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Abstract— In this paper, a fractional order Q-filter
1

(Ts+1)α is introduced to substitute the integer order Q-
filter 1

(τs+1)n used in conventional disturbance observer for
speed control of torsional system. The theoretical analysis
and experimental results show that changing theQ-filter’s
order fractionally can give a more effective way to adjust
control system’s frequency and time responses than just
tuning it among integer orders. The tradeoff between stability
margin loss and the strength of vibration suppression is a
common problem in torsional system control. By introducing
Fractional Order Control (FOC) approach, control system
can be designed more straightforwardly since control system’s
frequency responses can be altered between Integer Order
Control (IOC) system’s continuously, while less control pa-
rameters are needed to be decided. Design process and exper-
imental results demonstrate that an “EASY & STRAIGHT-
FORWARD DESIGN” can be achieved by introducing FOC
control design concept. For implementation of the fractional
order Q-filter, broken-line approximation method is applied.
Even the realization issues for fractional order controllers
are somewhat problematic. Experiment results show that the
controllers can actually be realized quite acceptably.

I. I NTRODUCTION

The concept of Fractional Order Control (FOC) means
controlled systems and/or controllers are described by
fractional order differential equations. Expanding deriva-
tives and integrals to fractional orders has a firm and
long standing theoretical foundation.Leibniz mentioned
this concept in a letter toHospital over three hundred
years ago (1695) and the earliest more or less systematic
studies have been made in the beginning and middle of
the 19th century byLiouville(1832), Holmgren(1864)
and Riemann(1953) [1] [2]. As one of its applications
in control engineering, FOC was introduced byTustin
for the position control of massive objects half a century
ago, where actuator saturation requires sufficient phase
margin around and below the critical point [3]. Some
pioneering works were also done in 60’s [4]. However
the FOC concept was not widely incorporated into control
engineering mainly due to the conceptually difficult idea
of taking fractional order, the existence of so few physical
applications and limited computational power available at
that time [5].

In recent decades, researchers pointed out that fractional
order differential equations could model various materials

more adequately than integer order ones and provide an
excellent tool for describing dynamic processes [6]. It
is a natural conclusion that fractional order models need
fractional order controllers for more effective control of
system’s dynamics [7]. At the same time, letting control
order be fractional can adjust control system’s gain and
phase characteristics simultaneously and continuously be-
tween Integer Order Control (IOC) systems’. This flexibil-
ity makes FOC a powerful tool in design of robust control
system with less control parameters. Since the tradeoff
of stability and other control demands always exists, this
great flexibility obtained by introducing FOC makes it more
straightforward to achieve a better tradeoff, which is one
of central issues in control design. The advantages of FOC
in modeling and control design motivated renewed interest
in various applications of FOC [8] [9] [10] [11]. With the
rapid development of computer performances, the modeling
and realization of FOC systems also became possible and
much easier than before.

Despite FOC’s promising aspects in modeling and
control design, FOC research is still at its primary stage,
especially in motion control field. Parallel to the develop-
ment of FOC theories, applying FOC to various control
problems is also crucially important and should be one of
top priority issues. The authors believe that FOC is a natural
choice in control design and it’s design process should
be straightforward. There is no reason that the knowledge
of extremely well-developed classical IOC theories is not
made full use of in FOC applications.

Based on these basic considerations, in this paper, the
authors introduce a fractional order version ofQ-filter

1
(Ts+1)α to substitute the integer orderQ-filter used in
conventional disturbance observer for vibration suppression
control of torsional system. Introducing fractional order
Q-filter 1

(Ts+1)α can achieve a clear-cut and effective
adjustment of tradeoff between stability margin loss and
the strength of vibration suppression. The necessity of this
tradeoff adjustment is common and natural in oscillatory
system’s control [11] [12]. By changing fractional order
α, the torsional control system’s frequency responses will
be altered continuously. This advantage makes it easier to
achieve a good tradeoff with improved vibration suppres-



sion performance and enough stability margin. The idea of
taking fractional orderQ-filter was proposed in Ref. [12].
However, only theoretical aspects were mentioned. In this
paper, besides theoretical analysis, experiments are also
carried out to demonstrate the fractional orderQ-filter’s
advantages in real application.

II. T HE TESTING BENCH

The testing bench of torsional system is depicted in
Fig. 1, which is a typical oscillatory system. Two flywheels
are connected with a long torsional shaft; while driving
force is transmitted from driving servomotor to the shaft
by gears with gear ratio 1:2. Some system parameters are
adjustable, such as gear inertia, load inertia, shaft’s elastic
coefficient and gears’ backlash angle. The encoders and
tacho-generators are used as position and rotation speed
sensors.
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Fig. 1. Experimental setup of torsional system

The simplest model of the testing bench with gear
backlash is three-inertia model, as depicted in Fig. 2 and
Fig. 3, whereJm, Jg andJl are driving motor, gear (driving
flywheel) and load’s inertias,Ks shaft elastic coefficient,
ωm and ωl motor and load rotation speeds,Tm input
torque andTl disturbance torque. In this modeling, the gear
backlash non-linearity is simplified as a deadzone factor
with backlash angle band [-δ,+δ] and elastic coefficient
Kg. Frictions between components are neglected due to
their small values.
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Fig. 2. Torsional system’s three-inertia model

Parameters of the experimental torsional system are
shown in Table. I with a backlash angle of±0.6deg. Open-
loop transfer function fromTm to ωm is in the following
form:

P3m(s) =
(s2 + ω2

h1)(s
2 + ω2

h2)
Jms(s2 + ω2

o1)(s2 + ω2
o2)

(1)

whereωo1 andωo2 are resonance frequencies,ωh1 andωh2

are anti-resonance frequencies.ωo1 andωh1 correspond to
torsion vibration mode; whileωo2 and ωh2 correspond to
gear backlash vibration mode (see Fig. 4).
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Fig. 3. Block diagram of the three-inertia model
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Fig. 4. Bode plot of the three-inertia model

TABLE I

PARAMETERS OF THE THREE-INERTIA SYSTEM

Jm Jg Jl Kg Ks δ
(Kgm2) (Kgm2) (Kgm2) (Nm/rad) (Nm/rad) (deg)
0.0007 0.0034 0.0029 3000 198.49 0.6

III. C ONVENTIONAL DISTURBANCE OBSERVER

Disturbance observer can be applied in torsional sys-
tem’s speed control. As depicted in Fig. 5, the inverse plant
model for disturbance observer isJs, whereJ equals the
sum of Jm, Jg and Jl. In this simple inverse model, the
three masses of driving motor, gear and load are considered
to be connect with a rigid shaft and can be described as a
single massJ . The Q-filter is a low-pass filter to restrict
the effective bandwidth of the disturbance observer:

Q(s) =
1

(τs + 1)n
(2)

whereτ is the cutoff frequency andn is the relative degree
of Q-filter.

The disturbance observer is applied to estimate distur-
bance torqueT̂d, which is generated due to unmodeled
dynamics in single inertia modelJs. Considering the
frequency range of torsion vibration mode,τ is taken as
0.005(=1/200). By choosing different relative degreen, the
control system’s frequency responses can be adjusted. As
depicted in Fig. 6,n=1 has the best vibration suppression
performance. The three-inertia model is used as nominal
model for the actual torsional system in Fig. 6.
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Fig. 5. Conventional disturbance observer
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Fig. 6. Gain plot fromTm to ωm with different ordern

Simulation results show PI speed controller with distur-
bance observer (n=1) can give a good control performance
in nominal case, whereKi = 33.5384, Kp = 1.6187,
backlash angleδ = 0.6deg. and maximum torque limitation
is ±3.84Nm (see Fig. 7 and Fig. 8). ThePI controller
is design by using Coefficient Diagram Method (CDM)
[11] [13] [14]. However, describing gear backlash using
deadzone factor and elastic coefficient is far from adequate
due to gear backlash’s complex dynamics [11]. Whether
this method can suppress backlash vibration effectively or
not will be verified in experiments using the testing bench.

IV. N OVEL FRACTIONAL ORDER FILTER

Due to the negative feedback of the estimated signal
in disturbance observer, largern will give more phase
margin, but also larger gain in control system’s open-loop
frequency responses, and vice versa. Namely, a tradeoff
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Fig. 8. Time responses in simulation (n=1)

between stability margin loss and vibration suppression
exists in torsional system’s speed control. The only tradeoff
tuning knob isQ-filter’s relative degreen.

For conventional disturbance observer, the possibility
of achieving a better tradeoff is quite restricted since just
integral ordern can chosen. As mentioned in above section,
taking n as 1, the smallest value forn, gives the best
vibration suppression performance for conventional distur-
bance observer. To further improve vibration suppression
performance while keep enough phase margin, introducing
Q-filter, whose order is between 0 and 1, is actually a
natural choice (see Fig. 9).

101 102 103 104 105
-60

-50

-40

-30

-20

-10

0

M
a

g
n

it
u

d
e 

(d
B

)

Freq. (rad/sec)

101 102 103 104 105
-100

-80

-60

-40

-20

0

P
h

a
se

 (
d

eg
.)

Freq. (rad/sec)

α: from 1 to 0.2
with 0.2 interval 

Fig. 9. Bode plots of fractional orderQ-filter 1
(τs+1)α

Inspired by this consideration, a straightforward method
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Fig. 7. Block diagram for simulation with three-inertia model



of substituting the integer orderQ-filter 1
(τs+1)n with

a novel fractional order one 1
(τs+1)α is introduced, as

depicted in Fig. 10.
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Fig. 10. Disturbance observer with fractional orderQ-filter

It can be seen in Fig. 11 that letting theQ-filter’s
order be fractional can further enlarge the range of control
system’s frequency responses adjustment, while only one
control parameter, the fractional orderα, is needed to be
decided. These advantages of FOC approach provide much
more flexibility in control design. A proper selected frac-
tional orderα can easily give a better vibration suppression
performance while keep enough stability margin, i.e. gain
margin and phase margin.
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Fig. 11. Gain plot fromTm to ωm with different α

V. REALIZATION METHOD

Design control system by FOC approach is straight-
forward. However, for realizing designed fractional order
controller, it is not so. Because of fractional order systems’
infinite dimension, proper approximation by finite differ-
ence equation is needed. Since FOC system’s frequency
response is actually exactly known, it is natural to ap-
proximate fractional order controllers by frequency domain
approaches.

In this paper, a broken-line approximation method is
introduced to approximate 1

(τs+1)α in frequency range
[ωb, ωh], whereωb = 1

τ . ωh is taken as104 to give an
enough frequency range for the approximation. Let

(
s

ωh
+ 1

s
ωb

+ 1

)α

≈
N−1∏

i=0

s
ω
′
i

+ 1
s
ωi

+ 1
(3)

Based on Fig. 12, two recursive factorsζ and η are
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Fig. 12. An example of broken-line approximation (N = 3)

introduced to calculateωi andω
′
i:

ζ =
ω
′
i

ωi
, η =

ωi+1

ω
′
i

(4)

Since

ω0 = η
1
2 ωb, ω

′
N−1 = η−

1
2 ωh (5)

Therefore

ζη =
(

ωh

ωb

) 1
N

(6)

with

ωi = (ζη)iω0, ω
′
i = ζ(ζη)iω0 (7)

The frequency-band fractional order controller has
−20αdB/dec gain slope, while the integer order factors

1
/

( s
ω
′
i

+ 1) have−20dB/dec slope. For the same mag-

nitude change∆:

−20α =
∆

logζ + logη
, −20 =

∆
logζ

(8)

Thus

(ζη)α = ζ (9)

Thereforeζ andη can be expressed respectively by

ζ =
(

ωh

ωb

) α
N

, η =
(

ωh

ωb

) 1−α
N

(10)

Finally

ωi =
(

ωh

ωb

) i+ 1
2−

α
2

N

ωb, ω
′
i =

(
ωh

ωb

) i+ 1
2 + α

2
N

ωb (11)

Figure. 13 shows the Bode plots of ideal frequency-band
case (α = 0.4, ωb = 200Hz, ωh = 10000Hz) and
it’s 1st-order, 2nd-order and 3rd-order approximations by
broken-line approximation method. Even takingN = 2
can give a satisfactory accuracy in frequency domain.
Bilinear transformation is used to discrete the approximate
controllers in this paper.
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VI. COMPARATIVE EXPERIMENTS

As depicted in Fig. 14, the experimental torsional
system is controlled by a PC with 1.6GHz Pentium IV
CPU and 512M memory. Control programs are written
in RTLinux C threads which can be executed with strict
timing requirement of control sampling time. A 12-bit
AD/DA multi-functional board is used whose conversion
time per channel is 10µsec.

Experiments are carried out with sampling time
T=0.001sec and 2nd-order broken-line approximation for
fractional orderQ-filters. Two encoders (8000pulse/rev)
are used as rotation speed sensors with coarse quantization
±0.785rad/sec.
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Fig. 14. Digital control system of experimental torsional system

Firstly, speed control experiment with integer orderQ-
filter is carried out. As depicted in Fig. 15, the control
system can achieve satisfactory response when backlash
angle is adjusted to zero degree (δ=0). With the existence
of gear backlash non-linearity, persistent vibration occurs
(seeδ=0.6 case). Fig. 16 shows that compared with PI-only
control, introducing disturbance observer can give better
vibration suppression performance. However, this perfor-
mance improvement is not enough to suppress effectively
the vibration cause by gear backlash.

For higher ordern, like n=2 and n=3, the vibration
suppression performance is actually deteriorated, while
the control system still keeps stable (see Fig. 17). This
experimental result verifies that a tradeoff between stability
and the strength of vibration suppression exists and can be
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Fig. 15. Time responses with integer orderQ-filter (n=1)
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Fig. 16. Comparison of PI-only control and PI+DOB control

adjusted by different ordern of the Q-filter.
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Fig. 17. Time responses with integer orderQ-filter (n = 2, 3)

Figure 18 depicts the experimental results with different
α for the fractional orderQ-filter 1

(τs+1)α . By takingα as
0.8, the vibration caused by gear backlash is effectively
suppressed and the best time response is achieved. Higher
α, for example 1.0, cannot suppression backlash vibration
while the control system is still be stable. For smallα
like 0.4, large phase lag of the fractional orderQ-filter
actually unstablizes the control system. In the time response
of α = 0.6 case, even backlash vibration is suppressed, the
tiny overshoot and momentary vibration at the beginning
reveal it’s poor stability performance.

The 2nd-order approximation of fractional orderQ-
filter 1

(τs+1)α between frequency band[200, 10000] is in
following form:

Cf (s) =
0.043734(s + 1163)(s + 8223)

(s + 243.2)(s + 1720)
(12)

It can be seen that the realization of 1
(τs+1)α is actually a

quite simple 2-order controller. It’s digital implementation
only needs two arrays with length of 3.
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Fig. 18. Time responses with different fractional orderα

VII. C ONCLUSIONS

In this paper, a fractional orderQ-filter of disturbance
observer, 1

(Ts+1)α , was introduced to substitute the integer
orderQ-filter 1

(τs+1)n used in conventional disturbance ob-
server for speed control of torsional system. The theoretical
analysis and experimental results show that changingQ-
filter’s order fractionally can give a more effective way to
adjust control system’s frequency and time responses than
just tuning it among integer orders.

The tradeoff between stability margin loss and the
strength of vibration suppression is a common prob-
lem in torsional system control. By introducing FOC
approach, control system’s frequency responses can be
adjusted straightforwardly and continuously between IOC
system’s, while less control parameters are needed to
be decided. “EASY& STRAIGHTFORWARD DESIGN”
can be achieved by expending controller’s order to being
fractional. On the contrary to FOC control design, the
implementation of fractional order controllers is not such
straightforward. Some proper approximations are needed.
However, as verified in experimental results, implementa-
tion issue is not problematic actually.

FOC should not be an independent concept of the well-
developed IOC. Knowledge and design methods developed
in IOC can still be made full use of in FOC research, as
demonstrated in this paper. It is interesting to notice that
even the theoretical analysis and design are based FOC
approach, the implementation of fractional order controllers
are certainly integer order controllers (see Equ. 12). There-
fore, FOC should not be thought as a novel and conceptu-
ally difficult idea, but actually a natural and more effective
control design tool. By FOC, control system’s responses
can be designed with much more flexibility. This enlarged
flexibility will provide more possibility to find excellent
solutions for various control problems. Some well-designed
IOC system might be looked as a good approximation of
FOC system. If this hypothesis can be established, it will

further verify FOC’s advantages in control field.
Finally, introducing FOC approach in this paper is

”can”, not ”must”. Other IOC design methods can also
solve the problem; while they maybe not as straightforward
as the FOC approach. However, for example, if the long
shaft is thin enough, fractional order modeling will be
more effective due to the shaft’s distributed-parameter
characteristic. In this case, fractional order controller is a
natural choice. Future research will be carried out on this
issue.
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