
1.  Introduction 
The concept of expending derivatives and 

integrals to fractional (non-integer) order is by no 
means new. In fact, Leibniz mentioned this concept in 
a letter to L’Hospital over three hundred years ago 
(1695) and the earliest more or less systematic 
studies seem to have been made in the beginning 
and middle of the 19th century by Liouville (1832), 
Holograms (1864) and Riemann (1953)(1). However, 
factional order control concept, when the controlled 
systems or controllers are described by fractional 
order differential equations, was not widely 
incorporated into control engineering mainly due to 
the conceptually difficult idea of taking fractional 
order and so few physical applications at that 
time(2). 

In last few decades, researchers pointed out 
that fractional order differential equations could 
model various real materials more adequately than 
integer order ones and provide an excellent tool for 
the description of dynamical processes(1)(3)(4). These 
fractional order models need the corresponding 
fractional order controllers be proposed and evoked 
the interest to various applications of fractional 
order control. The significance of fractional order 
control is that it is a generalization and 
“interpolation” of classical integral order control 
theory, which could lead to more adequate modeling 
and more robust control against various 
uncertainties.  

However, most of these works were originated 
and concentrated on control of chemical processes 
while in motion control, the research is still in a 

primitive stage. In fractional order control, phase 
and gain could be adjusted continuously to give the 
systems more margin against uncertainties such as 
nonlinearities than their integer order counterpart. 
This theoretical superiority should highlight the 
promising aspects of fractional order control in 
motion control. 
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  The paper is organized as follows: in section 2, 
basic mathematical aspects of fractional order 
control are mentioned to show the fractional order 
control is actually a natural generalization of 
classical integer control theory. The robustness of 
fractional 1/sk system is also discussed; in section 3, 
fractional order PIDk controllers are proposed to the 
three-inertia torsional system’s speed control with 
backlash nonlinearity. The Short Memory Principle 
is introduced to realize designed fractional order Dk 
controller on digital computers; in section 4, the 
designed fractional order PIDk realized by the Short 
Memory Principle with different order k and 
memory length are evaluated by the experiment of 
torsion system’s speed control. The experimental 
results show that the discrete fractional order PIDk 
control systems display superior robustness against 
gear backlash nonlinearity and suppress the 
vibration caused by the backlash. Finally, in section 
5, preliminary conclusions are drawn. 
 

2. Theoretical Aspects 
2.1 Mathematical definitions The mathematical 

definition of fractional calculus has been the subject 
of several different approaches. The most frequently 
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encountered definition is called Riemann-Liouville 
definition(1)(3): 
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a and t are limits and k, (k∈R) the order of the 
operation. γ is an integer that satisfies γ-1<k<γ. 
  The other approach for definition is 
Grunwald-Letnikov definition(1)(3): 
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2.2  Laplace and Fourier Transforms  The 

Laplace transforms(1)(3) of the Riemann-Liouville 
fractional derivative with order k>0 is 
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Obviously, the Fourier transform of fractional order 
calculus could be obtained by setting s=jω in its 
Laplace transform just like the classical integer 
order calculus’. Therefore, the frequency responses 
of fractional order 1/sk systems can be plotted as 
Fig.1. Clearly, the fractional order systems’ gain and 
phase change continuously between the classical 
integer order ones’. 

Fig.1. Fractional order 1/sk system’s Bode plot 

Fractional order calculus is also a 
generalization of classical integer order calculus in 
Laplace and Fourier transforms, which would mean 
that extremely well developed classical integer order 
control techniques could still be fully referred in 
fractional order control. 

 
2.2  Robustness to gain variation  The close loop 
1/sk system’s characteristics equation with variable 
gain factor A is 

01 =+ kAs                   (6) 
The equation has two complex-conjugate dominate 
poles within [-π,+π] 
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The relative damping ratioζis 
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This result shows the relative damping ratio ζis 
exclusively decided by order k and independent of 
the gain factor A.  

In frequency domain, the characteristic 
equation is: 

0)(1 =+ ωjAG            (9) 
Equ.(21) can be rewritten in the form: 

A
jG 1)( −=ω             (10) 

The movement of –1/A can be considered to be the 
locus of the critical point (Fig.2) when the gain 
variation occurs. For the integer order systems, this 
movement usually leads to less phase margin and 
low damping of overswings. But for fractional 1/sk 
systems, phase margin and relative damping ratio 
can be kept constant in wide range of frequencies 
below and in the neighborhood of the critical point. 
This characteristic highlights the hopeful aspect of 
applying fraction order control to real engineering 
problems. 

Fig.2. Ro

jω S-plane 
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3. Fractional Order PIDk Speed Control 
3.1 Modeling of the Torsional System  The 

simplest model and block diagram of the torsional 
system with backlash nonlinearity between gears 
are the three-inertia model shown in Fig.3 and 
Fig.4, where Jm, Jg and Jl are driving motor, gear 
and load’s inertias, Ks shaft elastic coefficient, ωm 
and ωl motor and load rotation speed, Tm the input 
torque and Tl the disturbance torque.  In the 
modeling, the gear backlash nonlinearity is 
simplified as a deadzone factor with band [-δ,+δ] 
and elastic coefficient Kg. 

Fig.3. Torsional system’s model 

Fig. 4. Block diagram of the three-inertia system 
 

The open loop transfer function between Tm to ωm 
is 
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where ω01 and ω02 (ω01 < ω02) are the resonance 
frequencies while ωh1 and ωh2 (ωh1 < ωh2) are the 
anti-resonance frequencies. As shown in the 
three-inertia system’s Bode plot (Fig.5), ω01 and ωh1 
correspond to torsion vibration mode; ω02 and ωh2 
correspond to gear backlash vibration mode. The 
frictions between the components are neglected due 
to their tiny values. 
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3.2 Fractional PIDk controller  In order to smooth 
the discontinuity of speed command ωr by the 
integral controller, a set-point-I PIDk (Fig.6) 
controller is introduced to speed control of the 
torsional system. 
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which is designed by Coefficient Diagram Method, 
a design method based on pole-placement of close 
loop characteristic equation(5). 

The PIDk controller’s design is based on 
assuming D controller’s fractional order k being 
integer order 1 firstly and simplifying the torsional 
system to two-inertia system where driving motor 
and gear are treated as unity inertia of JM+JG and 
the backlash between gears is just neglected. Time 
responses by simulation with the simplified 
two-inertia model show the designed integer order 
PID control system has a satisfactory time-domain 
performance without backlash nonlinearity (Fig.7). 
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Fig. 7. Time responses of the integer order PID two-inertia 

system by simulation 
 

  However, when the designed integer order PID 
controller is applied to the three-inertia system 
with gear backlash, the control system would be 
unstable and give rise to severe vibration due to 
the negative gain phase margin in PD and 
three-inertia plant’s minor loop, as shown in Fig.8’s 
k=1 case. The large phase delay of about –180 
degree in high frequency range also indicates poor 
robustness again backlash nonlinearity and other 
uncertainties. 
 

10

controller’s order to fractional is proposed to adjust 
the minor loop’s gain and phase margin directly 
and thus suppress the vibration caused by 
backlash nonlinearity, as shown in Fig.8.  
 
3.3 Discrete Realization Method  It is well known 

that the fractional order systems have an infinite 
dimension while the integer order systems finite 
dimensional. Proper approximation of designed 
fractional order controllers by finite difference 
equations is crucial for applying the fractional order 
control to real engineering problems. Especially, 
since most modern controllers are realized on digital 
computers, the discrete realization methods of 
fractional order controllers remain being more 
concerned. 

Generally, there are currently three approaches 
to attain direct discretization of fractional order 
controllers: the definition approach Short Memory 
Principle(3), time-domain approach Lagrange 
interpolation method(7) and Tustin operator 
expansion approach(8). Among them, the Short 
Memory Principle is being used most intensively in 
the simulation and realization of discrete fractional 
order systems by various literatures(3), (9)-(11) due to 
its easy programming and clear interpretation. The 
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principle takes into account the behavior of f(t) only 
in the “recent past”, i.e. in the interval [t-L, t], where 
L is the length of “memory”: 
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The Short Memory Principle is based on the 
observation that the values of binomial coefficients 
near the “starting point” t=a in the 
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Grünwald-Letnikov definition is small enough to 
be neglected or “forgotten” for large t. By using the 
principle, the discrete equivalent of the fractional 
order controller in discrete domain is given by ks±
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where T is sampling time and the binomial 
coefficients are: 
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Clearly, in order to have good approximation, small 
sampling time and long memory length are needed. 
In this paper, the Short Memory Principle is 
adopted to realize the discrete fractional k order Dk 
controller. 

 
4. Experimental Results 
In order to verify the backlash vibration 
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suppression performance of fractional PIDk 

controllers and evaluate the Short Memory 
Principle discrete realization method in torsional 
system’s speed control, experiments are carried out 
with sampling time T=0.001s, different Dk 
controller’s order k and memory length L. 
Parameters of the experimental torsional 
three-inertia system are shown in Table.1. An 
encoder (8000pulse/rev) is used as the speed 
feedback sensor. 

Table 1. Parameters of the three-inertia System 
Jm 

(Kgm2) 
Jg 

(Kgm2) 
JL  

(Kgm2) 
Kg 

(Nm/rad) 
Ks 

(Nm/rad)
δ 

(deg.)
0.0007 0.0034 0.0029 3000 198.49 0.5 

 
Equs.(12a) and (12b) give, 

Kp = 0.979, Ki = 72.178, Kd = -0.003   (15) 
Since the torque input to driving motor from the 
experimental equipment’s motor diver has a 
limitation of maximum 3.84NM, Kp is retuned to 
18.032 by trial-and-error to avoid severe overshoot 
and overswing caused by the torque input 
saturation.  

Firstly, the speed control experiment is carried out 
by integer order PID control. As have been analyzed 
in section 3.2, the severe backlash vibration occurs 
due to the minor loop’s negative stability margin 
(Fig.9). 
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Fig. 9. Time responses of integer order PID control 

  Fig.10 to Fig.15 show the experimental results of 
fractional order PIDk control with 0.2 and 0.5 order 
Dk controllers and memory length 0.005sec and 
0.1sec. By introducing fractional order controller, 
the control system’s stability and robustness 
against backlash robustness are improved and 
thus the vibration could also be suppressed. The 
better approximation and performance could be 
achieved with longer memory length. Some 
transient tiny vibrations occur in the short memory 
length case L/T = 5, while for longer memory with 
L/T=100, the tiny vibrations disappear and the time 

responses are more satisfactory. 
It’s interesting to find the time responses of the 

fractional order control systems also show the 
“interpolation” characteristic between their integer 
order counterparts that higher order 0.8 near 
integer order 1 leads to large overshoot and 
overswing, indicating a relative poor stability and 
robustness performance, while in lower order such 
as 0.2, there is nearly zero overshoot and the time 
responses indict the superior robustness against 
backlash nonlinearity. This “interpolation” 
characteristic is a key point to understand the 
superiority of fractional order control as providing 
much more flexibility in control design process. 
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Fig.10. Time responses of fractional order PID0.8 with L/T = 5 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

w
m

 (
ra

d/
se

c
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

time (sec)

w
l 
(r

ad
/
s)

 
Fig.11. Time responses of fractional order PID0.5 with L/T = 5 
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Fig.12. Time responses of fractional order PID0.2 with L/T = 5 
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Fig.13. Time responses of fractional order PID0.8 with L/T = 100 
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Fig.14. Time responses of fractional order PID0.5 with L/T = 100 
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Fig.15. Time responses of fractional order PID0.2 with L/T = 100 

 
5. Preliminary Conclusions 
In this paper, novel discrete fractional order PIDk 

controllers realized by the Short Memory Principle 
are proposed for speed control of three-inertia 
torsional system with gears backlash nonlinearity. 
The experimental results show the improved 
robustness and stability performances of proposed 
fractional PIDk order control system. By changing 
the fractional order, the system’s robustness can be 
improved directly which means less complex design 
process and less tuning efforts in real industrial 
applications. Applying fractional order control 
concept to motion control is still in a research stage, 

but its superior robustness against nonlinearities 
and other uncertainties highlights the promising 
aspects while future exploration of more complex 
cases is needed. 
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