from the ame period Tf to

the reference period Tr = Tf=L by 1

~x[i+ 1] = ~Ax[i] + ~Bu[i]; (11)

where q
4
= 1=L = n=N , and where matrices ~A; ~B and

vectors ~x are given by

~x[i+ 1]
4
=

2
6666664

x[i+ q]
...

x[i+ lq]
...

x[i+ 1]

3
7777775
; ~A

4
=

2
66666664

eAcTr

...

eAclTr

...

eAcLTr

3
77777775
; (12)

~B
4
=

2
6666664

BL O � � � � � � � � � O

...
. . . O

BL�l � � � BL O � � � O

...
. . . O

B1 B2 � � � � � � � � � BL

3
7777775
; (13)

Bl = [b(l�1)n+1; � � � ; bln] (l = 1; � � � ; L): (14)

1In case 1,(11) is equal to (3) (x[i+ 1] = Ax[i] +Bu[i] ),

because of L = 1.
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Figure 5. Implementation of the proposed controller.

From Fig. 1, the multirate control law of the

proposed method is described by

u = C1r +C2y (15)

= F x̂+Qey +Kr; (16)

whereK;Q 2 RH1 are free parameters. Therefore,

Fig. 1 can be transferred to Fig. 4 [15]. In this paper,

K becomes a constant matrix.

Because the estimation errors of the observer

become zero (x̂ = x; ey = 0) for the nominal plant,

from (11) and (16), this system is represented by

~x[i+ 1] = ( ~A+ ~BF )x[i] + ~BKr[i]: (17)

Because non-singularity of the matrix B can be

assured by Tr = nTu [11], ~B also becomes non-

singular. Therefore, the parameters F and K can be

selected so that following equations are satis�ed.

~A+ ~BF = O ; ~BK = I (18)

From (18), F ;K are given by

F = � ~B
�1 ~A ; K = ~B

�1
: (19)

Therefore, (17) is described by

~x[i+ 1] = r[i]: (20)

Utilizing the future desired state, let the reference

input be

r[i] = ~xd[i+ 1]; (21)

where ~xd[i] is desired state. From (20) and (21), we

�nd the perfect tracking ~x[i] = ~xd[i] is achieved at

every sampling point Tr.

Here, Fig. 1 can be represented by Fig. 5 because

(15) is transferred to (22) [13]. Therefore, the

proposed controller is simply implemented by (22).

u = (M �C2N )Kr +C2y (22)

M =

�
A+BF B

F I

�
= I + z�1FB

N =

�
A+BF B

C +DF D

�
=D + z�1(C +DF )B;

(23)

where M and N are the parameters of the coprime

factorization of the plant P [z] = NM�1. The two-

degree-of-freedom controller (22) should be realized

in minimum order.

3.4 Structure of the Perfect Tracking

Controller C1[z]

In this section, it is shown that the structure of the

perfect tracking controller is very simple and clear.

From (19) and (23), two elements MK and NK in

Fig. 5 are represented by

MK = (I � z�1 ~B
�1 ~AB) ~B

�1
; (24)

NK = z�1CB ~B
�1

+D(I � z�1 ~B
�1 ~AB) ~B

�1
:(25)

On the other hand, from (3) and (11), the transfer

function from u[i] to ~x[i+ 1] is described by

~x[i+ 1] =

�
A B

~A ~B

�
u[i]: (26)

The inverse system of (26) is given by

u[i] =

"
A�B ~B

�1 ~A B ~B
�1

� ~B
�1 ~A ~B

�1

#
~x[i+1]:(27)

From the de�nitions of ~A and ~B in (12), (13), the

following equations are obtained.

A = [

L�1z }| {
O; � � � ;O; I] ~A; (28)

B = [O; � � � ;O; I] ~B: (29)

Thus, the (1; 1) element of the matrix (27) becomes

A�B ~B
�1 ~A = A� [O; � � � ;O; I ] ~A = O: (30)

Therefore, (27) is given by 2

u[i] =

"
O B ~B

�1

� ~B
�1 ~A ~B

�1

#
~x[i+ 1]: (31)

From (24) and (31), MK is equal to the transfer

function from ~x[i + 1] to u[i], and it represents

the stable inverse system. This point is one of

the advantages of the multirate control because the

inverse system becomes unstable in the single-rate

systems. Moreover, (4) is described from (31) by 3

y[i] = z�1Cx[i+ 1] +Du[i]

= z�1C[O; � � � ;O; I ]~x[i+ 1]

+D(I � z�1 ~B
�1 ~AB) ~B

�1
~x[i+ 1] (32)

From (25) and (32), it is shown that NK represents

the transfer function from ~x[i+ 1] to y[i].

2In case 1, (32) becomes y[i] = z�1Cx[i+ 1], because of

D = O.
3In case 1, (31) becomes u[i] = B�1(I � z�1A) x[i+ 1],

which is directly obtained from x[i + 1] = Ax[i] +Bu[i] of

(3), because of ~B = B.
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Figure 6. Structure of the proposed controller.

As a result, the structure of the proposed controller

is shown in Fig. 6. The plant P [z] is driven by the

stable inverse system. When the tracking error e

is generated by disturbance or modeling error, the

robust feedback controller C2[z] works in order to

eliminate e.

4 Illustrative Examples

In this section, the simulation and experimental

results for the position tracking control system of the

dc servo motor are presented, and the advantages of

the proposed approach are demonstrated.

4.1 Case 1 on Ty = Tu

First, an most simple example of Ty = Tu (case

1) is considered. The dc servo motor with current

control is described by

Pc(s) =
K

Js2
: (33)

The feedback controller C2[z] is obtained from the

H1 mixed-sensitivity problem, which includes an

integrator and becomes 3rd order [16]. Calculating

(22) and minimally realizing the obtained C1[z] and
C2[z], the controller [C1;C2] becomes 5th order

system.

Simulation and experimental results under the

sinusoidal desired trajectories of period !ref =

25[rad/s] are shown in Fig. 7. In this system,

both input and output periods are Ty = Tu = 1[ms].

Because this plant is 2nd order system, the sampling

period of the reference signal becomes Tr = 2[ms]

(N = 2).

In the following simulations and experiment, the

proposed method is compared with both SPZC

and ZPETC proposed by [1] at same Ty and Tu.
Therefore, the reference sampling period Tr of the

proposed method is twice as long as those of SPZC

and ZPETC, because these methods are single-

rate approaches and sampling periods are set to

Ty = Tu = Tr = 1[ms]. However, the proposed

controller utilizes the desired trajectories of position

and velocity, although SPZC and ZPETC use those

of only position.
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Figure 7. Simulation and Experimental Results
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Fig. 7(a)(b) show that the proposed method gives

better performance both than the SPZC and the

ZPETC. While the responses of the SPZC and

ZPETC have large tracking errors caused by the

unstable zero, those of the proposed method have

zero tracking errors. The simulated time response

of the control input is shown in Fig. 7(c), which

indicates that the control input of the proposed

method is smooth in spite of using the multirate

input control. Thus, we �nd the proposed multirate

feedforward method is very practical. Moreover, the

experimental result also indicates that the proposed

method has high tracking performance as shown in

Fig. 7(d). Furthermore, Fig. 7(a)(b) also show that

the inter-sample responses are very smooth because

not only position but also velocity follow the desired

trajectories at every sampling point Tr.

The frequency responses from the desired trajec-

tory yd[i] to the output y[i] are shown in Fig. 8.

Because the proposed method assures the perfect
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Figure 9. Simulation results (Ty = 1[ms], Tu =

Ty=N; Tr = 2Ty=N , !ref = 1250[rad/s]).

tracking, the command response becomes 1 in the all

frequency. However, the gain of ZPETC decreases in

the high frequency.

This example indicates that the proposed mul-

tirate feedforward controller has higher tracking

performance than the single-rate controller even in

the usual servo system (Ty = Tu) without special

hardware restrictions.

4.2 Case 2 on Tu = Ty=N

Second, it is assumed that the output sampling

period is restricted to Ty = 1[ms] by hardware, and

the control input can be changed more frequently

(Tu = Ty=N). In this case, the perfect tracking is

guaranteed at L(= N=n = N=2) times during Ty.
The single-rate feedback controller is designed on

1[ms] period.

While the desired trajectories were slow in Fig. 7

(!ref = 25[rad/s]), Fig. 9 shows the simulated track-

ing error for faster trajectories (!ref = 1250[rad/s]).

Compared with N = 2, the tracking performances

are improved for large input multiplicity N = 4

and 8, because the perfect tracking is assured at

L(= N=2) inter-sample points. In [10], this approach

is applied to the seeking control of hard disk drive.

5 Conclusion

A novel perfect tracking control method in use of

the multirate feedforward control was proposed. The

proposed method was extended to be applicable to

various systems with hardware restrictions both on

the sampling periods and control periods. Moreover,

it is shown that the structure of the proposed perfect

tracking controller is very simple and clear.

Furthermore, two illustrative examples of position

control using a dc servo motor are performed, and

the advantages of this approach are demonstrated

by the simulations and experiments. First example

illustrates the proposed multirate controller has

higher performance than the conventional single-rate

controller even in the usual system (Ty = Tu) without
special hardware restrictions. Second example also

indicates that the inter-sample response is improved

by multirate feedforward control for the system with

longer sampling period (Ty > Tu).

Finally, the authors would like to note that part

of this research is carried out with a subsidy of

the Scienti�c Research Fund of the Ministry of

Education.
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