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Fractional Order Control (FOC), in which the controlled systems and/or controllers are described by frac-
tional order differential equations, has been applied to various control problems. Though it is not difficult
to understand FOC’s theoretical superiority, realization issue keeps being somewhat problematic. Since the
fractional order systems have an infinite dimension, proper approximation by finite difference equation is
needed to realize the designed fractional order controllers. In this paper, the existing direct discretization
methods are evaluated by their convergences and time-domain comparison with the baseline case. Proposed
sampling time scaling property is used to calculate the baseline case with full memory length. This novel
discretization method is based on the classical trapezoidal rule but with scaled sampling time. Compara-
tive studies show good performance and simple algorithm make the Short Memory Principle method most
practically superior. The FOC research is still at its primary stage. But its applications in modeling and
robustness against non-linearities reveal the promising aspects. Parallel to the development of FOC theories,
applying FOC to various control problems is also crucially important and one of top priority issues.
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1. Introduction

The concept of Fractional Order Control (FOC), in
which the controlled systems and/or controllers are de-
scribed by fractional order differential equations, is by
no means new. In fact, it has a long history. The concept
was firstly introduced by Tustin for the position control
of massive objects half a century ago, where the actu-
ator saturation requires sufficient phase margin around
and below the crossover frequency (1).

However, FOC was not widely incorporated into con-
trol engineering mainly due to the conceptually diffi-
cult idea of taking fractional order, the existence of so
few physical applications and the limited computational
power available at that time (2). In last few decades,
researchers pointed out that fractional order differen-
tial equations could model various materials more ade-
quately than integer order ones and provide an excellent
tool for describing dynamic processes (3) (4) (5). The frac-
tional order models need fractional order controllers for
more effective control of the dynamic systems (6). This
necessity motivated the renewed interest in various ap-
plications of FOC (7) (8) (9) (10). Thanks to the rapid devel-
opment of computational power, modeling and realizing
FOC systems also became much easier than before.

By changing FOC controller’s fractional order, con-
trol system’s frequency response can be adjusted directly
and continuously. This advantage can lead to more
straightforward design of robust control systems against
uncertainties. Though it is not difficult to understand
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FOC’s theoretical superiority, realization issue keeps be-
ing somewhat problematic and perhaps is one of the
most doubtful points for applying FOC. Since the frac-
tional order systems have an infinite dimension, proper
approximation by finite difference equation is needed to
realize the designed fractional order controllers.

Frequency-band fractional order controller can be
realized by broken-line approximation in frequency-
domain, but further discretization is required for this
method (11). As to direct discretization, several meth-
ods have been proposed such as Short Memory Princi-
ple (4), Tustin Taylor Expansion (12) and Lagrange Func-
tion Interpolation method (8), while all the approxima-
tion methods need truncation of the expansion series.
How to determine the baseline case, which is reliable
and easy to understand, is essentially important for the
evaluation of the proposed methods in time-domain, es-
pecially from the viewpoint of engineering.

At the same time, it is well known that the discrete
integer order controllers have clear time-domain inter-
pretation as changing ratio or the area of sampled input
to time, which significantly simplify their use in various
applications. However all the above direct discretization
methods for fractional order controllers have a common
weak point of lacking clear time-domain interpretation.
A clear time-domain interpretation is crucial for the ap-
plications of FOC.

The authors proposed a novel and clear time-domain
interpretation of discrete fractional order controllers as
having sampling time scaling property (13). In this pa-
per, this interpretation is used to achieve a reliable and
easy method for calculating the baseline case for dis-
crete FOC control systems. With the established base-
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line, the discretization methods are evaluated in time-
domain. The article is organized as follows: in section
2, the mathematical definitions of fractional order cal-
culus are introduced; in section 3, some typical existing
direct discretization methods are reviewed; in section 4,
a novel and reliable discretization method is proposed
based on the discrete fractional order controllers’ sam-
pling scaling property; in section 5, comparative studies
are carried out with the discretization methods and the
baseline case calculated by the proposed novel method;
finally, in section 6, conclusions are drawn.

2. Mathematical Definitions

The mathematical definition of fractional derivatives
and integrals has been a subject of several different ap-
proaches (3) (4). The most frequently encountered defini-
tion is called Riemann-Liouville definition, in which the
fractional α order integrals are defined as

t0I
α
t f(t) :=t0 D−α

t f(t) =
1

Γ(α)

∫ t

t0

(t−ξ)α−1f(ξ)d(ξ)(1)

while the definition of fractional order derivatives is

t0D
α
t f(t) =

dγ

dtγ

[
t0D

−(γ−α)
t f(t)

]
· · · · · · · · · · · · (2)

where

Γ(x) ≡
∫ ∞

0

yx−1e−ydy · · · · · · · · · · · · · · · · · · · · · · (3)

is the Gamma function, t0 and t are limits and α (α > 0
and α ∈ R) is the order of the operation. γ is an integer
that satisfies γ − 1 < α < γ.

The other approach is Grünwald-Letnikov definition:

t0D
α
t f(t) = lim

h→0
nh=t−t0

h−α
n∑

r=0

(−1)r

(
α
r

)
f(t−rh)(4)

where binomial coefficients are(
α
0

)
= 1,

(
α
r

)
=

α(α− 1) . . . (α− r + 1)
r!

(5)

3. Existing Discretization Methods

3.1 Short memory principle For simplifica-
tion, the controller is discrete fractional α order deriva-
tive (0 < α < 1) or integral (−1 < α < 0).

The discretization method is based on the observation
that for Grünwald-Letnikov definition, the values of the
binomial coefficients near the “starting point” t = 0 is
small enough to be neglected or “forgotten” for large t.
Therefore the principle takes into account the behavior
of x(t) only in the “recent past”, i.e., in the interval
[t− L, t], where L is the length of “memory”:

0D
α
t x(t) ≈t−L Dα

t x(t), (t > L) · · · · · · · · · · · · · · · (6)

Based on approximation of the time increment h
through the sampling time T , the discrete equivalent
of the fractional order α derivative is given by

Z{Dα[x(t)]} ≈

 1

Tα

m∑

j=0

cjz
−j


X(z) · · · · · · · (7)

where m = [L/T ] and the coefficients cj are

c0 = 1,

cj = (−1)j

(
α
j

)
=

j − α− 1
j

· cα
j−1 · · · · · · · · (8)

3.2 Tustin taylor expansion The direct dis-
cretization can also be achieved by using the well-known
Tustin operator or trapezoidal rule as a generation func-
tion as follows:

Z{Dα[x(t)]} ≈
(

2
T

1− z−1

1 + z−1

)α

X(z) · · · · · · · · · (9)

Taylor expansion of the fractional α order Tustin oper-
ator gives

(
2
T

1− z−1

1 + z−1

)α

=
1

Tα

∞∑

j=0

cjz
−j · · · · · · · · · · · · · (10)

Here the coefficients cj are

cj =
2α

j!

[(
1− x

1 + x

)α](j)
∣∣∣∣∣
x=0

· · · · · · · · · · · · · · · · (11)

Real implementation of Equ. (9) corresponds to m-term
truncated series given by

Z{Dα[x(t)]} ≈ Truncm

[(
2
T

1− z−1

1 + z−1

)α]
X(z)

=


 1

Tα

m∑

j=0

cjz
−j


 X(z) · · · · · · (12)

3.3 Lagrange function interpolation For ex-
ample, quadratic Lagrange interpolation among x(k−2),
x(k − 1) and x(k) in the interval 0 ≤ t ≤ 2T results

x(t) =
x(k)− 2x(k − 1) + x(k − 2)

2

(
t

T

)2

− x(k)− 4x(k − 1) + 3x(k − 2)
2

t

T
+ x(k − 2) · · · · · · · · · · · · · · · · · · · · · · · · · · · · (13)

The α order derivative of tn is (3)

0D
α
t (tn) =

n!tn−α

Γ(n− α + 1)
· · · · · · · · · · · · · · · · · · · (14)

For t = 2T , the α order derivative of x(t) is

Dαx(t)|t=2T =
1

Tα
· 1
2αΓ(3− α)

[(2 + α) · x(k)

− 4α · x(k − 1) + α2 · x(k − 2)
]

(15)

The z-transformation is

Z{Dαx(t)} =
1

Tα
· 1
2αΓ(3− α)

[(2 + α)− 4αz−1

+ α2z−2]X(z) · · · · · · · · · · · · · · · · · · (16)

Therefore, the m-order Lagrange Function Interpolation
method can also be re-written in the form:

Z{Dα[x(t)]} ≈

 1

Tα

m∑

j=0

cjz
−j


 X(z) · · · · · · (17)
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4. Proposed Discretization Method

4.1 Sampling time scaling property From
the Riemann-Liouville definition, fractional order inte-
gral with order between 0 and 1 is

0I
α
t f(t) =

∫ t

0

f(τ)dgt(τ), 0 < α < 1 · · · · · · · · (18)

where

gt(τ) =
1

Γ(1 + α)
[tα − (t− τ)α] · · · · · · · · · · · · · (19)

Let t := nT , where T is the sampling time and n is the
step currently under execution, then

gnT (kT ) =
nα − (n− k)α

Γ(1 + α)
Tα, k = 1, ..., n · · · (20)

Therefore, by sharing the same view of discrete integer
order integration rules, the “real” sampling time T of
the kth step is

Tn(k) = ∆gnT (kT )
= gnT (kT )− gnT [(k − 1)T ]

=
(n− k + 1)α − (n− k)α

Γ(1 + α)
Tα · · · · · · · · (21)

Thus

Tn(n) =
1α − 0α

Γ(1 + α)
Tα

Tn(n− 1) =
2α − 1α

Γ(1 + α)
Tα

. . .

Tn(1) =
nα − (n− 1)α

Γ(1 + α)
Tα · · · · · · · · · · · · · (22)

Finally, based on the trapezoidal integration rule

0I
α
nT ≈

n∑

k=1

f(kT ) + f [(k − 1)T ]
2

Tn(k) · · · · · · (23)

and if T → 0, then

0I
α
nT =

n∑

k=1

f(kT ) + f [(k − 1)T ]
2

Tn(k) · · · · · · (24)

From Equ. (22), we can see that the interpretation of
discrete fractional order integrals is the “deformation”
of their integer order counterparts by internal sampling
time scaling (see Fig. 1). By using this interpretation, it
becomes transparent to understand that the past values
are “forgotten” gradually in discrete fractional order in-
tegrals due to their scaled tiny sampling time while in
integer order ones all the values are “remembered” with
the same weights.

Similarly, discrete fractional order derivatives with or-
der between 0 and 1 is

0D
α
t f(t) =

1
Γ(1− α)

d

dt

∫ t

0

f(τ)
(t− τ)α

dτ

 

4 

0 

1 2 3 

1 2 3 4 

0 

integer order integral

fractional order integral

Fig. 1. Fractional order integral’s sampling time
scaling

=
d[

∫ t

0
f(τ)dg

′
t(τ)]

dt
, 0 < α < 1 · · · · (25)

where

g
′
t(τ) =

1
Γ(2− α)

[t1−α − (t− τ)1−α] · · · · · · · · (26)

Thus

T
′
n(n) =

11−α − 01−α

Γ(2− α)
T 1−α

T
′
n(n− 1) =

21−α − 11−α

Γ(2− α)
T 1−α

. . .

T
′
n(1) =

n1−α − (n− 1)1−α

Γ(2− α)
T 1−α · · · · · · · (27)

Again based on the trapezoidal integration rule
∫ nT

0

f(τ)dg
′
t(τ) ≈

n∑
k=1

f(kT ) + f [(k − 1)T ]

2
T
′
n(k)(28)

and if T → 0, then
∫ nT

0

f(τ)dg
′
t(τ) =

n∑
k=1

f(kT ) + f [(k − 1)T ]

2
T
′
n(k)(29)

The interpretation of discrete fractional order deriva-
tives is the derivatives of fractional (1−α) order integrals∫ nT

0
f(τ)dg

′
t(τ). Namely, it can be understood geomet-

rically as the changing ratio of the “scaled integral area”
due to the sampling time scaling property, as depicted
in Fig. 2.

 

1 2 3 3 1 2 0 4

Fig. 2. Changing of the ”scaled integral area”

Clearly, when the orders are integers, the sampling
time scaling effect disappears which means in discrete
domain FOC is also a generalization and “interpolation”
of the integer order control theory.

4.2 Full memory length baseline In order to
evaluate the discretization methods in time-domain, a
reliable baseline case must be calculated in advance.
For simulation of FOC systems, using the truncated
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Grünwald-Letnikov expansion (6), Mitten-Leffler func-
tion (6), Bromwich’s integral with a numerical integra-
tion and B-spline series expansion (14) can be options.
However those methods are either too abstract or too
complicated for engineering applications. In this pa-
per, a reliable and easy simulation method is proposed
based on the sampling time scaling property, in which
the whole past values are memorized. The fractional
order controllers are discretized by the classical trape-
zoidal rule but with scaled sampling time in the method.

Based on Equ. (23) and Equ. (28), it is easy to give
the discrete equivalent of the fractional α order integral
or derivative controllers as follows:

Z{Dα[x(t)]} ≈

 1

Tα

∞∑

j=0

cjz
−j


X(z) · · · · · · (30)

For integral controllers (α < 0), coefficients cj are

c0 =
1

2Γ(1 + |α|)

cj =
(j + 1)|α| − (j − 1)|α|

2Γ(1 + |α|) , j ≥ 1 · · · · · · · · · · (31)

And the coefficients of derivative controllers (α > 0) are

c0 =
1

2Γ(2− α)

c1 =
21−α − 1
2Γ(2− α)

cj =
1

2Γ(2− α)
[
(j + 1)1−α − j1−α

− (j − 1)1−α − (j − 2)1−α
]
, j ≥ 2 · · · · · · · (32)

Of course, the m-term truncated form of the proposed
simulation method can also be used as a novel direct
discretization method for realizing fractional order con-
trollers:

Z(Dα[x(t)]) ≈

 1

Tα

m∑

j=0

cjz
−j


 X(z) · · · · · · (33)

Similarly, the m can be considered to be the approxima-
tion’s memory length as in the short memory principle
method.

5. Comparative Studies

For comparison purposes, one mass position control
is introduced as a simple prototype for the case of
Jm = 0.001 and Kd = 0.01 (see Fig. 3). Time responses
with fractional order derivative controllers Dα are simu-
lated where Dα is discretized by using the above direct
discretization methods. Sampling time T is taken as
0.001sec.

Those methods’ convergences must be analyzed before
applying them to control implementation. The semi-log
chart of Fig. 4a shows the amplitude absolute values
of the coefficients |cj | versus term order j when ap-
proximating α = 0.4 derivative. Short Memory Prin-
ciple (SMP) and Sampling Time Scaling (STS) methods

 

sK
d

m
sJ

1+ 
θr

θm
α

2

Fig. 3. The position control loop with fractional α
order derivative controller

should have similar approximation performances, while
the SMP’s coefficients converge a little more rapidly
than the STS’s. The poor convergences of Tustin Tay-
lor Expansion (TTE) and Lagrange Function Interpola-
tion (LFI) methods seem problematic (see Fig. 4a and
Fig. 4b).
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Fig. 4. |cj | versus j when approximating D0.4

The baseline time responses with different α order
derivative controllers are simulated by the proposed sim-
ulation method using the sampling time scaling prop-
erty. As depicted in Fig. 5, it can be seen clearly that
the FOC systems’ time responses are an interpolation
of the classical integer order ones and can be adjusted
continuously by changing order α.
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Fig. 5. Time responses with fractional order Dα

controller

5.1 TTE and LFI methods The simulations
of TTE and LFI methods verify the convergence anal-
ysis. As depicted in Fig. 6a with approximation order
m = 5, the TTE method results poor performances. Ac-
tually the fractional order controllers realized by high
order TTE methods can make control systems unstable,
while higher the order better the approximation should
be achieved. The time responses of LFI method for D0.4

controller are also unsatisfied (see Fig. 6b). In addition
the programming complexity of calculating high order
Lagrange interpolation and Tustin operator’s high or-
der derivative makes the two methods inferior to control
applications.
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Fig. 6. Time responses of TTE (a) and LFI (b)
methods

5.2 SMP and STS methods In order to inves-
tigate the affection of the memory length in SMP and
TST methods, a quadratic performance index J is de-
fined in an error function form:

J =
∫ t

0

[fa(τ)− fb(τ)]2dτ · · · · · · · · · · · · · · · · · · (34)

with t(= 1sec) simulation time, fa(t) time responses of
the two approximation cases, fb(t) the baseline time re-
sponse. The baseline case is calculated by full memory
length STS method. Fig. 7 shows performance index J
versus memory length n(≥ 5), in which the fractional
order α is from 0.8 to 0.2 with 0.2 interval.
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Fig. 7. Performance index versus memory length

The four quantities of the step responses, maximum
overshoot, delay time, rise time and settling time, are
calculated for both methods. For clearness, only α = 0.4
case is plotted in Fig. 8.

As depicted in Fig. 7, clearly the approximation per-
formance is remarkably improved when increasing the
memory length from 10 to 100. Between 100 and 1000
memory length, the performance improvement is just
slight; while hardware burden increases due to the ne-
cessity of storing and processing more data in short time.
The step response’s quantities plotted in Fig. 8 also
show the same observation result. The SMP method has
a slightly better approximation than the STS method.
The programming of SMP method is also much eas-
ier in which cj can be calculated by simply multiplying
cj−1 and (j − α − 1)/j together, as shown in Equ. (8).
The SMP method is practically superior. When sam-
pling time T is 0.001sec, taking 100 memory length can
have a good approximation (see Fig. 9). With highly-
developed computational power, processing 100 sam-
pling data with simple SMP algorithm should not be
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Fig. 8. Time responses’ four quantities

problematic in mili-second level for modern digital con-
trol systems. In real application, even memorizing 10
past values can also give a good control performance (15).
The necessary memory length, namely how good the ap-
proximation is needed, should be decided by the demand
of specific control problem.
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Fig. 9. Time responses with different memory
length m (α = 0.4)

For the one mass position control with Dα controllers,
the open-loop is 1

s2−α and its phase margin is (2−α)×90
degree. A proper phase margin can be easily achieved
by choosing fractional order α (1). Letting α be 0.4 gives
the control system a good robustness against saturation
non-linearity (16), which is one of the most ordinary non-
linear phenomena in control systems. As depicted in
Fig. 10, a maximum torque limitation of ±2Nm is intro-
duced in the unity feedback control system. Comparison
of Fig. 5 and Fig. 11 verifies that the well-approximated
fractional order D0.4 controllers are remarkably robust
against saturation non-linearity. It was found that the
fractional order controllers, like PIDα controller, are
robust against other non-linearities such as gear back-
lash (15).

6. Conclusions

In this paper, the sampling time scaling property is
used as a reliable and easy method to calculate the
baseline case with full memory length. This simula-
tion method is based on the classical trapezoidal rule
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Fig. 10. The position control loop with torque
saturation
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Fig. 11. Robustness of approximated D0.4 con-
troller against saturation non-linearity (dash lines
are the time responses with integer 1 and 0 order
Dα controllers)

but with scaled sampling time. It’s truncated form is
also proposed as a novel direct discretization method.
The existing direct discretization methods are evaluated
by their convergences and time-domain comparison with
the established baseline case. Comparative studies show
the poor performance of TTE and LFI methods. SMP
and STS methods have better and similar approxima-
tion; while the simple algorithm makes SMP method
practically superior. With the baseline case calculated
by the proposed simulation method, the original plots of
quadratic performance index and the other four quan-
tities give a clear way to evaluate the effect of memory
length. The simulation results show remembering 100
past value can achieve a good approximation.

The FOC research is still at its primary stage. But its
applications in modeling and robustness against non-
linearities reveal the promising aspects. Parallel to the
development of FOC theories, applying FOC to various
control problems is also crucially important and should
be one of top priority issues.

(Manuscript received September 26, 2003,
revised February 16, 2004)
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