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Abstract: This paper proposes a fractional order low-pass filter 1
(Ts+1)α for

adjusting the trade-off between stability margin loss and the strength of vibration
suppression, in which order α can not only be integer but also be any real number.
The necessity of this trade-off adjustment is common and natural in oscillatory
system’s control. For such kind of systems, classical PI control with fractional order
low-pass filter 1

(Ts+1)α could be a general solution. As a novel approach, by letting
the order α of low-pass filter 1

(Ts+1)α be fractional, control system’s frequency
response can be adjusted easily. This superiority of Fractional Order Control
(FOC) leads to a clear-cut design that is desired in engineering applications.
The trade-off in oscillatory system control can be adjusted directly through FOC
approach. In this paper, torsional system’s speed control is used as a case study for
an experimental verification of FOC’s theoretical superiority. For implementation
of fractional order low-pass filter, broken-line approximation method is applied.
Design process and experimental results demonstrate that a “simple & clear-cut
design” can be achieved by introducing FOC concept.

Keywords: Oscillatory system, Trade-off, Adjustment, Fractional order low-pass
filter

1. INTRODUCTION

The concept of Fractional Order Control (FOC)
means controlled systems and/or controllers are
described by fractional order differential equa-
tions. Expanding derivatives and integrals to frac-
tional orders has a firm and long standing the-
oretical foundation. Leibniz mentioned this con-
cept in a letter to L’Hospital over three hun-
dred years ago in 1695 and the earliest more or

less systematic studies have been made in the
beginning and middle of the 19th century by
Liouville, Holmgren and Riemann (Oldham and
Spanier, 1974), (Podlubny, 1999a). As one of its
applications in control engineering, FOC was in-
troduced by Tustin for the position control of
massive objects half a century ago, where actuator
saturation requires sufficient phase margin around
and below the critical point (Tustin, et al., 1956).
Some pioneering works were also done in 60’s



(Manabe, 1960). However the FOC concept was
not widely incorporated into control engineering
mainly due to the conceptually difficult idea of
taking fractional order, the existence of so few
physical applications and the limited computa-
tional power available at that time (Axtell and
Bise, 1990).

In the last few decades, researchers pointed out
that fractional order differential equations could
model various materials more adequately than
integer order ones and provide an excellent tool for
describing dynamic processes (Vinagre and Feliú,
1998). The fractional order models need fractional
order controllers for more effective control of the
dynamic systems (Podlubny, 1999b). At the same
time, letting control order be fractional can give
a straightforward way to adjust control system’s
frequency response. This great flexibility makes it
possible to design more robust control system with
less control parameters. The superiorities of FOC
in modeling and control design motivated renewed
interest in various applications of FOC (Machado,
1997), (Oustaloup and Moreau, 1998), (Petras and
Vinagre, 2001). With the rapid development of
computer performances, modeling and realization
of the FOC systems also became possible and
much easier than before.

Despite FOC’s promising aspects in control mod-
eling and design, FOC research is still at its pri-
mary stage. Parallel to the development of FOC
theories, applying FOC to various control prob-
lems is also crucially important and should be one
of top priority issues. The authors believe that
designing FOC systems should be clear-cut and
there is no reason that we don’t make good use of
extremely well developed classical Integer Order
Control (IOC) theories.

Based on these basic considerations, in this paper,
the authors introduce a fractional order version of
low-pass filter 1

(Ts+1)α to achieve a clear-cut ad-
justment of the trade-off between stability margin
loss and the strength of vibration suppression in
speed control of torsional system. The necessity of
this trade-off adjustment is common and natural
in oscillatory system’s control (Chen, et al., 2003).
For such kind of systems, classical PI control with
fractional order low-pass filter 1

(Ts+1)α can be a
general solution. This paper contributes to the
verification of the above hypothesis on an experi-
mental basis.

2. THE TESTING BENCH

The testing bench of torsional system is depicted
in Fig. 1, which is a typical oscillatory system.
Two flywheels are connected with a long torsional
shaft; while driving force is transmitted from

driving servomotor to the shaft by gears with gear
ratio 1:2. Some system parameters are adjustable,
such as gear inertia, load inertia, shaft elastic
coefficient and gear backlash angle. The encoders
and tacho-generators are used as position and
rotation speed sensors.
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Fig. 1. Experimental setup of the torsional system

The simplest model of the testing bench with
gear backlash is three-inertia model, as depicted
in Fig. 2 and Fig. 3, where Jm, Jg and Jl are
driving motor, gear (driving flywheels) and load
inertias, Ks shaft elastic coefficient, ωm and ωl

motor and load rotation speeds, Tm input torque
and Tl disturbance torque. The gear backlash
non-linearity is described by the classical dead
zone models in which the shaft is modeled as
a pure spring with zero damping (Nordin and
Gutman, 2002). Frictions between components are
neglected due to their small values.
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Fig. 2. Torsional system’s three-inertia model
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Fig. 3. Block diagram of the three-inertia model

Parameters of the experimental torsional system
are shown in Table. 1 with a backlash angle δ of
±0.6deg. Open-loop transfer function from Tm to
ωm is in the following form:

P3m(s) =
(s2 + ω2

h1)(s
2 + ω2

h2)
Jms(s2 + ω2

o1)(s2 + ω2
o2)

(1)

where ωo1 and ωo2 are resonance frequencies while
ωh1 and ωh2 are anti-resonance frequencies. ωo1

and ωh1 correspond to torsion vibration mode;
while ωo2 and ωh2 correspond to gear backlash
vibration mode (see Fig. 4).
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Fig. 4. Bode plots of the three-inertia model

Table 1. Parameters of the three-inertia
system

Jm Jg Jl Kg Ks

(Kgm2) (Kgm2) (Kgm2) (Nm/rad) (Nm/rad)

0.0007 0.0034 0.0029 3000 198.49

3. NECESSITY OF TRADE-OFF
ADJUSTMENT

As mentioned by Ma and Hori (2004), a well
designed set-point-I PI controller can give a satis-
factory performance for speed control in nominal
case (see Fig. 5 and Fig. 6). The PI controller is
designed by Coefficient Diagram Method (CDM)
with Ki = 119.78 and Kp = 1.6187 (Hori, 1995)
(Manabe, 1998).
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Fig. 5. Set-point-I PI controller
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Fig. 6. Simulation results with nominal three-
inertia model

For nominal three-inertia model P3m(s), the close-
loop transfer function of integer order PI control
system from ωr to ωm is

Gclose(s) =
CI(s)P3m(s)

1 + CI(s)P3m(s) + CP (s)P3m(s)
(2)

where CI(s) is I controller and CP (s) is P con-
troller in minor loop; therefore Gclose(s) is stable
if and only if Gl = CI(s)P3m(s) + CP (s)P3m(s)
has positive gain margin and phase margin. At the
same time, for torsional system’s speed control,

suppressing vibration caused by the gear backlash
must be concerned.
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Fig. 7. Bode plots of Gl(jω) with PI controller

As depicted in Fig. 7, the PI speed control system
has enough stability margin; while in order to
recover some vibration performance, additional
factors with negative slope and phase-lag are
needed. However introducing these factors will
simultaneously lead to phase margin loss. Namely,
there exists a trade-off between stability margin
loss and the strength of vibration suppression in
the testing torsional system’s speed control.

4. FRACTIONAL ORDER FILTER

In order to achieve a proper controller, which
is neither conservative nor aggressive, redesign-
ing the PI controller or applying other control
methods can be options; while in this paper, a
fractional order low-pass filter 1

(Ts+1)α is intro-
duced (see Fig. 8). The trade-off between stability
margin loss and the strength of vibration suppres-
sion can be adjusted easily by choosing proper
fractional order α only, as depicted in Fig. 9. T will
give control system enough large band width for a
fast time response. Here considering the frequency
range of torsion vibration mode, T is taken as
0.005(=1/200).
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Fig. 8. PI controller with fractional order low-pass
filter

5. REALIZATION METHOD

Design control system by FOC approach is clear-
cut. However, for realizing designed fractional or-
der controller, it is not so. Due to fractional order
systems’ infinite dimension, proper approximation
by finite difference equation is needed. Since FOC
system’s frequency response is actually exactly
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Fig. 9. Bode plots of Gl(jω) with fractional order
low-pass filters

known. It is natural to approximate fractional
order controllers by frequency domain approaches.

In this paper, a broken-line approximation method
is introduced to approximate 1

(Ts+1)α in frequency
range [ωb, ωh], where T = 1

ωb
. ωh is taken as

104 to give an enough frequency range for a good
approximation. Let

(
s

ωh
+ 1

s
ωb

+ 1

)α

≈
N−1∏

i=0

s
ω
′
i

+ 1
s
ωi

+ 1
(3)
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Fig. 10. An example of broken-line approximation
(N = 3)

Based on Fig. 10, two recursive factors ζ and η
are introduced to calculate ωi and ω

′
i:

ζ =
ω
′
i

ωi
, η =

ωi+1

ω
′
i

(4)

Since

ω0 = η
1
2 ωb, ω

′
N−1 = η−

1
2 ωh (5)

Therefore

ζη =
(

ωh

ωb

) 1
N

(6)

with

ωi = (ζη)iω0, ω
′
i = ζ(ζη)iω0 (7)

The frequency-band fractional order controller
has −20αdB/dec gain slope, while the integer

order factors 1
/

( s
ω
′
i

+ 1) have −20dB/dec slope.
For the same magnitude change ∆:

−20α =
∆

logζ + logη
, −20 =

∆
logζ

(8)

Thus

(ζη)α = ζ (9)

Therefore ζ and η can be expressed respectively
by

ζ =
(

ωh

ωb

) α
N

, η =
(

ωh

ωb

) 1−α
N

(10)

Finally

ωi =
(

ωh

ωb

) i+ 1
2−

α
2

N

ωb, ω
′
i =

(
ωh

ωb

) i+ 1
2 + α

2
N

ωb (11)

Figure. 11 shows the Bode plots of ideal frequency-
band case (α = 0.4, ωb = 200Hz, ωh = 1000Hz)
and its 1st-order, 2nd-order and 3rd-order approx-
imations by broken-line approximation method.
Even taking N = 2 can give a satisfactory accu-
racy in frequency domain. For digital implemen-
tation, the bilinear transformation method is used
in this paper.
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Fig. 11. Bode plots of ideal case, 1st, 2nd and 3rd-
order approximations

6. EXPERIMENTAL RESULTS

As depicted in Fig. 12, the experimental torsional
system is controlled by a PC with 1.6GHz Pen-
tium IV CPU and 512M memory. Control pro-
grams are written in RTLinux C threads which
can be executed with strict timing requirement
of control sampling time. A 12-bit AD/DA multi-
functional board is used whose conversion time
per channel is 10µsec.

Experiments are carried out with sampling time
T=0.001sec and 2nd-order broken-line approxi-
mation (N = 2). Two encoders (8000pulse/rev)
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Fig. 12. Digital control system of the experimental
setup

are used as rotation speed sensors with coarse
quantization ±0.785rad/sec.

Since the driving servomotor’s input torque com-
mand Tm has a limitation of maximum ±3.84
Nm, Ki is reduced to 18.032 by trial-and-error to
avoid large over-shoot caused by the saturation.
Firstly, integer order PI speed control experiment
is carried out. As depicted in Fig. 13 the PI control
system can achieve satisfactory response when the
backlash angle is adjusted to zero degree (δ = 0);
while persistent vibration occurs when gear back-
lash non-linearity exists (see δ = 0.6 case).
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Fig. 13. Experimental results of the integer order
PI control

Figure 14 depicts the experimental results with
different α order filters. Vibration occurred in
PI-only control is effectively suppressed by intro-
ducing fractional order low-pass filter 1

(Ts+1)α . In
those results, taking α as 0.2 gives best time re-
sponse with improved vibration suppression per-
formance. For other higher α order cases, even the
vibration is suppressed, their time responses are
not such satisfied due to more phase margin loss.
This observation gives that, by FOC approach, it
is more clear-cut to adjust the trade-off between
stability margin loss and strength of vibration
suppression.

In order to verify whether the fractional order
filter can give a continuous tuning of the trade-
off, the time responses of α = 0.01 and α =
0.99 cases are also experimented. As depicted in
Fig. 15, the results show a good continuity. At-
tention should be paid toward the reasons for vi-
brations in two cases. Poor vibration suppression
performance causes vibration in α = 0.01 case;
while nearly zero phase margin in α = 0.99 case
leads to the severe vibration with lower frequency
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Fig. 14. Experimental results with fractional order
1

(Ts+1)α filter

and larger amplitude. Namely, the reason for the
second case is due to its poor relative stability. A
proper fractional order α can give a better trade-
off between these two extreme cases.
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Fig. 15. Continuity of Experimental results with
different fractional order α

Figure. 16 depicts experimental results with the
1st-order and 3rd-order approximation of broken-
line method (α = 0.2). Even taking 1st-order
approximation can give a relatively good perfor-
mance.

7. CONCLUSIONS

In this paper, a classical PI controller with frac-
tional order low-pass filter 1

(Ts+1)α is proposed to
give a straightforward trade-off adjustment be-
tween the control system’s stability margin loss
and the strength of vibration suppression. In os-
cillatory system control, this kind of trade-off is a
common problem. As shown in the above theoreti-
cal analysis and experimental results, by introduc-
ing FOC concept, we can design control system in



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

ω
m

 (
ra

d
/s

e
c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

time (sec)

ω
l 

(r
a

d
/s

e
c)

(a) 1st-order

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

ω
m

 (
ra

d
/s

e
c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

time (sec)

ω
l 

(r
a
d

/s
e
c)

(b) 3rd-order

Fig. 16. Experimental results with different ap-
proximation orders

a clear-cut way since control system’s frequency
response can be adjusted easily to desired shape
with few control parameters. Namely, the tuning
knob can be reduced significantly compared to
high-order transfer functions obtained by classical
IOC approaches.

At the same time, it can be seen using fractional
order controller is a general method to trade off
inconsistent control demands, which is not lim-
ited to the specific problem. “Simple & clear-cut
design” can be achieved by expending controller’s
order to fractional.

On the contrary to FOC control design, the
implementation of fractional order controllers is
not such direct. Some proper approximations are
needed. However, as verified in experimental re-
sults, the implementation issue actually should
not be problematic.

FOC is not an abstract concept, but a natural and
powerful expansion of the well-developed IOC.
Knowledge and design tools developed in IOC can
still be made good use of in FOC research, as
demonstrated in this paper. For example, upgrad-
ing traditional PID controller by introducing frac-
tional order factors, such as fractional order Iα, Dβ

controllers or fractional order filters, could give a
more effective control of complex dynamics. It is
interesting to find that in the experiments the 1st-
order approximation can also have a relative good
performance (see Fig. 16). This filter is actually a
simple one order controller:

0.45731
(s + 2091)
(s + 956.4)

(12)

The authors do believe some well-designed IOC
system might in fact be a unconscious approx-
imation of FOC system. If this hypothesis can
be established, FOC’s superiorities in control field
would be further verified.
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