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Abstract: Fractional Order Control (FOC) means controlled systems and/or controllers described by fractional order differential
equations, which is beginning to attract considerable attention in recent years. In this paper, a brief introduction of FOC research is
given, including its history, present situation and mathematical aspects. A real application is also used to show FOC’s advantages
in control design. In oscillatory system control, the tradeoff between stability margin loss and vibration suppression strength is a
common problem. By introducing FOC approach, control system’s phase and gain responses can be easily offset to any desired
value. Design process and experimental results demonstrate a clear-cut and effective robust control design is possible based on
FOC design method. Even the realization of fractional order controllers looks somewhat problematic. Experiment results show
they can actually be realized quite acceptably.
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1 A BRIEF REVIEW OF HISTORY

Fractional Order Control (FOC) means controlled systems
and/or controllers described by fractional order differential equa-
tions. Expanding calculus to fractional orders is by no means new
and actually had a firm and long standing theoretical foundation.
Leibniz mentioned it in a letter to L’Hospital over three hundred
years ago (1695). The earliest more or less systematic studies
seem to have been made in the beginning and middle of the
19th century by Liouville (1832), Holmgren (1864) and Riemann
(1953), although Eular, Lagrange, and others made contribution
even earlier [1] [2].

As one of fractional order calculus’s applications, FOC was
introduced by Tustin for the position control of massive objects
half a century ago, where actuator saturation requires sufficient
phase margin around and below the critical point [3]. Some other
pioneering works were also carried out around 60’s by Manabe
[4]. However FOC was not widely incorporated into control
engineering mainly due to the unfamiliar idea of taking fractional
order, so few physical applications and limited computational
power available at that time [5].

2 PRESENT SITUATION

In last few decades, researchers found that fractional order
differential equations could model various materials more ade-
quately than integer order ones and provide an excellent tool for
describing dynamic processes [1] [2] [6]. The fractional order
models need fractional order controllers for more effective control
of dynamic systems [7]. This necessity motivated renewed interest
in various applications of FOC [8] [9] [10]. And with the rapid
development of computer performances, modeling and realization
of FOC systems also became possible and much easier than
before.

The researches on FOC are mainly centered in European
universities at present. The CRONE (Non-integer order robust
control in France) team in France is leaded by Alain Oustaloup
and Patrick Lanusse from Bordeaux University, France. Their
practices include applying FOC into car suspension control,
flexible transmission, hydraulic actuator etc. Denis Matignon, a
researcher from ENST, Signal Dept.& CNRS, URA, France,
contributed to the theoretical aspects of FOC concept, such as

stability, controllability, and observability of the fractional order
systems. Slovak researchers, Ivo Petras and Igor Podlubny from
the Technical University of Kosice, are well-known for their
efforts in modeling, realization and implementation of fractional
order systems. J. A. Tenreiro Machado and Yangquan Chen,
from Polytechnic Institute of Porto, Portugal, and Utah State
University, Logan, are playing important roles in developing
the implementation methods for fractional order controllers and
applying FOC in robotics control, disturbance observer, etc.

Fractional differentiation’s applications in automatic control is
now an important issue for the international scientific community.
The First Symposium on Fractional Derivatives and Their Appli-
cations (FDTA) of the 19th Biennial Conference on Mechanical
Vibration and Noise was held from September 2 to September 6,
2003 in Chicago, IL, USA [11]. This conference was part of the
ASME 2003 Design Technical Conferences. 29 papers concerning
FDTA in Automatic Control, Automatic Control and System,
Robotics and Dynamic Systems, Analysis Tools and Numerical
Methods, Modeling, Visco-elasticity and Thermal Systems were
presented in the symposium. A sub-committee called “Fractional
Dynamic System” under ASME “Multi-body Systems and Non-
linear Dynamics” committee was formed during the symposium.
And the first IFAC Workshop on Fractional Differentiation and
its Applications will be held in this year’s summer, July 19-21, in
Bordeaux, France [12]. The following areas will be covered by the
workshop: Representation tools, analysis tools, synthesis tools,
simulation tools, modeling, identification, observation, control,
vibration insulation, filtering, pattern recognition, edge detection.
Besides the presentation of theoretical works and applications,
this workshop can also give rise to benchmark, testing bench and
software presentations.

3 MATHEMATIC ASPECTS

The mathematical definition of fractional derivatives and inte-
grals has been the subject of several different approaches [1] [2].
The most frequently encountered definition is called Riemann-
Liouville definition, in which the fractional order integrals are
defined as

t0D−α
t f(t) =

1

Γ(α)

∫ t

t0

(t− ξ)α−1f(ξ)d(ξ) (1)



while the definition of fractional order derivatives is

t0Dα
t f(t) =

dγ

dtγ

[
t0D

−(γ−α)
t

]
(2)

where

Γ(x) ≡
∫ ∞

0

yx−1e−ydy (3)

is the Gamma function,t0 and t are limits andα (α > 0 and
α ∈ R) is the order of the operation.γ is an integer that satisfies
γ − 1 < α < γ.

The other approach is Grünwald-Letnikov definition:

t0Dα
t f(t) = lim

h→0
nh=t−t0

h−α

n∑
r=0

(−1)α

(
α
r

)
f(t− rh) (4)

where the binomial coefficients are
(

α
0

)
= 1,

(
α
r

)
=

α(α− 1) . . . (α− r + 1)

r!
(5)

The Laplace transform of Riemann-Liouville fractional order
derivative with orderα > 0 is

L {0Dα
t f(t)} = sαF (s)−

n−1∑
j=0

sj
[
0D

α−j−1
t f(0)

]
(6)

where(n− 1) ≤ α < n [1] [2]. If

0D
α−j−1
t f(0) = 0, j = 0, 1, 2, . . . , n− 1 (7)

then

L {0Dα
t f(0)} = sαF (s) (8)

Namely, the Laplace transform of fractional order calculus is frac-
tional order Laplace operators. Obviously, its Fourier transform
can be exactly obtained by substitutings with jω in its Laplace
transform just like its integer order counterpart.

4 TORSIONAL SYSTEM SPEED CONTROL

The testing bench of torsional system is depicted in Fig. 1,
which is a typical oscillatory system. Two flywheels are connected
with a long torsional shaft. Driving force is transmitted from
driving servomotor to the shaft by gears with gear ratio 1:2. Some
system parameters are adjustable, such as gear inertia, load inertia,
shaft elastic coefficient and gear backlash angle. The encoders and
tacho-generators are used as position and rotation speed sensors.
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Figure 1. Experimental setup of torsional system

4.1 Multi-mass Model

The simplest model of torsional system with gear backlash
is the three-inertia model depicted in Fig. 2 and Fig. 3, where
Jm, Jg andJl are driving motor, gear (driving flywheels) and load
inertias,Ks shaft elastic coefficient,ωm andωl motor and load
rotation speeds,Tm input torque andTl disturbance torque. In the
modeling, gear backlash is simplified as a deadzone factor with
backlash angle band [-δ, +δ] and elastic factor whose coefficient
is Kg. Frictions between components are commonly neglected
due to their small values.
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Figure 2. Torsional system’s three-inertia model
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Figure 3. Block diagram of the three-inertia model

4.2 Classical PI Control

As depicted in Fig. 4 and Fig. 5, a well designed set-point-I PI
controller can give a satisfactory performance for speed control
in nominal case, where gear backlash is totally neglected [13].
The PI controller is designed by Coefficient Diagram Method
(CDM) with Ki = 119.78 andKp = 1.6187 [15] [16]. Since the
driving servomotor’s input torque commandTm has a limitation
of maximum±3.84 Nm, Ki is reduced to 18.032 by trial-and-
error to avoid large over-shoot caused by input torque saturation.
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Figure 4. Set-point-IPI controller

For the nominal three-inertia modelP3m(s), the close-loop
transfer function of integer order PI control system fromωr to
ωm is

Gclose(s) =
CI(s)P3m(s)

1 + CI(s)P3m(s) + CP (s)P3m(s)
(9)

where CI(s) is I controller andCP (s) is P controller in mi-
nor loop; thereforeGclose(s) is stable if and only ifGl =
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Figure 5. Simulation results with nominal three-inertia model

CI(s)P3m(s) + CP (s)P3m(s) has positive gain margin and
phase margin. At the same time, for torsional system’s speed
control, suppressing vibration caused by the gear backlash must
be concerned.

As depicted in Fig. 6, the PI speed control system has enough
stability margin; while in order to improve vibration suppression
performance, additional factors with negative slope and phase-lag
are needed. However introducing these factors will inevitably lead
to phase margin loss. A tradeoff exists between stability margin
loss and vibration suppression strength in control design.
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Figure 6. Bode plot of PI control system

4.3 Disturbance Observer

Disturbance observer can be applied to improve the PI control
system’s robustness. As depicted in Fig. 7, a simple inverse plant
model Js is used, whereJ equals the sum ofJm, Jg and Jl.
Q-filter is a low-pass filter to restrict the effective bandwidth of
disturbance observer:

Q(s) =
1

(τs + 1)n
(10)

whereτ is the cutoff frequency andn is the relative degree of
Q-filter.
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Figure 7. Conventional disturbance observer

5 FRACTIONAL ORDER CONTROL APPROACH

5.1 Fractional Order Low-pass Filter

In order to achieve a proper controller, which is neither
conservative nor aggressive, a fractional order low-pass filter

1
(Ts+1)α is introduced (see Fig. 8). By choosing proper fractional
orderα, the tradeoff between stability margin loss and vibration
suppression strength can be adjusted in a clear-cut way, as
depicted in Fig. 9.
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Figure 8. PI controller with fractional order low-pass filter
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Figure 9. Bode plots ofGl(s) with fractional order low-pass filter
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Figure 10. Broken-line approximation (N = 1)

5.2 Realization Method

Fractional order systems have an infinite dimension while
integer order systems are finite dimensional. Proper approxima-
tion by finite difference equation is needed. There are various
way to realized designed fractional order controllers, such as
Short Memory Principle, Sampling Time Scaling, Tustin Taylor
Expansion and Lagrange function interpolation [17].

In this paper, a broken-line approximation method is intro-
duced to realize frequency-band fractional orderIα controller
between[ωb, ωh]. Let

D(s) =

( s
ωb

+ 1
s

ωh
+ 1

)α

≈
N∏

i=−N

s

ω
′
i

+ 1

s
ωi

+ 1
(11)



Based on Fig. 10,ωi and ω
′
i can be calculated in following

form:

ω
′
i =

(
ωh

ωb

) i+N+ 1
2−

α
2

2N+1
ωb, ωi =

(
ωh

ωb

) i+N+ 1
2 + α

2
2N+1

ωb (12)

Figure. 11 shows the Bode plots of ideal frequency-band
D(s) (α = 0.4, ωb = 200Hz, ωh = 10000Hz) and its 1st-
order, 2nd-odes and 3rd-order approximations by the broken-line
approximation method. Even takingN = 2 can give a satisfactory
accuracy in frequency domain.
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Figure 11. Bode plots of ideal case and approximations

6 EXPERIMENTAL RESULTS

Experiments are carried out with sampling timeT=0.001sec.
Two encoders (8000pulse/rev) are used as rotation speed sensors
with coarse quantization±0.785rad/sec.

Firstly, integer order PI speed control experiment is carried
out. Obviously, PI control only can not provide enough strength
for suppressing backlash vibration. persistent vibration occurs
when gear backlash non-linearity exists (see Fig. 12).
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Figure 12. Time responses of PI control

Figure 13 shows that compared with PI-only control, introduc-
ing disturbance observer can give better vibration suppression per-
formance. However, this performance improvement is not enough
to effectively suppress the vibration cause by gear backlash.

Figure 14 depicts the experimental results with differentα
order filters. The fractional order low-pass filters 1

(Ts+1)α are
realized with the 2nd-order broken-line approximation. Vibration
occurred in PI-only and PI+DOB control is effectively suppressed
by choosing properα. Takingα as 0.2 gives best time response.
From the time responses, it can be seen that large order leads to
poor stability; while small order gives poor vibration suppression
strength. This observation verifies a continuous tuning of the
tradeoff can be easily achieved through FOC approach.
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Figure 13. Improvement by introducing disturbance observer

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

ω
m

 (
ra

d
/s

e
c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

time (sec)

ω
l 

(r
a
d

/s
e
c)

(a) α = 0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

ω
m

 (
ra

d
/s

e
c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

time (sec)

ω
l 

(r
a
d

/s
e
c)

(b) α = 0.01

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

ω
m

 (
ra

d
/s

e
c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

time (sec)

ω
l 

(r
a
d

/s
e
c)

(c) α = 0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

ω
m

 (
ra

d
/s

e
c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

time (sec)

ω
l 

(r
a

d
/s

e
c)

(d) α = 0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

ω
m

 (
ra

d
/s

e
c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

time (sec)

ω
l 

(r
a
d

/s
e
c)

(e) α = 0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60
ω

m
 (

ra
d

/s
e
c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

time (sec)

ω
l 

(r
a
d

/s
e
c)

(f) α = 0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

ω
m

 (
ra

d
/s

e
c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

time (sec)

ω
l 

(r
a
d

/s
e
c)

(g) α = 0.99

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

ω
m

 (
ra

d
/s

e
c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

time (sec)

ω
l 

(r
a
d

/s
e
c)

(h) α = 1

Figure 14. Time responses with fractional order 1
(Ts+1)α filter

Figure. 15 depicts experimental results with the 1st-order
and 3rd-order approximation of 0.2 order low-pass filter by the
broken-line method. Even taking 1st-order approximation can
give a good backlash vibration suppression performance.
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Figure 15. Time responses with 1st- and 3rd-order approximations

7 CONCLUSIONS

Generally, there are three main advantages for introducing
FOC to control design:
• More adequate modeling of dynamic systems
• More clear-cut robust control design
• Reasonable implementation by approximation

In this paper, design and implementation issues of FOC are
mainly mentioned. In oscillatory system control, the tradeoff
between stability margin loss and vibration suppression strength
is a common problem. By introducing FOC approach, control
system’s phase and gain responses can be easily offset to any
desired amount. Design process and experimental results demon-
strate a clear-cut and effective robust control design is possible
based on FOC design method. On the contrary to FOC control
design, the implementation of fractional order controllers is not
such straightforward. Some proper approximations are needed.
However, as verified in experimental results, implementation issue
is actually not problematic.

FOC should not be an independent concept of the well-
developed IOC. Knowledge and design methods developed in IOC
can still be made full use of in FOC research, as demonstrated in
this paper. It is interesting to notice that even the theoretical anal-
ysis and design are based FOC approach, the implementation of
fractional order controllers are certainly integer order controllers.
Therefore, FOC should not be thought as a novel and conceptually
difficult idea, but actually a natural and more effective control
design tool. By FOC, control system’s responses can be designed
with much more flexibility. The integer order controller’s structure
and parameters can be decided by one parameter, the fractional
order. This enlarged flexibility will provide more possibility to
find excellent solutions with less design effects.

Namely, the tuning knob in FOC can be reduced significantly
compared to high-order transfer functions obtained by classical
IOC approaches. The authors do believe some well-designed IOC
system might in fact be a unconscious approximation of FOC
system. If this hypothesis can be established, it will further verify
FOC’s advantages in control field.
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