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Abstract

In this paper, novel multirate feedback controllers are proposed for digital control systems, where it is restricted that

the speed of the A/D converters are slower than that of the D/A converters. The proposed controllers achieve vibration

suppression and disturbance rejection even in the semi-Nyquist frequency region. First, the continuous-time vibration

suppression controller is exactly discretized by the multirate sampling control based on the closed-loop characteristics.

Second, the multirate repetitive controllers are proposed both by the feedback and feedforward approaches. The proposed

controllers are applied to the settling and following modes of hard disk drive, and the advantages of these approaches are

demonstrated by simulations.

Keywords: multirate sampling control, vibration suppression, discretization of controller, disturbance rejection, repeti-

tive control, hard disk drive

1 Introduction

A digital control system usually has two samplers for the

reference signal r(t) and the output y(t), and one holder

on the input u(t) as shown in Fig.1. Therefore, there exist

three time periods Tr; Ty, and Tu which represent the pe-

riod of r(t); y(t), and u(t), respectively. The input period

Tu is generally decided by the speed of the actuator, D/A

converter, or the calculation on the CPU. Moreover, the

output period Ty is also determined by the speed of the

sensor or the A/D converter. Practical control systems

usually hold the restrictions on Tu and/or Ty. Thus, the

conventional digital control systems make these three pe-

riods equal to the longer period between Tu and Ty.

In this paper, the digital control systems with longer

sampling period (Tu < Ty) are considered. This restric-

tion may be general because D/A converters are usu-

ally faster than the A/D converters. Especially, head-

positioning systems of the hard disk drive (HDD) or the

visual servo systems of robot manipulator belong to this

category, because the sampling rates of the measurement

are relatively slow.

For these systems, it is di�cult to suppress vibration

and to reject disturbance in high frequency region be-

cause the Nyquist frequency is relatively low. In this pa-

per, multirate sampling control is introduced, in which

the plant input is changed N times during one sampling

period. This scheme is also called the multirate input

control. Using this scheme, novel multirate feedback con-

trollers are proposed, which achieve vibration suppression

and disturbance rejection even in the semi-Nyquist fre-

quency region. Moreover, the proposed methods are ap-

plied to the head-positioning system of hard disk drive.

A vibration suppression controller is generally designed

in the continuous-time system. To implement it in the

digital control system, the designed analog controller is

discretized by the Tustin transformation or other meth-
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Fig. 1: Two-degree-of-freedom control system.

ods. Because these transformations are based only on the

open-loop characteristics of the controller, the closed-loop

becomes low performance or unstable when the control

bandwidth is closed to the Nyquist frequency.

On the other hand, introducing multirate sampling

control, the �rst author proposed a novel discretization

method of controllers based on the closed-loop character-

istics [1]. In this paper, this approach is extended to the

hardware restricion of (Tu < Ty) and applied to the vi-

bration suppression controller. The advantages of the pro-

posed method are that the controller is discretized based

on the closed-loop characteristics, and the plant state of

the digitally controlled system completely matches that

of the original continuous-time system at M inter-sample

points during Ty.

In the repetitive control system, conventional single-

rate controllers do not have enough inter-sample perfor-

mance to reject disturbance in the semi-Nyquist frequency

region. On the other hand, authors proposed a novel mul-

tirate feedback controller, which achieves the perfect dis-

turbance rejection at M inter-sample points [2]. In this

paper, the proposed approach is modi�ed to repetitive

control, and applied to reject high order repeatable run-

out of hard disk drive.

Repetitive feedback controllers based on the internal

model principle have disadvantages that the closed-loop
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Fig. 2: Multirate Sampling control.

characteristics become worse and di�cult to assure sta-

bility robustness [3]. Therefore, this paper proposes novel

approach which never has these problems, based on the

open-loop estimation and disturbance rejection by feed-

forward approach.

In the hard disk drive control, it is shown that mul-

tirate controllers have advantages both in the feedback

performance [2, 4, 5] and the feedforward performance

[2, 6, 7]. However, this paper makes �rst attempt to ap-

ply the multirate control to vibration suppression control

and repetitive disturbance rejection control.

2 Discretization of controller based on

multirate input control

In this section, novel discretization method of an analog

controller is proposed for the system with longer sampling

period (Tu < Ty) base on the multirate input control.

The proposed method is applied to vibration suppression

controller in 4.1. For the restriction of Tu < Ty, the ame

period Tf is de�ned as Tf = Ty , and the dynamics of the

controller is described by Tf .

In the proposed multirate scheme, the plant input is

changed N times during Ty(= Tf ) as shown in Fig.2. An

integer M is selected so as to M
4

= N=n becomes an inte-

ger, where N is the input multiplicity and n is the plant

order.

For simpli�cation, the continuous-time plant is as-

sumed to be SISO system in this paper. The proposed

methods, however, can be extended to deal with the

MIMO system by the same way as [1].

2.1 Plant Discretization by Multirate Sam-

pling

Consider the continuous-time plant described by

_x(t) = Acx(t) + bcu(t) ; y(t) = ccx(t): (1)

The discrete-time plant discretized by the multirate sam-

pling control (Fig.2) becomes

x[i+ 1] = Ax[i] +Bu[i] ; y[i] = Cx[i]; (2)

where x[i] = x(iT ), and matrices A;B;C and vectors u

are given by�
A B

C O

�
4

=

�
e
AcTf b1 � � � bN

cc 0 � � � 0

�
; (3)

bj
4

=

Z (1��(j�1))Tf

(1��j )Tf

e
Ac�

bcd� ; u
4

= [u1; � � � ; uN ]
T
;(4)

0 = �0 < �1 < �2 < ::: < �N = 1: (5)

The inter-sample plant state at t = (i + �k)Tf is repre-

sented by

~x[i] = ~Ax[i] + ~Bu[i]; (6)
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4

= e
Ac�kTf ; ~x

4
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T
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;

0 < �1 < �2 < ::: < �M = 1: (10)

where �j(j = 0; 1; � � � ; N) and �k(k = 1; � � � ;M) are the

parameters for multirate sampling as shown in Fig.2. If

Tf is divided at same intervals, �j = j=N; �k = k=M .

2.2 Design of continuous-time controller

In this section, the continuous-time controller is designed

based on the regulator and the disturbance observer.

Consider the continuous-time plant model described by

_xp(t) = Acpxp(t) + bcp(u(t)� d(t)) (11)

y(t) = ccpxp(t); (12)

where d(t) is the disturbance input. Let the disturbance

model be

_xd(t) = Acdxd(t) ; d(t) = ccdxd(t): (13)

For example, the step type disturbance can be modeled

by Acd = 0; ccd = 1. The continuous-time augmented

system consisting of (11) and (13) is represented by

_x(t) = Acx(t) + bcu(t) (14)

y(t) = ccx(t); (15)

Ac

4

=

�
Acp �bcpccd

O Acd

�
; bc

4

=

�
bcp

0

�
;x
4

=

�
xp

xd

�
;

cc
4

= [ccp;0]:

For the plant (14), the continuous-time observer is de-

signed from the Gopinath's method by

_v(t) = Âcv̂(t) + b̂cy(t) + Ĵcu(t) (16)

x̂(t) = Ĉcv̂(t) + d̂cy(t): (17)

In order to regulate the plant state and reject the distur-

bance, the continuous-time regulator is designed by

u(t) = f
cp
x̂p(t) + ccdx̂d(t) = f

c
x̂(t); (18)

f
c

4

= [f
cp
; ccd]: (19)

Letting ev be the estimation errors of the observer (ev =

v̂ � v), the following equation is obtained.

x̂(t) = x(t) + Ĉev(t): (20)



From the above equations, the closed-loop system is rep-

resented by"
_xp(t)

_xd(t)

_ev(t)

#
=

2
4 AFcp O bcpfcĈc

O Ad O

O O Âc

3
5" xp(t)

xd(t)

ev(t)

#
; (21)

where AFcp

4

= Acp+bcpfcp. The transitions of the states

xp;xd from t = iTf to t = (i+ �k)Tf are represented by"
xp[i+ �k]

xd[i+ �k]

ev[i+ 1]

#
= (22)

2
64 e

AFcp�kTf O �

O e
Ad�kTf O

O O e
^
AcTf

3
75
"
xp[i]

xd[i]

ev [i]

#
: (23)

2.3 Discretization of the controller by multi-

rate input control

In this section, the digital controller is obtained from the

continuous-time controller designed in 2.2 using multirate

input control.

Discretizing (14) by the multirate sampling control, the

inter-sample plant state at t = (i+�k)Tf can be calculated

from the kth row of (6) by

x[i+ �k] = ~Akx[i] + ~Bku[i] (24)

~Ak =

�
~Apk

~Apdk

O ~Adk

�
; ~Bk =

�
~Bpk

O

�
:

For the plant (14) discretized by (2), the discrete-time

observer on the sampling points is obtained by

v̂[i + 1] = Âv̂[i] + b̂y[i] + Ĵu[i] (25)

x̂[i] = Ĉv̂[i] + d̂y[i]: (26)

As shown in Fig.3, let the feedback control law be

u[i] = F px̂p[i] + F dx̂d[i] = F x̂[i]; (27)

where F
4

= [F p;F d]. From (24) to (20), the closed-loop

system is represented by"
xp[i+ �k]

xd[i+ �k]

ev[i+ 1]

#
= (28)2

4 ~Apk + ~BpkF p
~Apdk + ~BpkF d

~BpkFĈ

O ~Adk O

O O Â

3
5
"
xp[i]

xd[i]

ev[i]

#
:

Comparing (22) and (28), if the following conditions

are satis�ed, the plant state (xp) of the digitally con-

trolled system completely matches that of the original

continuous-time system at M inter-sample points on t =

(i+ �k)Tf .

~Apk + ~BpkF p = e
AFcp�kTf ; (29)

~Apdk + ~BpkF d = O; (30)

ev[i] = O: (31)

The simultaneous equations of (29) and (30) for all k(=

1; � � � ;M) become

~Ap + ~BpF p = E; ~Apd + ~BpF d = O (32)�
~Ap

~Apd
~Bp E

�
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Fig. 3: Multirate control with disturbance observer.
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Because non-singularity of the matrix ~Bp can be assured

[2, 8], F p and F d are obtained by

F p = ~B
�1

p (E �
~Apd); F d = �

~B
�1

p
~Apd: (33)

Moreover, [1] proposed the discretization for observer

based on multirate output control, where the plant output

is detected more frequently than the control period (Ty <

Tu). However, in this paper, discrete-time observer (25)

is simply obtained, so that the eigenvalues of Â become

identical to those of e
^
AcTf , because the plant is assumed

to have longer sampling period (Ty > Tu).

Substituting (25) for (27), the feedback type controller

is obtained by�
v̂[i+ 1]

u[i]

�
=

�
Â+ ĴF Ĉ b̂+ ĴF d̂

F Ĉ F d̂

��
v̂[i]

y[i]

�
: (34)

2.4 Initial value compensation

In this section, the initial value of the controller (34) is

considered in order to eliminate the estimation error of

the observer and satisfy (31). From (26), if x[0] is known,

the initial value of controller should be set by

Ĉv̂[0] = x[0] � d̂y[0]: (35)

By this compensation, it is possible to prevent the over-

shoot of the step (or initial value) response because the

plant state converges only by the mode of the regulator.

Therefore, f
cp

should be designed to assign the eigenval-

ues of AFcp to the zero (or small) overshoot region.

3 Repetitive control based on multi-

rate input control

In this section, two multirate repetitive controllers are

proposed, which are 1) feedback approach based on inter-

nal model principle and 2) feedforward disturbance rejec-

tion approach based on the open-loop estimation.

3.1 Feedback repetitive control

The periodic disturbance of T0
4

= 2�=!0 can be repre-

sented by

d(t) = a0 +

1X
k=1

ak cos k!0t+ bk sin k!0t: (36)
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Fig. 5: Hard disk drive.

Letting the disturbance model (13) be (36), the repetitive

feedback controller is obtained by (34), which has internal

model s2 + (k!0)
2.

From (28) and (30), the inuence from disturbance

xd[i] to the inter-sample state xp[i+ �k] becomes zero at

t = (i+ �k)Tf . Moreover, xp[i] and ev[i] converge to zero

at the rate of the eigenvalues of ~ApM + ~BpMF p and Â

(the poles of the regulator and observer). Therefore, the

repetitive disturbance is perfectly rejected (xp[i+�k] = 0)

at M inter-sample points in the steady state.

3.2 Feedforward repetitive control

The repetitive feedback control based on the internal

model principle has disadvantages that the closed-loop

characteristics become worse and di�cult to assure stabil-

ity robustness [3]. Therefore, in this section, novel repet-

itive controller based on the open-loop estimation and

feedforward disturbance rejection are proposed as shown

in Fig.4

The repetitive disturbance is estimated by the open-

loop disturbance observer. When the estimation con-

verges to the steady state, the switch turns on at t = t0.

After that, the switch turns o� immediately. The repeti-

tive disturbance is calculated from the initial value x̂d[t0]

by

x̂d[i+ 1] = Addx̂d[i]; (37)

where Add = e
AcdTf . Because the disturbance feedfor-

ward F d is obtained by (33), the perfect disturbance re-

jection is achieved at M inter-sample points. The advan-

tage of this approach is that the stability robustness can

be guaranteed easily only by the conventional feedback

controller C2[z].
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Table 1: Plant's parameters.

Ampli�er gain Ka 1.996 A/V

Force constant Kf 2.95 N/A

Mass Mp 6.983 g

Track pitch Tp 3.608 �m/trk

Sampling time Ts 138.54 �sec

Input multiplicity N 4

Mechanical resonance !1n 2� � 2:7 � 103 rad/sec

Damping �1n 0.1

4 Applications to HDD

In the head-positioning control of hard disk drives (Fig.5),

the control strategy is divided into three modes; seeking

mode, settling mode, and following mode. In the seeking

mode, the head is moved to the desired track as fast as

possible. Next, the head is settled to the track without

overshoot in the settling mode. After that, the head need

to be positioned on the desired track while the information

is read or written. In the following mode, the head is

positioned �nely on the desired track under the vibrations

generated by the disk rotation and disturbance [9].

In this section, the proposed feedback controllers are

applied to the settling and following modes. While servo

signals are detected at a constant period about 100 [�s],

the control input can be changed 2�4 times between one

sampling period in the recent hardware [6, 7]. Therefore,

the proposed approaches are applicable.

4.1 Vibration suppression control based on

multirate input control

Let the nominal model of this plant be

Pc(s) =
KfKa

Mp

1

s2

!
2
1n

s2 + 2�1n!1ns+ !2
1n

: (38)
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The parameters of this plant are shown in Table 1. This

model is obtained from the experimental setup of 3.5-in

hard disk drive [2]. As shown in Fig.6, the actual plant has

the �rst mechanical resonance mode around 2.7 [kHz], and

its variation range is � 500 [Hz]. The Nyquist frequency

(3.6 [kHz]) is close to this resonance mode. Therefore, it is

very di�cult to suppress the vibration in the conventional

single-rate controller.

Continuous-time controller is designed by regulator and

disturbance observer, in which the disturbance is modeled

by the step type function d(s) = 1=s, the poles of the reg-

ulator are set to (s+ !c)
4, and those of the observer are

set to (s+ !c)
2(s2 + 2�1!1ns+ !

2
1n). As shown in Fig.7,

this controller has notch characteristic at the resonance

pe(t)

dy(t)du(t)

n(t)
SHM

Pc(s)

C2[z]
�
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Fig. 10: Following mode.
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d(t) = Tp sin k!0t; Tp = 3:6�m

frequency. The parameter !c is tuned so that the band-

width of the closed-loop system is set as high as possible,

and stabilize the � 1 [kHz] resonance variation. Fig.7 also

shows that the Tustin transformation has large approxi-

mation error because the resonance mode is close to the

Nyquist frequency.

Simulated results are shown in Fig.8 and Fig.9, which

indicate that the proposed method has better perfor-

mance than the Tustin transformations. "Multirate

Tustin" is composed of the digital controller discretized

by Tustin transformation on Ty=N and the interpolator

which has an up-sampler and a zero-order-hold. While

the responses of the Tustin transformations are oscillated,

that of the proposed method has no vibration.

4.2 Repetitive control based on multirate in-

put control

In this section, the proposed multirate repetitive con-

trollers are applied to the following mode. The block di-

agram of the following mode is shown in Fig.10. The dis-

turbance dy(t) represents the vibration of the track gen-

erated by the disk rotation, which is called track runout.

The objective of this mode is to make the position er-

ror pe(t) zero. n(t) and du(t) represent the measurement

noise and acceleration disturbance, respectively.

In the following mode, two kinds of disturbance should

be considered; repeatable and non-repeatable runout. Re-

peatable runout (RRO) is synchronous with the disk ro-

tation, and non-repeatable runout (NRRO) is not syn-

chronous. In this paper, the RRO is perfectly rejected

by the proposed repetitive controllers at M inter-sample

points.

For simpli�cation, the plant is modeled by

Pc(s) =
KfKa

Mp

1

s2
; (39)
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Fig. 13: Feedforward repetitive control

and RRO are considered at 1st, 10th, and 20th order.

d(t) =
X

k=1;10;20

ak cos k!0t+ bk sin k!0t; (40)

where !0 = 2�120[rad/sec]. Fig.11 shows the simulated

results of the proposed repetitive feedback control under

the 120k [Hz] sinusoidal runout added from t = 0, which

amplitude is 1 [trk] = 3.6[�m]. Although the transient po-

sition errors are large, the position errors become zero at

sampling point in the steady state as shown in Fig.11(a),

because the feedback controllers have the internal mod-

els of the RRO. However, Fig.11(b) � (c) show that the

inter-sample responses have the tracking errors even in

the steady state. It is shown that the errors of the plant

position and velocity become zero at every Ty=2 by the

proposed controllers1. Moreover, the inter-sample posi-

tion errors of the proposed multirate method are much

smaller than those of the single-rate controller. Especially,

in the high frequency region (k = 20), the position error

is much improved by the proposed multirate control, be-

cause the single-rate controller has large error (0.8 [�m]

= 22 %).

However, Fig.12(a) indicates the disadvantages of the

feedback repetitive controller, where the closed-loop char-

acteristics become worse and di�cult to assure stability

robustness. On the other hand, in the proposed feedfor-

ward repetitive control, the closed-loop characteristics is

dependent only on C2[z] in Fig.4 as shown in Fig.12(b).

Simulated results of the feedforward repetitive control

are shown in Fig.13. The switch turns on at just t0 =

10[ms]. After that, the repetitive disturbance is perfectly

rejected at M inter-sample points in steady state.

1In the proposed method, the perfect disturbance rejection

is assured M(= N=np = 4=2 = 2) times during Ty.

5 Conclusion

In this paper, the digital control systems which have hard-

ware restrictions of Tu < Ty are assumed, novel multirate

feedback controllers are proposed, which achieve vibration

suppression and disturbance rejection in the semi-Nyquist

frequency region.

Furthermore, the proposed methods are applied to the

settling and following modes of the hard disk drive. The

advantages of these approaches are demonstrated by the

simulations. The proposed methods can be extended to

the plants with time delay [10].

The future works are 1) improvements of the original

analog controller for vibration suppression and 2) experi-

mental evaluations of the proposed methods.

Finally, the authors would like to note that part of this

research is carried out with a subsidy of the Scienti�c

Research Fund of the Ministry of Education.
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