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Abstract: Vibration suppression and disturbance rejection in torsional systems are important issue in the future motion
control. For example, in recent steel rolling mill systems, according to the application of high response AC drive system, the
long shaft between the motor and the roll can no longer be assumed stiff. In this paper, first, I review various control
strategies proposed until now: simple acceleration feedback, model following control, state feedback and so on. Next, I
propose two new control techniques based on the disturbance observer. One is the "resonance ratio control" based on the
"fast disturbance observer". Another is the "slow disturbance observer". In both cases, by realizing Manabe's model
polynomial, the 2-inertia non-stiff system can be controlled effectively.
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1. INTRODUCTION

Vibration suppression and disturbance rejection in flexible system must
be important in the future motion control. It originates in the steel
rolling mill system, where the load is coupled to the driving motor by a
long shaft. As the newly required speed response is very close to the
first resonant frequency of such systems, only the conventional
techniques based on P&I control are not effective enough.

To overcome the problems, various control strategies have been
proposed mainly for controlling the 2-inertia system, the simplest
model of the flexible system.[1][2] Here, we can see the history of
control theory: simple acceleration feedback, model following control,
observer-based state feedback, and modern H∞ control. In this paper,
I will give a brief review of these methods, except for H∞ control
methods, because we can see a lot of reviews on H∞ control
application.

Instead, I will propose and compare two relatively simple and practical
control techniques based on the disturbance observer. One is the
"resonance ratio control" based on the "fast disturbance observer".
Resonance ratio, the ratio of the resonance and anti-resonance
frequencies in 2-inertia system, plays an important role. By feeding
back the torsional torque estimated by the "fast disturbance observer",
the virtual motor inertia moment can be changed to any arbitrarily
value. This means that we can change the resonance frequency and the
resonance ratio. Yuki suggested that vibration can be suppressed
effectively by adjusting the resonance ratio to be about 5. [13] I will
show that 0.8 5 is the optimal ratio in the speed control of the 2-inertia
system by realizing Manabe's model polynomial.

Another method is the application of "slow disturbance observer"
originally proposed by Umida.[15] In both cases, by realizing
"Manabe's model polynomial", the 2-inertia system can be controlled
effectively.

2. STEEL ROLLING MILL SYSTEM
and its MATHEMATICAL MODEL

The problem originates in the steel rolling mill system, where the load
is coupled to the driving motor by a long shaft.[3][4] The small
elasticity of the shaft gets magnified and has a vibrational effect on the
load speed.

Our aim is to control the roll speed in the presence of
(1) torsional vibration,
(2) system parameter variation,
(3) disturbance torque TL,

and (4) in the absence of a dedicated loadside speed sensor.

P&I controller used until now was designed to control one-inertia
system, where the coupling shafts are assumed to have infinite
stiffness, but the new requirements as follows force us to develop new
techniques.

(1) faster speed response,
(2) rejection of disturbance on the loadside,

and (3) robustness to parameter variations.

As the newly required response speed is very close to the resonant
frequency of the system. It has been shown that there is a limit to
which the proportional gain of the P&I controller can be raised to
improve performance. The conventional P&I controller is not effective
enough and falls short of the new requirements.

The problem is not restricted anymore to the case of rolling mills.[5]

New areas such as robotic flexible joint, large scale space structure and
very precise positioning system have the same problem. Parameter
variation is a very much existent phenomenon in these areas. Space
structures are multi-inertia systems with long coupling lengths, but a
research in 2-inertia systems is still a well justified starting point.

We can find numerous papers which dealt with a multi-inertia system
(in most cases, 2-inertia systems are assumed), and also a few review
papers to compare some of them are reported. A spring-coupled 2-
inertia system has been investigated as the benchmark problem in
ACC’90 and '91.[6] In SICE, Japan, similar bench mark problems are
presented and several techniques are proposed and discussed. [7] One
of the important points to notice is that we should consider not only the
resonant frequency but also the wide range of the inertia ratio given by
R0=JL (load inertia)/JM0(motor inertia). It is not easy to develop a

general method applicable to a wide range of R0.

Fig.1 illustrates the typical configuration of steel rolling mill system.
This system is basically the distributed parameter system. By using
the modal analysis, it can be modeled as a multi-inertia (for example,
12 inertia moments) system having several inertia moments and
springs.
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Fig.3 Block diagram of 2-inertia system.

The 2-inertia model shown in Fig.2 is the simplest model considering
up to the first model of the multi-inertia system. It should be reminded
that the 2-inertia model has a big modeling error. Fig.3 shows the
block diagram of the 2-inertia system.[1][2] Its state equations take the
form of
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The state variables are M, s and L. The control input is the motor

torque TM. The output variable we can measure is the motor speed

M. The controlled variable is the load speed L and the disturbance

TL is injected directly into the loadside.

The transfer function matrix between the input and output is given by

M 

L 
 = 

G11(s) G12(s)
G21(s) G22(s)

  TM
TL 

(2)

G11(s), the transfer function from TM to M, which is important for

the closed loop design is given by

G11(s)                                                                                                

= JLs 2+BLs +Ks

JM0JLs3+(JM0BL+JLBL)s 2+{Ks(JM0+JL)+BMBL}s +Ks(BM+BL)
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2 

 s 2+ r0
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                              (3)

The Bode diagram of this transfer function is drawn in Fig.4. The
resonant and anti-resonant frequencies are given by

r0 =  Ks 
JL

  1+ JL
 JM0

  (4)

and

a
  =  Ks 

JL
 (5)

At these frequencies, the phase characteristics change drastically. The
resonance ratio, which plays an important role, is defined by eq.(6).

H0 = r0

a
 = 1+ JL

JM0
   = 1+R0 (6)

where R0 is called the inertia ratio given by R0=JL/JM0.

-100

-50

0

50

100

101 10 2 103
[rad/s]

[d
B

][
de

g]

phase

magnitude

Fig.4 Bode plot of the transfer function from TM to M.

(JM0=0.02, JL=0.01[kgm2], BM=BL=0, Ks=50[Nm/rad])

3. VARIOUS CONTROL STRATEGIES

3.1  P&I Speed Controller

Fig.5 shows the simulation result of P&I controller which is designed
for 1-inertia system where the stiffness of the shaft is infinite. The
response is vibrating and the effect of the disturbance torque of
50[Nm] added at t=0.5[s] is vibrational and very large.
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Fig.5 Simulation result of P&I controller.
(JM0=0.02, JL=0.01[kgm2], BM=BL=0, Ks=50[Nm/rad])

3.2  Time Derivative Feedback

We need a countermeasure to cope with the vibration when the

crossover frequency c of the speed minor loop increased and its ratio

to the mechanical resonant frequency o became 2.5~3. For this aim,

the so-called speed damping controller to insert a phase lead
compensator into the speed feedback path was used.

The basic technique of vibration suppression control is the speed
derivative feedback. In the system of Fig.6 proposed relatively
recently, we can see a fairly good vibration suppression if the
derivative gain Kd is adjusted appropriately.[8]
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3.3  Model Following Controls

The controls in this category are aiming to realize similar response
characteristics to that of the reference model by injecting the same
input both to the reference model and the real plant and by feeding
back the difference of their output signals. SFC is the representative
control in this category.

<Simulator Following Control>

Simulator Following Control (SFC), proposed by Kurosawa, is an
excellent practical method to suppress the effect of parameter variation
and the torsional vibration.[9] It is widely used in actual industrial
drive systems like rolling mill or elevator system. Fig.7 shows its
block diagram. The difference between the output of the motor model
and the actual motor speed is added to the torque command.

One of the advantages of SFC is that SFC is the optional function and
that SFC gain can be easily adjusted on site. However, it is unclear
how to get better performance than that in Fig.7. Recently, the
disturbance observer based method is proved to be equivalent to SFC.
The observer technique is superior for further performance
improvement.
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<Model Following TDOF Control>

Fig.8 shows the model following TDOF (Two-Degree-Of-Freedom)
control system proposed by Koyama.[10] Speed controller 1 is the
low gain controller only to stabilize the plant. The main controller is
controller 2, which controls the model with no vibrational

components. The control input of controller 2 is also used for the real
plant. The difference between the real plant output and the model
output is fed back via P&I controller called disturbance estimator.

3.4  Application of Disturbance Observer

Disturbance observer was originally developed for disturbance
rejection and robustification to parameter variations in 1-inertia
system.[11][12] If we apply this technique to the 2-inertia system as it
is, the free vibration due to the load inertia and the spring is induced
because the torsional torque T2 is almost completely compensated for.

Disturbance observer has three parameters: the compensation gain, the
cut-off frequency of observer, and the inertia moment to be used in the
observer. It is pointed out that, by appropriately selecting these
parameters, vibration can be effectively suppressed in 2-inertia
system.

<Resonance control>

Yuki proposed the resonance control which uses the fast disturbance
observer.[13] By feeding back 1-K of the estimated disturbance, the
original 2-inertia system is changed to a new system, where the motor
inertia is changed to 1/K times of the real inertia: JM=JM0/K .

That means the resonant frequency of the new system is changed to

r  =  Ks
JL

  1 +  JL
JM0

K  (7)

and the resonance ratio can be controlled by K as

H  = r

a
  = 1 +  JL

JM0
K   (8)

He called this technique "resonance control". The anti-resonant
frequency does not change. Yuki suggested that R= 5 (JM=JL/4) is

the optimal ratio for effective vibration suppression in a flexible
robotic arm controlled by a P&D controller. This optimal resonance
ratio is also applied to the speed control system with a P&I controller.
It corresponds to the pole allocation of the closed system at the
quadruple pole.[14]

It should be noted that, when the motor inertia is much larger than the
load inertia as in the steel rolling mill system, the resonance ratio
control of R= 5 makes the disturbance response poorer. For example,
when we realize R= 5 for the system with JM0>JL/4, K>1 is needed.

This means that the estimated disturbance is used to increase its effect.
This fact suggests that the vibration suppression and the disturbance
rejection are opposite objectives.

<Slow Disturbance Observer>
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Fig.9 Slow disturbance observer application.

Fig.9 shows the original form of the slow disturbance observer



proposed by Umida.[15] The configuration with two gains (k1 and k2)

seems complicated, but it is basically a simple disturbance observer in
1-inertia system.

For simplicity, putting as k1=1, k2=0, eq.(9) is obtained

M =  1
 JM0s 

  ( 
s + q

s + JL
JM0

q

 TM
*   -  s 

s + JL
JM0

q 

 T2 ) (9)

where q=1/Tq. We can see that the phase lead compensation from

torque command and the derivative feedback from the torsional torque

are applied. By analyzing the transfer characteristics from TM to s,

Iwata showed that the optimal observer's cut-off frequency is given by

q =   2

R0
2 + 1

 a (10)

which is a little smaller than the anti-resonant frequency.[16]

3.5  State Feedback Controls

Various state feedback techniques to locate the system poles to desired
positions have been investigated.[17][18] In 2-inertia system case, as
only the motor torque (or current) and the motor speed are measurable,
we should estimate other state variables by using an state observer.
When our aim is limited only to the vibration suppression, the
disturbance torque TL can be neglected in the observer design. In

contrast, when we need quick disturbance rejection performance, we
should design a disturbance observer together with the state observer.

<SFLAC>

SFLAC (State Feedback and Load Acceleration Control) is proposed
by Hori, et.al.[17] The observer estimates the unmeasurable state

variables: L and s, and the disturbance TL simultaneously. The

extended system is made by adding the disturbance equation: TL=0.
Minimal order observer is designed and the observer poles are

assigned at s=- g. By using the three state variables: the measured

value M and the estimates of 2 and s, the state feedback

TM  = TM
  * + f1 M + f2 L + f3 s (11)

is applied to allocate the system poles at s= - f.

Next, by assuming the output of the speed controller as the load
acceleration command, the torque reference is given as

TM
  * = Ka  { K  Ts + 1

Ts
 ( *- M ) - L  } (12)

to control the load acceleration. The load acceleration 
L

can be

estimated as

L  =   Ksn  
J2n

  s   -  1
 JLn 

 TL (13)

Fig.10 illustrates the block diagram of SFLAC. Fig.11 shows its
excellent time response characteristics with the +/-100[Nm] torque
limiter. SFLAC seems to have a very complex structure, but its design
concept is straightforward and clear.
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<Suppression of Higher Order Vibration Modes>

Fig.12 shows the latest proposal of Kubo and Dhaouadi.[18] The
distinct feature of Fig.12 is that two observers are used. The torsional
torque observer is the first order disturbance observer with quick
convergence. The two inertia observer is similar to one in SFLAC but
has slower convergence speed so as not to be affected by the higher
order vibrational modes. The difference between the disturbance
torques estimated by these two observers involves higher order
vibration modes' effect and equivalent torques caused by various
nonlinear characteristics. By feeding back this signal, the suppression
of higher order vibration modes and the effect of backlash is possible.
This method is a straightforward application of observer and state
feedback technology and its control performance is very excellent.

TL^

ωL^

+
-

+ + +

state
feedback

K1

s

speed
controller

(I-P)

 ω*

+
+

+

TM            

x'=Ax+Bu
 y=Cx+Du

2-inertia observer

K2

x'=Ax+Bu
 y=Cx+Du

torsional
torque observer

-
+

T2^

+
-

Kd

higher  order vibration
mode suppression

TM*

ωM

T2^

Fig.12 Higher order vibration mode suppression
control using two observers.



3.6  Future Direction of the Torsional System Control

In the near future, sophisticated H∞ controllers will be applied to
torsional system control. In the past, the author thought that H∞
controllers should be designed very easily without any deep
consideration, but it was wrong. H∞ controller design needs highly
sophisticated skill. Much knowledge is needed in selecting the signals
and the weighting functions.

Recently, µ-synthesis is applied and shows good results. In
particular, Hirata modeled the parameter variation in 2-inertia system

using descriptor form representation and applied µ-synthesis. New
techniques are being developed which deal with the real number
parameter variations as they are. At present, it is easy just to design
excellent controllers on computer. However, we should take some
practical requirements into account. For example,

(1) Anyone should understand the new technique.
(Complicated theory is never used widely.)

(2) Operator should adjust the controller on site easily.
(We can not convey CAD into factory.)

(3) Controller should be simple.
(Process computer is busy for doing many other jobs
than control algorithms.)

(4) Control system should be robust to backlash and
torque limit.

(Controller should be adjusted quickly according to
the practical restriction.)

It is not easy to combine H∞ controller with adaptive techniques.
Recently, I proposed very simple methods mainly based on the
conventional polynomial approach, where the controller's order is
only 2. I will like to explain these methods in the next chapter. Its
control performance is better than or equivalent to any other methods
reviewed here. Such a conventional technique without using the latest
frequency-shaping technique is also attractive.

4. TWO NOVEL TECHNIQUES
using DISTURBANCE OBSERVER

4.1  System Model

In Fig.3, the block diagram of the 2-inertia system, I put

JM0 + JL = 1 ,   Ks  = 1 (14),  (15)

These equations mean that the total inertia moment of the motor and
the load, and the spring coefficient are fixed. Various 2-inertia
systems with different inertia ratios will be considered under these
relations.

Fig.13 illustrates the transfer function block diagrams neglecting the
disturbance TL. Fig.13(a) has a redundancy because we can see a

pole-zero cancellation. Representation of Fig.13(b) is based on the
coprime factorization.
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Fig.13 Transfer function representations.

4.2  Resonance Ratio Control by Fast Disturbance
Observer

<Resonance Ratio Control>

Fig.14 depicts the resonance ratio control using the fast disturbance
observer. In usual disturbance observer applications, 100% of the
estimated disturbance is fed back to the motor torque. In contrast to
this, 1-K of the estimated disturbance is fed back. Fig.15 shows the
new system where the resonance ratio control is applied. We can
change the virtual motor inertia moment to any value as given by

 JM =  JM0 K (16)

This means that we can change the resonant frequency as

r =  Ks 1 
 JM 

 +  1 
 JL 

 (17)

and the resonance ratio as

 H  =  1+R   = 1+ JL
JM

    

              = 1 + JL
JM0/K

 =   1+R0K 
(18)
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From eq.(18), we can calculate K which realizes the optimal
resonance ratio H.

K =  H
2 - 1 
R0

  (19)

<Normalization>

Fig.16 is the block diagram from the new input torque TM' to the

motor speed M. For simplicity, I normalized the system using

a(=1) and JL(=1) as is shown in Fig.17.
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Relations among some variables are summarized as follows.

r = 1+R a = H a ,   H = 1+R  = 1 q (20),  (21)

q = 1
H 2

 = 1
1+R 

 <1 (22)

JL
JM

 = R = H 2-1 = 1q - 1 (23)

JM
JL

 = 1
R

 = 1
H 2- 1

 = 
q

1 - q
 (24)

<Controller Design using Manabe Polynomials>

Using the speed controller C(s), P, P&I and PID controllers are
designed one by one considering the closed loop characteristics. (See
Fig.18.)
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Fig.18 Design of the speed controller C(s).

P Controller

In the case of C(s) =Kp , the characteristic equation of the closed loop

system takes the form of

P(s) = s(1+qs 2) + Kp (1-q)(1+s 2)
               = qs 3+ Kp (1-q)s 2 + s + Kp (1-q)

        = a3 s 3 + a2 s 2 + a1 s  + a0     
(25)

My technique is to make the above characteristic equation to an
appropriate "good" polynomial. Many "good" polynomials have been
proposed. [19][20] For example, the relationship of Manabe
Polynomial[21] is given by

 = a1
a0

 = 1
Kp (1-q)

(26)

1 = 
a1

2

a0 a2 
 = 1

Kp 
2 (1-q)2

 = 2.5 (27)

2 = 
a2

2

a1 a3 
 = 

Kp 
2 (1-q)2

q  = 2 (28)

defined by eq.(26) as the ration of a1 to a0 is called the equivalent

time constant. i (i=1,2,...) is the index which represents "goodness"

of the polynomial. Manabe recommends the polynomials satisfying

1=2.5 and i=2 (i=2,3,....). By solving eqs.(26)-(28) with respect

to , q and Kp, we easily obtain

q = 1
5

 ,   H = 5  ,   R = 4 ,  JM:JL = 1:4 (29)

This means that 1:4 is the best inertia ratio for vibration suppression.
The best ratio is realized by the resonance ratio control. The
normalized controller constants are given by

 = 10
2

  ,   Kp = 10
4

(30),  (31)

The actual controller constants are then given by

 = 10
2

 1
a
  ,   Kp = 10

4
 JL a (30'), (31')

P&I Controller

When we use P&I controller given by C(s) =Kp+K I/s, the

characteristic equation is

P(s) = s 2(1+qs 2) + (Kp s+K I)(1-q)(1+s 2) 
            = qs 4+ Kp (1-q)s 3 + {1+K I (1-q)}s 2      

                                   + Kp (1-q)s + K I (1-q)
        = a4s 4 + a3 s 3 + a2 s 2 + a1 s  + a0        

(32)

The relationship of Manabe Polynomial is represented by

 = a1
a0

 = 
Kp (1-q)
K I (1-q)

 = 
Kp 

K I 
(33)
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2
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 1+K I (1-q)  K I (1-q)
 = 2.5 (34)
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2
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1+K I (1-q) 2

Kp (1-q) 2
 = 2 (35)

3 = 
a3

2

a2 a4 
 = 

Kp (1-q) 2

 q 1+K I (1-q)  
 = 2 (36)

By solving these equations, we obtain

q = 5
16

 ,   H = 4
5

5  ,   R = 11
5

 ,  JM:JL = 5:11 (37)

Eq.(37) means that 0.8 5 is the optimal resonance ratio in this case.
Also, other normalized controller constants are uniquely calculated as

 = 5 2
2

 ,   Kp = 10 2
11

 ,   K I = 4
11

            (38),  (39),  (40)

The actual controller constants are given by

 = 5 2
2

 1
a
 ,   Kp = 10 2

11
 JL a   (38'), (39')

K I = 4
11

 JL a
2 (40')

PID Controller

When C(s) =Kp+K I /s+KDs, the characteristic equation is given by

P(s) = s 2(1+qs 2) + (KDs 2+Kp s+K I)(1-q)(1+s 2)
            = {q+KD (1-q)}s 4+ Kp (1-q)s 3                         

                     + {1+KD (1-q) + K I(1-q)}s 2

           + Kp (1-q)s + K I (1-q)
         = a4s 4 + a3 s 3 + a2 s 2 + a1 s  + a0                   

(41)

The relationship of Manabe Polynomial takes the forms of

 = a1
a0

 = 
Kp (1-q)
K I (1-q)

 = 
Kp 

K I 
(42)
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a1

2

a0 a2 
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Kp (1-q) 2

 1+KD (1-q)+K I (1-q)  K I (1-q)
 = 2.5 (43)
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Kp (1-q) 2
 = 2 (44)



3 = 
a3

2

a2 a4 
 = 

Kp (1-q) 2

 q+KD (1-q)  1+KD(1-q)+K I (1-q)  
 = 2    (45)

By solving these equations, the normalized controller constants are
given as follows by using q as the parameter.

 = 5 2
2

 ,   Kp = 10 2
11

 ,   K I = 4
11

            (46),  (47),  (48)

KD = 
5-16q

 11(1-q) 
(49)

The actual controller parameters are also given by

 = 5 2
2

 1
a
 ,   Kp = 10 2

11
 JL a   (46'), (47')

K I = 4
11

 JL a
2 (48')

KD = 
5-16q

11(1-q)
 JL (49')

Eqs.(46)-(48) are completely same to those of P&I controller.
However, the derivative gain KD is the function of q.

This means that, whatever resonance ratio H=1/q2(>1) we choose, the

optimal condition of Manabe Polynomial ( 1=2.5, 2= 3=...=2) can

be satisfied by the corresponding choice of KD. It is also interesting

that takes the same value regardless of optimal H.

When q>5/16, i.e., H<0.8 5, KD should be negative. I found some

reports which say that the positive feedback of acceleration is effective
for vibration suppression. This corresponds to the case of H0<0.8 5.

When we put KD=0 in eq.(49), i.e., q=5/16, we obtain P&I

controller. The resonance ratio control has a derivative function as the
disturbance observer. We can notice that we do not need to use PID
controller because we already implement the derivative function by
using the resonance ratio control. No usage of KD term has the

advantage from the viewpoint of controller simplicity.

<Simulation Results>

Fig.19 draws the simulation block diagram and Fig.20 shows the
design results of the resonance ratio control using the fast disturbance
observer. Simulation is performed for three different cases, where the
original systems' inertia ratios are 0.2, 1, and 5 under the condition
with 10~20% model errors, backlash (+/-0.01) and torque limiter (+/-
1.2).
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Fig.19 Simulation block diagram of the fast disturbance observer
(resonance ratio control)

with model error, backlash and torque limit.
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Fig.20 Simulation results (Fast Disturbance Observer).

From the various frequency characteristics plots, we can see the
principle of the resonance control. In the time response simulation
using SIMULINK, we can observe excellent performances both in the
vibration suppression and the disturbance rejection. Moreover this
method is quite effective to wide range of inertia ratio. We can see a
slight performance degradation in Fig.20(c) where the inertia ratio is
extremely small.

Also in Fig.20(c), we can observe that the motor torque is negative for
a while just after the disturbance torque is added at t=25. This means
that the disturbance rejection and the vibration suppression are not
consistent requirements for 2-inertia systems with the smaller inertia
ratio (R0) than 11/5=2.2.

4.3  Application of Slow Disturbance Observer

<Slow Disturbance Observer>

Fig.21 shows the "slow disturbance observer" application. The
disturbance observer applied to the motor side has three design

parameters, i.e., the cut-off frequency o , the compensation gain and

the nominal inertia moment ratio r. The inertia moment used in the
observer is r JM0.
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Fig.21 Application of the slow disturbance 

In the "fast disturbance observer" shown in Fig.14, its cut-off
frequency was high enough so that the observer's dynamics can be

neglected. In contrast to this, the cut-off frequency o and the inertia

moment ratio r are the design parameters in the "slow disturbance
observer" while its compensation gain is 1.

The "slow disturbance observer" was originally proposed by
Umida[15] and was improved by Iwata.[16] Umida proposed that the
optimal cut-off frequency should be a little lower than the anti-resonant

frequency a. Iwata gave it as the simple function of a and R0, the

inertia ratio. Here, I will try to derive the optimal cut-off frequency
and the other parameters simultaneously by applying Manabe's
polynomial.

<Normalization>

In this case, as we can not change the motor-side inertia moment, the

normalization base is only a. By putting a=1, the 2-inertia system

given by Fig.3 is normalized as Fig.22.

ωM 
1

s

s   +12

s   +p2

TM 

p

Fig.22 Normalized system by putting a=1.

Here, I put
p = H0

 2 = 1+R0 = 1
JM0

(50)

By applying the slow disturbance observer, the transfer function from

TM', the new controlled torque input, to M is given by

M

 TM
'  

  =  
p
 s   

(s+ o)(s 2+1)

s (s 2+p)+r o(s 2+1)
(51)

(See Fig.23.) Note that I use here the parameter r, the ratio of the
inertia moment used in the disturbance observer to the actual motor
inertia JM0.
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ωM
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s (s2+p)+ r ωo(s2+1)

Fig.23 System block diagram applied by the slow disturbance
observer.
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Fig.24 Design of the speed controller C(s).

<Controller Design using Manabe's Polynomial>

Putting the P&I speed controller C(s) as

Kp + K I
s   =  Kp  s + c

s (52)

the characteristic equation of the closed loop system illustrated in
Fig.24 is given by

P(s) = s 5 + (Kpp+r o)s 4+{Kpp( o+ c)+p}s 3

            +{Kpp( o c+1)+r }s 2+Kpp( o+ c)s 
 +Kpp o c                                    

   = a5s 5+ a4s 4 +a3 s 3 + a2 s 2 +a1 s  + a0    

(53)



The relationship of Manabe's Polynomial is given by the following
equations.

  = a1
 a0  =  o+ c 

o c
 (54)

1 = 
a1

2

a0 a2 
 = 

Kpp( o+ c) 2

 Kpp o c Kpp( o c+1)+r 
 = 2.5 (55)

2 = 
a2

2

a1 a3 
 = 

Kpp( o c+1)+r 2

Kpp( o+ c) Kpp( o+ c)+p
 = 2 (56)

3 = 
a3

2

a2 a4 
 = 

Kpp( o+ c)+p 2

 Kpp( o c+1)+r o Kpp+r o  
 = 2 (57)

4 = 
a4

2

a3 a5 
 = 

Kpp+r o
2

 Kpp( o+ c)+p  
 = 2 (58)

We should find four parameters o, c, Kp and r which satisfy the

design condition given by eqs.(55)-(58).

The procedure to solve these equations are not very easy but the

results are relatively simple. First, the equivalent time constant is
given as a constant:

 = 25+10 5  ≈ 6.882 (59)

I should omit the details, but one of the interesting results is that 4 is

proportional to p, if other design conditions of eqs.(55)-(57) are

satisfied. Regardless of the choice of r, 4 is given by

4 = A 2

 B ( +B) 
 p  ≈ 0.6973  p (60)

A and B are given by eqs.(63) and (64) below.

When p increases, 4 becomes bigger. This means that the robustness

is increased. However, for systems with smaller p, 4 is smaller and

the system becomes easily unstable. To satisfy eq.(58): 4=2 exactly,

p=2B( +B)/A2~2.8 should hold. This means R0=1.8, which is very

close to the easiest case also in the fast disturbance observer
application.

Anyhow we can choose r as we like. Here I put r=p. This choice
means that the disturbance observer uses the summation of motor and
load inertia moments as the nominal inertia moment because

r JM0  =  p JM0 = (1+R0)JM0 = JM0+JL (61)

By choosing r as this, other design parameters become constants
regardless of p.

I should omit the detailed derivation but the observer's cut-off

frequency o is finally given as the real root of the following 3rd order

equation (62).

B o
3 - A o

2 +  o -1 = 0 (62)

where

A =  -1+ 681+304 5  
2

 ≈ 17.944 (63)

B  =  2A (1+A)  -   ≈ 19.193 (64)

By solving eq.(62), o=0.3249 is obtained. Accordingly P&I

controller's parameters Kp and c are given by

Kp = A
 B 

 - o ≈ 0.6100 (65)

and

c = 1
B Kp o

  ≈ 0.2629 (66)

By multiplying a, the actual o and c are obtained. As a is the

function of p (actually, a = p /(p -1)  ), o and c varies according

to p.

<Simulation Results>

Fig.25 illustrates the simulation block diagram. All conditions of
simulation are quite same to those in the fast disturbance observer
case.
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Fig.25 Simulation block diagram of the slow disturbance observer
with model error, backlash and torque limit.

In Fig.26, we can see the control performances of the "slow
disturbance observer". In this type, we can not see any change of the
resonant frequency but big damping effect around the resonant
frequency is observed. The bigger the inertia ratio, the more robust to

the parameter variation and backlash because 4 is big enough. In

systems with smaller inertia ratio, robustness is deteriorated. This is

because 4 becomes smaller when p is smaller as is given by eq.(60).

However, too big 4 may mean over-specification.
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Fig.26 Simulation results (Slow Disturbance Observer).

5. CONCLUSION

I reviewed some methods to deal with the vibration suppression and
disturbance rejection control of torsional system. I proposed two
simple but effective techniques based on the disturbance observer.
One is the "fast disturbance observer" to realize "resonance ratio
control", and another is the "slow disturbance observer". In both
cases, I tried to realize "Manabe's Polynomial" for their characteristic
equations of the closed loop system. Although the obtained
controllers are of only 2nd order system, their control performance is
excellent. In particular, the fast disturbance observer is superior in
operation through a wide range of the inertia ratio. H∞ controller will
be also effective to this kind of vibration control, but relatively
classical methods presented here are also attractive in various aspects.
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