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Abstract: Vibration suppression and disturbance rejection in torsional system are important
issue in the future motion control. In this paper, first, a brief review on various control
strategies is given. Next, a new control technique based on the disturbance observer, the
"resonance ratio control" is proposed. By realizing Manabe's model polynomial, the 2-inertia
non-stiff system can be controlled effectively although the controller's order is only 2.
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1. INTRODUCTION

The problem on vibration suppression and disturbance
rejection in flexible system originates in steel rolling mill
system, where the load is coupled to the driving motor by a
long shaft. The small elasticity of the shaft is magnified
and has a vibrational effect on the load speed.

As the newly required speed response is very close to the
first resonant frequency, only conventional P&I control are
no longer effective. To overcome the problem, various
control strategies have been proposed mainly for controlling
the 2-inertia system, the simplest model (Hori, 1992;
1995a). Here, the history of control theory can been seen.
In this paper, a brief review of them will be given.

Next, a new control technique based on the disturbance
observer is proposed as a simple and practical strategy. It is
the "resonance ratio control" based on the "fast disturbance
observer". The resonance ratio is the ratio of the resonance
and anti-resonance frequencies in 2-inertia system. By
feeding back the torsional torque estimated by the
disturbance observer, the virtual motor inertia moment can
be changed to any arbitrarily value. Yuki (1993) suggested
that vibration can be suppressed effectively by adjusting the
resonance ratio to be about 5 . Sugiura (1994) used the
same ratio in speed control system. In this paper, it will be
shown that 0.8 5 is the optimal ratio when realizing
"Manabe's model polynomial".

2. STEEL ROLLING MILL SYSTEM
and its MATHEMATICAL MODEL

Our aim is to control the roll speed in the presence of (1)
torsional vibration, (2) system parameter variation, (3)
disturbance torque TL, and (4) in the absence of a dedicated
loadside speed sensor. P&I controller was designed to
control one-inertia system, where the coupling shafts are
assumed to have infinite stiffness. However, recent new
requirements have forced us to develop newer techniques,
i.e., (1) faster speed response, (2) rejection of disturbance on
the loadside, and (3) robustness to parameter variations.
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Fig.1 Typical configuration of steel rolling mill system.

Now the problem is not restricted anymore to the case of
rolling mill (Harakawa, 1988). New areas such as flexible
robotic joint, precise positioning system (Schäfer, et.al.,
1991) and large scale space structure have the same
problem. Parameter variation is a very much existent
phenomenon in these areas.



Fig.1 illustrates the typical configuration of steel rolling
mill system. As this system is the distributed parameter
system, using the modal analysis it should be modeled as a
multi-inertia system connected by springs. The 2-inertia
model shown in Fig.2 is the simplest model considering up
to the first mode. Fig.3 shows its block diagram.
Numerous papers are found to deal with control of such
system. In particular, 2-inertia system has been
investigated as the benchmark problem in ACC’90 and '91
(Wie, et.al., 1990) In SICE, Japan, similar bench mark
problems are presented and several techniques are evaluated
(Hara, et.al., 1995).

The state equations take the form of
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State variables are M, s and L. Control input is the
motor torque TM. Output variable which can be measured is
the motor speed M. Controlled variable is the load speed

L and disturbance TL is injected into the load.

Neglecting friction terms, the transfer function from TM to

M, which plays an important role in the closed loop
design, is given by
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Fig.2 2-inertia system model.
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Fig.3 Block diagram of 2-inertia system.
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The Bode plot is drawn in Fig.4. The resonant and anti-
resonant frequencies are given by

r0 =  K s 
JL

  1+ JL

 JM0

  (3)

and

a
  =  K s 
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At these frequencies, the phase characteristics change
drastically. The resonance ratio is defined by

H0 = r0

a
 = 1+ JL

JM0

   = 1+R0 (5)

where R0 is called the inertia ratio given by R0=JL/JM0.
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Fig.4 Bode plot of M./TM when R0=1.

3. VARIOUS CONTROL STRATEGIES

3.1 Time Derivative Feedback

The starting point of vibration suppression is the speed
derivative (i.e., acceleration) feedback as is shown in Fig.5
(Sugano, 1990). Vibration can be suppressed fairly well if
the derivative gain Kd is adjusted appropriately.
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Fig.5 Speed derivative compensation.



3.2 Model Following Controls

The control techniques in this category aim to realize
similar response to that of the damped reference model by
feeding back the output difference from the actual plant.

Simulator Following Control (SFC)

SFC (Hasegawa, 1986) shown in Fig.6 is an excellent and
practical method. It is widely used in actual industrial drive
systems like rolling mill and elevator system. The
advantage of SFC is that it's function is "optional" and it
can be easily adjusted on site.
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Fig.6 Simulator following control system.

Model Following TDOF Control

Fig.7 shows the model following Two-Degree-Of-Freedom
control system proposed by Koyama, et.al. (1991). Speed
controller 1 is the low gain controller. The main controller
is controller 2 to control the model. The difference
between the real plant output and the model output is fed
back to the control input of the model.
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Fig.7 Model following TDOF control system.

3.3 Application of Disturbance Observer

Disturbance observer was originally proposed for
disturbance rejection and robustification to parameter
variation in single-inertia system (Ohishi, 1987). It is well
known that, if this technique is applied to the 2-inertia
system as it is, free vibration due to the load inertia and
spring is induced. However, the disturbance observer has

three parameters, i.e., the compensation gain, the cutoff
frequency, and the nominal inertia moment used in the
observer. By appropriately selecting these parameters, it is
effective for vibration suppression.

Resonance Ratio Control

The resonance ratio control is based on the fast disturbance
observer. Only the compensation gain is adjusted. This
technique will be investigated in detail in the next chapter.

Slow Disturbance Observer

Fig.8 shows the slow disturbance observer proposed by
Umida (1994). By putting k1=1 and k2=0 for simplicity,
eq.(6) is obtained 
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where q=1/Tq. It is seen that the phase lead compensation
from torque command and the derivative feedback from the
torsional torque are applied. Iwata, et.al. (1994) showed
that the optimal observer's cutoff is given by

q = 2

R0
2 + 1

 a (7)

which is a little slower than the anti-resonant frequency.
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Fig.8 Slow disturbance observer application.

3.4 State Feedback Control

Various state feedback techniques have been proposed. The
system poles can be located to any desired positions. As
only the motor torque and speed are measurable, other state
variables should be estimated by observer.

SFLAC (State Feedback and Load Acceleration Control) is
proposed by Hori (1994a) as a typical application of state
feedback. Fig.9 illustrates its configuration. It seems



relatively complex, but its design concept is straightforward
and clear. Dhaouadi (1992) proposed more sophisticated
technique using two observers. It has superior control
performance though the controller's order is much higher.
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4. RESONANCE RATIO CONTROL

4.1 System Model

In this chapter, "resonance ratio control" is proposed and
investigated. First, to make discussion general,

JM0 + JL = 1 ,  Ks  = 1 (8), (9)

is assumed in the two-inertia model. It means that the total
inertia moment of the motor and load, and the spring
coefficient are fixed. Various 2-inertia systems with
different inertia ratios will be considered under this
assumption.

4.2 Resonance Ratio Control

Fig.10 depicts the resonance ratio control using the fast
disturbance observer. In conventional disturbance observer
applications, 100% of the estimated disturbance is fed back.
In this case, 1-K of the estimated disturbance is used (Hori,
1994b). Fig.11 shows the new system, when the
disturbance observer's cutoff frequency is high enough. The
virtual motor inertia moment is changed as

 JM =  JM0 K (10)

This means that the resonant frequency can be changed as

r =  K s 1 
 JM 

 +  1 
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 (11)

and the resonance ratio as

 H  =  1+R  =  1+R0K (12)
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4.3 Normalization

Fig.12 is the block diagram from the new input torque TM'
to the motor speed M. This is normalized as is shown in
Fig.13 putting a=1 and JL=1. Here q is the parameter
representing the resonance ratio given by

q = 1 H2 = 1 1+R  <1 (13)
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Fig.13 Normalized system by putting a=1 and JL=1.

4.4 Controller Design using Manabe Polynomials

As the speed controller C(s), P, P&I and PID controllers are
designed considering the closed loop characteristics.
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Fig.14 Design of the speed controller C(s).

When C(s)=Kp+KI /s+KDs (PID controller) is applied, the
characteristic equation of the closed loop system is given by

P(s) = s 2(1+qs2) +(KDs 2+Kp s+KI)(1-q)(1+s 2)                 
         = {q+KD (1-q)}s 4+Kp (1-q)s 3                                    

       +{1+KD (1-q) +KI(1-q)}s 2+Kp (1-q)s +KI (1-q)
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(14)

Manabe's standard form (Manabe, 1991; also refer to
Kessler, 1960) suggests that
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By solving these equations, the controller constants are
given as follows by using q as the parameter. (The actual
controller gains can be easily given after de-normalization
by a and JL.)

Kp = 10 2
11

 , K I = 4
11

 , KD = 5-16q

 11(1-q) 
                (18),(19),(20)

Kp and KI are completely same to those of only P&I
controller case. The differentiation gain KD is the function
of q. This means that, whatever resonance ratio H=1/q2 is
chosen, the criterion of Manabe Polynomial ( 1=2.5,

2= 3=...=2) can be satisfied by corresponding choice of
KD. When q>5/16, i.e., H<0.8 5 and R<2.2=11/5, KD
should be negative. It is often reported that the positive
feedback of acceleration is effective for vibration
suppression. This corresponds to the case where the
original inertia ratio R0 is smaller than 2.2.

There are no need to use all components of PID controller.
No usage of KD has the advantage from the viewpoint of
controller simplicity. This case gives the optimal resonance
ratio as given by eq.(21). The order of the finally obtained
controller is only 2.

q = 5 16 ,  H = 0.8 5,  R =JM JL = 5 11 (21)

4.5 Simulation Results

Fig.15 shows the simulation results of two different cases,
where the original inertia ratios are 1 and 0.2. TDOF P&I
controller is used to suppress the overshoot in command
response. Simulation is done under the condition with
10~20% model errors, backlash (+/-0.01[rad]) and torque
limit (+/-1.2[Nm]).

Excellent performances can be seen both in vibration
suppression and disturbance rejection. It is confirmed that
the resonance ratio control is quite effective to wide range of
inertia ratio. Also, the motor torque is negative just after
the disturbance is added at t=25. This means that the
disturbance rejection and vibration suppression are not
consistent requirements for 2-inertia system with the
original inertia ratio (R0) smaller than 11/5=2.2.

5. CONCLUSION

A review was given on some techniques to suppress
vibration and to reject disturbance in torsional system.
Next, the "resonance ratio control" based on the "fast
disturbance observer" was proposed and its excellent
performance was demonstrated by simulation.

A slight performance degradation is seen in Fig.15(b) where
the original inertia ratio is extremely small. Fig.16 shows
the performance degradation of resonance ratio control when
the disturbance estimation becomes slower. How to decide
the observer's cutoff frequency is the next problem.

Recently, H∞ control, µ-synthesis and even LMI are applied
to this problem. However, following practical requirements
should be taken into account, e.g., (1) Design concept is
clear, (2) Controller is easily adjustable on site, (3)
Controller can be easily implemented, and (4) Controlled
system is robust to backlash and torque limit (Hori, 1995).
In these aspects, a relatively classical method as proposed in
this paper is also attractive.
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due to the slower disturbance estimation when R0=1.
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Fig.15 Simulation results.

(In the time response simulation, at t =5, *=1(step) is
commanded and at t =25, TL=-0.5 (step) is added.)
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