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Abstract— This paper applies fractional order PIDk con-
troller to torsional system’s backlash vibration suppression
control, in which the order k of D controller can not only be
integer but also be any real number. In order to improve
control system’s robustness against backlash non-linearity,
several methods have been proposed. However their design
processes are very complicated. In this paper, a clear and
straightforward design is achieved by adjusting theD con-
troller’s order k directly. An approximation method based on
sampling time scaling property is also introduced to realize the
discreteDk controller. Design process and experimental results
demonstrate straightforward robust control design through the
novel Fractional Order Control (FOC) approach, the PIDk

control system’s robustness against backlash non-linearity and
good approximation of the realization method.

I. I NTRODUCTION

The concept of Fractional Order Control (FOC) means
controlled systems and/or controllers are described by frac-
tional order differential equations. Expanding derivatives
and integrals to fractional orders has a firm and long stand-
ing theoretical foundation.Leibniz mentioned this concept
in a letter toL′Hospital over three hundred years ago in
1695 and the earliest more or less systematic studies have
been made in the beginning and middle of the 19th century
by Liouville, Riemann and Holmgren [1] [2]. As to
its application in control engineering, FOC was introduced
by Tustin for the position control of massive objects half
a century ago, where actuator saturation requires sufficient
phase margin around and below the critical point [3]. Some
pioneering works were also done in 60’s [4]. However
the FOC concept was not widely incorporated into control
engineering mainly due to the conceptually difficult idea
of taking fractional order, the existence of so few physical
applications and the limited computational power available
at that time [5].

In the last few decades, researchers pointed out that
fractional order differential equations could model various
materials more adequately than integer order ones and
provide an excellent tool for describing dynamic processes
[1] [2] [6]. The fractional order models need fractional
order controllers for more effective control of the dynamic
systems [7]. At the same time, letting control order be
fractional can adjust control system’s frequency response
directly and continuously. This great flexibility makes it

possible to design more robust control system. The supe-
riorities of FOC in modeling and control design motivated
renewed interest in various applications of FOC [8] [9] [10].
With the rapid development of computer performances,
modeling and realization of the FOC systems also became
possible and much easier than before.

Just like the other new control theories, “find the prob-
lem” is important for its development in engineering. The
authors believe the design of FOC systems should be
straightforward and there is no reason that we don’t make
full use of extremely well developed classical integer order
control theories. Based on these basic considerations, in this
paper, the authors proposed a fractionalPIDk controller,
a revised version ofPID controller, to achieve a straight-
forward design of torsional system’s robust speed control
against gear backlash non-linearity. And the fractional order
PIDk controller is discretized by using sampling time
scaling property which was proposed by the authors [11].

II. EXPERIMENTAL TORSIONAL SYSTEM

The experimental setup of torsional system is depicted
in Fig. 1. A torsional shaft connects two flywheels while
driving force is transmitted from driving servomotor to the
shaft by gears with gear ratio 1:2. Some system parameters
are changeable, such as gear inertia, load inertia, shaft’s
elastic coefficient and gears’ backlash angle. The encoders
and tacho-generators are used as position and rotation speed
sensors.
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Fig. 1. Experimental setup of torsional system

The simplest model of the torsional system with gear
backlash is the three-inertia model depicted in Fig. 2 and
Fig. 3, whereJm, Jg andJl are driving motor, gear (driving
flywheel) and load’s inertias,Ks shaft elastic coefficient,



ωm and ωl motor and load rotation speeds,Tm input
torque andTl disturbance torque. In the modeling, the gear
backlash is simplified as a deadzone factor with backlash
angle band [-δ,+δ] and elastic coefficientKg. Frictions
between components are neglected due to their small values.
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Fig. 2. Torsional system’s three-inertia model
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Fig. 3. Block diagram of the three-inertia model

The open-loop transfer function fromTm to ωm is

P3m(s) =
(s2 + ω2

h1)(s
2 + ω2

h2)
Jms(s2 + ω2

o1)(s2 + ω2
o2)

(1)

whereωo1 andωo2 are resonance frequencies whileωh1 and
ωh2 are anti-resonance frequencies.ωo1 andωh1 correspond
to torsion vibration mode, whileωo2 and ωh2 correspond
to gear backlash vibration mode (see Fig. 4).
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Fig. 4. Bode plot of the three-inertia model

III. F RACTIONAL ORDER PIDk CONTROL

A. Classical PID Control

In PID speed control design, two-inertia model is com-
monly used in which driving motor inertiaJm and gear
inertia Jg are simplified to single inertiaJmg(= Jm + Jg)
(see Fig. 5).

In order to smooth the discontinuity of speed command
ωr by integral controller, a set-point-IPID controller
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Fig. 5. Block diagram of the two-inertia model

is proposed for the torsional system’s speed control (see
Fig. 6).
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Fig. 6. Set-point-IPID controller

Based on the two-inertia model, thePID controller’s
parameters are designed by using the standard form of
Coefficient Diagram Method(γ1 = 2.5, γ2 = γ3 = 2)
[12]:

Kp =
10
√

2

11

√
Jlks, Ki =

4

11
Ks, Kd =

5

11
Jl − Jm (2)

Simulation results show the integer orderPID control
system has a good performance for suppressing torsion
vibration (see Fig. 7).
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Fig. 7. Time responses of the integer orderPID two-inertia system by
simulation

For three-inertia plantP3m(s), the close-loop transfer
function of integer orderPID control system fromωr to
ωm is

Gclose(s) =
CI(s)P3m(s)

1 + CI(s)P3m(s) + CPD(s)P3m(s)
(3)

whereCI(s) is I controller andCPD(s) is the parallel of
P and D controllers in minor loop; thereforeGclose(s) is
stable if and only ifGl = CI(s)P3m(s) + CPD(s)P3m(s)
has positive gain margin and phase margin. However as
depicted in Fig. 8 the gain margin ofGl(s) is negative. With
the existence of gear backlash the designed integer order



PID control system will be unstable and lead to backlash
vibration.
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Fig. 8. Bode plot ofGl(s) in PID control

B. Novel PIDk control

In order to improve the robustness against backlash
non-linearity, several methods have been proposed, such
as redesigning thePID controller, QFT or using H∞
robust control method [13] [14]. A FOC approach was
also practiced by CRONE team [15]. However, their design
processes are very complicated. In this paper, a novel
fractional orderPIDk controller is proposed to achieve
a straightforward design of robust control system against
gear backlash non-linearity. Instead of solving high order
equations, by changingDk controller’s fractional orderk,
the frequency response ofGl(s) can be directly adjusted
(see Fig. 9).
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k = 0.8 k = 0.6
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Fig. 9. Bode plots ofGl(s) in PIDk control

As depicted in Fig. 10, lettingk be fractional order can
improvePIDk control system’s gain margin continuously.
When k < 0.84 the PIDk control system will be stable;
therefore, with proper selected fractional orderk, the back-
lash vibration can be suppressed. At the same time, for
better backlash vibration suppression performance higher

Dk controller’s order is more preferable. As shown in open-
loop gain plots of 0.8, 0.6, 0.4 and 0.2 orderPIDk control
systems (see Fig. 11), higher theD controller’s order is
taken lower the gain near gear backlash vibration mode is.
There is a trade-off between robustness and vibration sup-
pression performance in fractional orderPIDk approach.
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Fig. 10. Gain margin versus fractional orderk
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Fig. 11. Gain plots of thePIDk control systems and three-inertia plant

IV. REALIZATION METHOD

A. Sampling time scaling

From the Riemann-Liouville definition [1] [2], fractional
order integral with order between 0 and 1 is

0I
α
t f(t) =

∫ t

0

f(τ)dgt(τ), 0 < α < 1 (4)

where

gt(τ) =
1

Γ(1 + α)
[tα − (t− τ)α] (5)

Let t := nT , whereT is the sampling time andn is the
step currently under execution, then

gnT (kT ) =
nα − (n− k)α

Γ(1 + α)
Tα, k = 1, ..., n (6)

Therefore, by sharing the same view of discrete integer
order integration rules, the “real” sampling timeT of the



kth step is

Tn(k) = ∆gnT (kT )
= gnT (kT )− gnT [(k − 1)T ]

=
(n− k + 1)α − (n− k)α

Γ(1 + α)
Tα (7)

Thus

Tn(n) =
1α − 0α

Γ(1 + α)
Tα

Tn(n− 1) =
2α − 1α

Γ(1 + α)
Tα

. . .

Tn(1) =
nα − (n− 1)α

Γ(1 + α)
Tα (8)

Finally, based on the trapezoidal integration rule

0I
α
nT ≈

n∑

k=1

f(kT ) + f [(k − 1)T ]
2

Tn(k) (9)

and if t → 0, then

0I
α
nT =

n∑

k=1

f(kT ) + f [(k − 1)T ]
2

Tn(k) (10)

From (8), we can see that the interpretation of discrete
fractional order integrals is the “deformation” of their
integer order counterparts by internal sampling time scaling
(see Fig. 12).
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Fig. 12. Fractional order integral’s sampling time scaling

Similarly, discrete fractional order derivatives with order
between 0 and 1 is

0D
α
t f(t) =

1
Γ(1− α)

d

dt

∫ t

0

f(τ)
(t− τ)α

dτ

=
d[

∫ t

0
f(τ)dg

′
t(τ)]

dt
, 0 < α < 1 (11)

where

g
′
t(τ) =

1
Γ(2− α)

[t1−α − (t− τ)1−α] (12)

Thus

T
′
n(n) =

11−α − 01−α

Γ(2− α)
T 1−α

T
′
n(n− 1) =

21−α − 11−α

Γ(2− α)
T 1−α

. . .

T
′
n(1) =

n1−α − (n− 1)1−α

Γ(2− α)
T 1−α (13)

The interpretation of discrete fractional order derivatives
is the derivatives of fractional(1 − α) order integrals∫ nT

0
f(τ)dg

′
t(τ). Namely, it can be understood geometri-

cally as the changing ratio of the “scaled integral area” due
to the sampling time scaling property.

Clearly, when the orders are integers, the sampling time
scaling effect disappears which means in discrete domain
FOC is also a generalization and “interpolation” of the
integer order control theory.

B. Truncated discretization

Based on (8) and (13), it is easy to give the discrete equiv-
alent of fractionalα order integral or derivative controllers
as follows:

Z{Dα[x(t)]} ≈ 1
Tα

∞∑

j=0

cjz
−j (14)

For integral controllers (α < 0), coefficientscj are

c0 =
1

2Γ(1 + |α|)
cj =

(j + 1)|α| − (j − 1)|α|

2Γ(1 + |α|) , j ≥ 1 (15)

and the coefficients of derivative controllers (α > 0) are

c0 =
1

2Γ(2− α)

c1 =
21−α − 1
2Γ(2− α)

cj =
1

2Γ(2− α)
[
(j + 1)1−α − j1−α

− (j − 1)1−α − (j − 2)1−α
]
, j ≥ 2 (16)

The semi-log chart of Fig. 13 shows the scaling sampling
time versus the step under execution in (8). The observation
of the chart gives that the scaled sampling time near ”staring
point” t0 is small enough to be neglected or ”forgotten”
for large t. Therefore, them-term truncated form of (14)
can be used as a direct discretization method for realizing
fractional order controllers:

Z(Dα[x(t)]) ≈ 1
Tα

m∑

j=0

cjz
−j (17)

Obviously, in order to have a better approximation, longer
memory lengthm is preferable.
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V. EXPERIMENTAL RESULTS

The experimental torsional system is controlled by a PC
with 1.6GHz Pentium IV CPU and 512M memory. The
control programs are written in RTLinux C threads which
can be executed with strict timing requirement of control
sampling time. Experiments onPIDk speed control are
carried out with sampling timeT=0.001sec. Two encoders
(8000pulse/rev) are used as rotation speed sensors with
coarse quantization±0.785rad/sec.

Firstly, integer orderPID speed control experiment is
carried out. As depicted in Fig. 14, thePID control system
can achieve satisfactory response when the backlash angle
is adjusted to zero degree (δ = 0), while severe vibration
occurs due to the existence of backlash non-linearity (see
δ = 0.5 case). This experimental result is consistent with
the analysis in section III-A.
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Fig. 14. Time responses of the integer orderPID control

Experiments of torsional system’sPIDk speed control
are carried out with differentD controller’s orderk and
memory lengthm. Figures 15 and 16 depict the experi-
mental results of fractional orderPIDk control with 0.2,
0.4, 0.6, 0.8 orderDk controllers and memory length of
m = 5 and m = 100. The control system’s stability
and robustness against backlash non-linearity are obviously
improved and the severe backlash vibration in integer order
PID control case is suppressed. It can be seen in Fig. 15
and Fig. 16 that better approximation and performances
can be achieved with longer memory length; while even
taking short memory length such asm = 5 can also give
satisfactory performances. The intermittent tiny vibrations

in lower order 0.6, 0.4 and 0.2 cases are due to their relative
high gains near gear backlash vibration mode in open-loop
frequency responses.
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Fig. 15. Time responses ofPIDk control (m = 5)
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Fig. 16. Time responses ofPIDk control (m = 100)

It is interesting to find the time responses of the fractional
orderPIDk control systems also show the “interpolation”
characteristic between their integer order counterparts. As
depicted in Fig. 17, the time responses ofPID0.99 and
PID0.01 closely resemblePID1 and PID0’s time re-
sponses, while this experimental result is natural since the
orders are nearly same. The “interpolation” characteristic is
one of main points to understand the superiority of FOC
as providing more flexibility for designing robust control
systems. At the same time, the experimental consistency
with the logicality also verifies the good approximation of



the realization method based on the sampling time scaling
property.
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Fig. 17. Continuity ofPIDk control’s time responses (the fractional
order controllers are realized withm = 100)

VI. CONCLUSIONS

In this paper, a fractional orderPIDk controller is
applied to torsional system’s backlash vibration suppression
control. The designed fractionalDk controller is realized
by digital computer based on the sampling time scaling
property. Experimental results showPIDk control sys-
tem’s improved robustness against backlash non-linearity
and good approximation of the realization method. Based
on classical integer orderPID controller, by lettingD
controller’s order be fractional orderk, the control system’s
frequency response can be adjusted directly. This flexibil-
ity leads to more straightforward design and less tuning
effort in real industrial applications. Even having a little
higher hardware demand, cheaper design cost and superior
robustness of FOC demonstrated in this paper still highlight
its promising aspects. Rapid development of computational
power also makes fractional order controller’s implemen-
tation not really problematic. On the other hand, applying
FOC concept to motion control is still in a primitive stage.
Future researches on FOC theory and its applications to
more complex control problems are needed.
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