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Abstract— We have proposed a modified PSO[1]; GPSO
(Golden-section-search driven Particle Swarm Optimization)
which updates only one particle in a generation based on a
strategy: golden section search and steepest descent method. It
was proved to be effect in various optimization problem. In this
paper, first, this GPSO is revised to make clear its effectiveness.
Then, the GPSO is utilized to optimize control parameters in
NC machine tools. Parameters which are said to be difficult to
optimize in a NC machine tool, is chosen and the roles of those
parameters are scrutinized. Based on those scrutiny, fitness are
defined for parameters.

In order to verify optimization performance of the algorithms
(GA, PSO, GPSO), a hardware-in-the-loop system with a NC
machine tool is set up and on-line optimization experiments are
conducted using the system. In experiments, the GPSO shows
better optimization performance.

Key Words: golden section search driven particle swarm opti-
mization (GPSO), hardware-in-the-loop system, parameter tuning,
golden section search, steepest descent method, precision motion
control

I. I NTRODUCTION

We have proposed a modified PSO that is called golden
section search driven particle swarm optimization (GPSO)[1].
In the last work, the performance of GPSO was verified by
numerical experiments. As a result, it was proved that the
GPSO is more appropriate for the problem which has a steep
slope around the global optimal point. For example, the GPSO
shows better performance in the problem (a) Easom function
than (b) GP function illustrated in Figure 1.

(a) Easom function (b) GP function

Fig. 1. Two Benchmark Problems in 2 Dimensions

In our previous work, the algorithm sometimes needs two
swarms to be updated by the golden ratio section search. Since
this can worsen the performance, the algorithm is revised in
this paper.

Also in the last work, GPSO has been suggested as one
efficient optimization method of on-line control parameter
optimization. In industry, parameters of controllers should be
tuned according to the purpose and environment of the system.
Especially in the high precision control, this tuning is difficult
and time-consuming work for general users and has been
the work of sophisticated experts. Our last paper suggested
the characteristics of control parameter optimization in NC
machine tools as below, based on the experience of the control
experts:

1) Although design of a fitness that indicates the perfor-
mance of controller is not uniquely determined, it is not
likely to have lots of local optima, and roughly can be
considered as a unimodal function.

2) Since it uses real hardware such as motors, it should
not search a parameter space where the hardware can be
broken during parameter searches. Mutation in the GA
is hard to be favored in this application. Additionally,
parameters should be optimized with fewer experiments.

3) It needs fine adjustment of parameters. The algorithm
should find excellent parameters, not fairly good param-
eters. Therefore, the algorithm should find the possible
search space, search that space in detail, and find excel-
lent parameters quickly. This means that it should have a
strategy to search a space after it comes near the optimal
point.

Considering these characteristics, the GPSO’s effective op-
timization performance can be said to be adequate for this
optimization, since it will reduce tuning time with less size of
a swarm.

However, the more related with performance the parameters
are, the higher the possibility of optimization will be. In the
last paper, fitness function is not so well scrutinized resulting
in unclear performance improvement by the GPSO. In order
to make this point clear, this paper focuses on the relationship
between parameters and control performance.

Lastly, the experiments using the hardware-in-the-loop sys-
tem compare the optimization perforamces of three algorithms:
GA, PSO, GPSO, and verify superiority of the proposed GPSO
algorithm.



II. GOLDEN SECTION SEARCH DRIVENPARTICLE SWARM

OPTIMIZER

A. Necessary Improvement in Conventional Optimization
Methods

Various search algorithms have been used for optimization
problem in high precision control [3],[4]. Those algorithms
optimize a variety of parameters in controllers: optimization
of gains and orders of controller, estimation of physical charac-
teristics of a plant. Among the algorithms, Genetic Algorithm
(GA) and Particle Swarm Optimization (PSO) are the most
popular methods.

GA adopts selection, cross-over, and mutation as its opti-
mization tools. It is an analogy of the optimization procedure
of the nature and easy to understand. Yet, it has several
problems: GA largely depends on the initial parameters’ value
and it can lead to a failure in optimization; the update of
parameters is mainly done by cross-over which cannot get
over the range of initial parameters’ code. Mutation is the only
way to get over the range, however, the direction of mutation is
quite random, and it takes too much time to reach the optimum
by that mutation.

On the other hand, PSO which uses the concept of velocity
described in Equation (1) can easily get over the range of
initial parameters.

vi(k + 1) = (1)

αvi(k)+β1rand(xpbesti
−xi(k))+β2rand(xgbest−xi(k)),

where xgbest means the position of a global best obtained
so far by any particle in the population, andxpbesti

means
the position of the best solution which ani th particle has
achieved so far. The positions or parameters of particles in
next generation are determined by adding this velocity to
the positions of particles in current generation. By choosing
appropriate coefficientsα, β1 andβ2, the range in which next
particles search around can be adjusted. This is a big difference
between GA and PSO. Also, this velocity concept is quite
useful in the multi-dimensional optimization problems which
do not have any mathematical model. It enables the particle
to move toward the optimum with high possibility of getting
there.

The only problem of this PSO is that the step size in each
update is quite random, which decreases the possibility of
finding the optimum and makes the convergence more or less
slow. The GPSO addressed this step size problem in PSO
based on the golden section search and the steepest descent
method.

B. Suggestion of Golden section search driven PSO Algorithm

The GPSO novel algorithm proposed in this section just
changes the strategy of one particle in one generation and
attempts to make improvement by those particles.

In the PSO, decision of the direction and step size for the
update of a generation is important. We adopt the steepest
descent method for the direction decision and golden section
search for step size decision. In the whole procedure of the

PSO, one direction is selected as a candidate direction where
the global optimum is assumed to be located. The direction
in which the slope to thexgbest has been steepest so far is
selected as the candidate direction, therefore, whenxgbest is
changed or there comes steeper slope, this direction is reset.

candidate direction

Fig. 2. Decision of the Candidate Direction

After the candidate direction is fixed, the position of one
particle is selected along this direction with the step size
decision by the golden section search. For the golden section
search, four positions in one direction are necessary. Let us
denominate these four points as GSS points and represent them
asxgss1, xgss2, xgss3, xgss4.

The distances among these GSS points are designed as
below.

∥xgss1 − xgss3∥ : ∥xgss3 − xgss4∥ = λ : 1 − λ

∥xgss1 − xgss2∥ : ∥xgss2 − xgss4∥ = 1 − λ : λ, (2)

whereλ is the golden ratio calculated by
√

5−1
2 . This golden

ratio is the most efficient bracket ratio to narrow the searching
length[2]. The golden section search (GSS) will reduce the
bracket length by changing the upper boundxgss4 or the
lower boundxgss1 to xgss3 or xgss2, based on the values
evaluated atxgss2 andxgss3. A new point to be chosen after
reducing the length, will be located keeping the golden section
relationship in Equation (2) with the residual three points.
This repetitive selection of a new point results in finding the
extremum.

Note that for each iteration, only one new point have to be
constructed and only one new evaluation, have to be made.
This is why the GSS algorithm is appropriate to enhance the
PSO algorithm. Only one agent in the whole population will
be updated based on the GSS algorithm, while the others are
updated by the PSO algorithm. Moreover, the point driven by
the GSS moves in the most likely direction for the extremum
with the most efficient step size, addressing the step size
problem in the PSO algorithm.

Figure 3 shows how to contract the searching area, where
the optimal point is located between the two terminal points
xgss1, xgss4. In these cases, the position of the GSS points
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Fig. 3. Contraction by Golden Section Search

are updated as Equation (3) and (4).

x′
gss2 = λxgss2 + (1 − λ)xgss4, x′

gss1 = xgss2

x′
gss3 = xgss3, x′

gss4 = xgss4 (TYPE I) (3)

x′
gss3 = (1 − λ)xgss1 + λxgss3, x′

gss4 = xgss3

x′
gss1 = xgss1, x′

gss2 = xgss2 (TYPE II) (4)

Updates of the GSS points in Type I and II are general ones
in the GSS algorithm which reduce the range of search space.
x′

gss2 or x′
gss3 is only one new point which will replace one

particle in the PSO algorithm as a GSS driven particle; that is,
if the population size of one generation isN , one particle is
updated by this GSS algorithm, while the otherN−1 particles
are updated by the PSO algorithm. This newly inserted GSS
position has much possibility to be near the optimal point; it
can improve the whole performance of PSO algorithm.

Although this effective usage of a particle produces good
optimization performance, the range which includes the opti-
mal point; the first upper boundxgss4 and lower boundxgss1
should be assigned. In other words, In this application of GSS
to PSO, this range should be also searched at first.
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Fig. 4. Extension by Golden Section Search

Type III does not reduce the bracket length but extends the
range. When right after the candidate direction is decided, only
two points are useful: the gbest point and the other point that
makes the steepest slope. These two points are set asxgss2
andxgss1 respectively.

Then as extension by golden section search,xgss4 is calcu-
lated based on Equation (5) as a newly-inserted GSS driven
particle.

xgss4 =
1

(1 − λ)
(xgss2 − xgss1) + xgss1(TYPE II) (5)

Fitness value ofxgss4 determines whether we should con-
tract the search area or extend more. If fitness value ofxgss4
is more than that ofxgss2, we can assume that the optimal
point is outside of the current range so that the range should
be extended again. In that case,xgss4 is set as newxgss2 and
new xgss4 calculated based on Equation(5).

If fitness value ofxgss4 is less than that ofxgss2, the search
area will be contracted. A newly-inserted GSS driven particle
is calculated based on Equation (6) and set asxgss3

x′
gss3 = (1 − λ)xgss1 + λxgss3 (6)

Since this completes the total 4 points that realize the Golden
section search, the calculations (3) and (4) can be repeated
afterwards.

Figure 5 is the whole procedure of the proposed optimiza-
tion algorithm. This algorithm is more or less complicated
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Fig. 5. Flowchart of Proposed Algorithm

than the original PSO. In the application to the real NC
machine tools, however, calculation time is not a significant
problem because the experiment takes much longer time than
the calculation.

III. R EAL NC MACHINE TOOL OPTIMIZATION WITH

SIMPLE FITNESS DEFINITION

A. The Hardware-in-the-loop system Used for Experiments

An NC system which is composed of motors, NC controller
and servo amplifier produces a value that represent the perfor-
mance of controller, and a search algorithms optimizes control
parameters based on that value. The whole configuration of
experimental setup is explained in Section III, and its result is
shown in 8.

This HIL system is set up in an attempt to build an auto-
parameter-tuning of a NC system. Figure 6 is the configuration
of the HIL system used in this research.
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Fig. 6. Hardware-in-the-loop System for Experiments

The NC system has two motors to conduct two-dimensional
motion. The NC controller and motors are one closed system;
NC controller has all control parameters in it, and it also
measures necessary information on motor motions. This closed
NC system is attached to a computer that will optimize the
control parameters using search algorithms. The performance
function to be optimized is obtained through the real experi-
ments by hardware; this is the main purpose of this proposed
HIL system.

The computer that is connected to the NC system obtains
a result of one experiment and calculates the performance
function based on the measurement, generating the next swarm
according to the proposed algorithm. The generated swarm is
fed back to the parameters of the NC controller.

B. Target Motion

As an object of the optimization, a two-dimensional trajec-
tory described in Figure 7 is chosen. This rectangle with the
four arc corner is said to be difficult trajectory to be tuned as
it deals with the timing problem between two axes. The lower
figure in Figure 7 shows a zoomed trajectory around a corner
where there is a large error.

Figure 8 shows an example of two trajectory errors in two
trials. There are four groups of peaks where the error increases
drastically. These periods correspond to the time when the
trajectory changes its direction. Minimization of this trajectory
is one purpose of the optimization.

The other purpose is reduction of the elapsed time to draw
the target trajectory. As a result, the performance function is
defined as follows. Let us call this function as the fitness.

Fitness = Ke exp
(

Se

(
ebias −

∑
trajectory error(t)

))
+Kt exp (St (tbias − Elapsed time)) (7)

C. Adjustable Control Parameters to Be Optimized

Control parameters to be optimized should be strongly
linked with the control performance that is represented in
the fitness. As a first step, this research adopts four control
parameters in order to optimize the fitness defined above.

Figure 9 describes a reference velocity profile which is
tangential to the trajectory. Vel.1 is the velocity of a motor
when the point is located on the side of the rectangle. Vel.2
is the velocity when the point is on the corner. On the corner
the tangential velocity is limited less than Vel.1 to suppress
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Fig. 7. Trajectory Error in Experimental Result
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Fig. 8. Trajectory Errors in Two Trials

the acceleration in the normal direction which can lead to the
vibration after escaping the corner. This limited velocity Vel.2
is a parameter to be optimized in this research.

To satisfy this velocity limitation, a motor should decrease
its velocity before entering the corner and increase the velocity
after the corner. The magnitude of acceleration/deceleration
that is represented as the angleθ in Figure 9 is another
parameter to be optimized. This angle is set separately in each
motor.

The last parameter we consider is the timing of feedforwad
control input. This timing can be illustrated ask in Figure
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Fig. 10. Adjustment of Feedforward Control Input Timing

10. As the target motion is two-dimensional, timing between
two motors becomes an important factor to realize precise
trajectory.k is an effective parameter which decides this tim-
ing. These four parameters are optimized using the proposed
algorithm in next section.
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Fig. 11. Change of the Trajectory Errors and the Requested Time

The GPSO is applied to the HIL system. Figure 11 describes
the result of optimization, showing the value of accumulated
trajectory error and the required time ofxgbest. The popula-
tions size is 30. The changes in these values evaluated at each
xgbest in 15 generations represents the proposed algorithm
optimizes the parameter as the generation goes on. The vertical
lines represents the standard deviation of 12 experiments. This
standard deviation also decreases with the generations.

Real systems do not yield the same control performances
with the same given control parameters. Considering this point,
the parameters ofxgbestin one generation are re-evaluated in

the next generation in this experiment in order to ensure the
reliability of the optimization. This is why there are some
rises in the graphs. Although this re-evaluation does worsen
the optimization performance, it should be conducted in a HIL
system.

Table I shows the optimized parameters and there control
performances.P1, P2 are the values ofθ in x and y axis,
P3 is Vel.2 in Figure 9,P4 is k in Figure 10 for y axis
controller, andP5, P6 means the velocity feedforward gains in
x andy axis. 4 sets of parameters which are obtained as the
results of optimization are selected and re-evaluated 4 times
relatively. They all provide almost same performances, proving
the proposed optimization succeeded in finding optimizing
parameters with reliability.

TABLE I

OPTIMIZIN PARAMETERS AND THEIR PERFORMANCES

P1 P2 P3 ERR1 ERR2 ERR3 ERR4
P4 P5 P6 Time1 Time2 Time3 Time4

200 164 5999 31.51 31.44 31.28 31.81
-2197 400 204 2.196 2.18 2.205 2.189

169 162 4020 31.35 31.51 31.42 31.45
-762 400 294 2.194 2.199 2.196 2.2

200 164 5999 31.53 31.72 31.56 31.66
-2164 400 204 2.202 2.185 2.159 2.161

134 162 2000 31.77 31.11 31.18 31.36
-451 400 100 2.181 2.199 2.197 2.196

From these optimizing control parameter sets, we also
can tell the proposed algorithm not only can select the best
parameter but also can find the optimizing parameter sets. For
P2 andP5, 162 and 400 are found as the best parameters. For
P1, P3, P4, we can see they work as a set. This insight into
the relationship between parameters set is what the proposed
optimization can provide when it is applied to a HIL system.

IV. NC MACHINE TOOL OPTIMIZATION WITH MORE

DETAILED FITNESS DEFINITION

A. Performance Analysis of Each Control Parameter

Figure 12 shows the configuration of controller we used in
NC machine tools, which is the most general cascade control
of current, velocity, and position control. As is said in Section
III-C, feedfoward control parameters are main target of this
optimization which is shaded in Figure 12.

reference
shaping

position
feedback 
control

velocity 
feedback 
control

current
feedback 
control

k+(1-k)z-1

Vff

Motor

Fig. 12. Controller Configuration

Each feedfoward parameter has the roles:
Reference Shaping (P1, P2, P3)



Acceleration/Deceleration of each motor specified in Figure
10 and the limitation of tangential velocity in the arc corners
is characterized into reference shaping. These parameters have
trade-off characteristics. If the values of acceleration and
limited velocity are slow, the less trajectory error the controller
produces although they also take much more time for writing
one trajectory. If the values are set high, it results in small
settling time and large trajectory errors.

Adjustment of Feedfoward Control Input Timing ( P4)
This is related with the trajectory error especially in a circle

trajectory. The parameter can coordinate differences in timing
of two motors. If the difference is too large, the circle that is
tracked by two motors tends to be an ellipse.

Velocity Feedforward Gain (P5, P6 in each motor)
This parameter reduces the over/undershoot after changes of

direction in a trajectory adjusting the velocity control input,
which means it can reduce the effect of integration control and
prevent windup.

In order to take these characteristics into consideration, the
trajectory is divided into 8 sections like Figure 13: 4 arcs and
4 linear regions.

ParameterP4 uses the trajectory error at the arc corner: (2),
(4), (6) and (8), andP5 andP6 use the error peaks in the area
(1), (3), (5) and (7) for their optimizations, while parameters
P1 to P3 use the whole trajectory errors of 8 sections.
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Fig. 13. Trajectory is Divided into 8 Sections

Also parametersP4 to P6 are not so strongly related with the
settling time, the requested time is not considered in fitness
definition for these three parameters. Consequently,P4 and
P5, P6 have their own fitness definition like below.

Fitnessi = exp
(

Si

(
ebiasi

−
∑

trajectory errori(t)
))

(8)

Experiment with this new fitness definition is our future work;
however, this fitness definition will improve optimization per-
formance.

B. Optimization Improvement by GPSO

In our last work, the effectiveness of the GPSO in NC
parameter tunings is not proved. Since the GSS driven particle
is limited to one particle in this paper, the effectiveness can
be verified focusing on the performance of that particle. To
this end, pbest which is the personal best particle in its own
history of each particle is compared. If the fitness of the

GSS driven particle’s pbest is higher than that of the other
particles, the superiority of the GSS driven particle can be
proved statistically. In these experiments, the population size
is set to 16 and the generation size is set to 10.

TABLE II

FITNESSAVERAGE OFPBESTS IN4 EXPERIMENTS

1st(GSS) 2nd 3rd 4th 5th 6th 7th 8th

1.00 0.85 0.94 0.79 0.96 0.85 0.94 0.87
1.00 0.87 0.92 0.92 0.92 0.97 0.79 0.95
1.00 0.90 0.97 0.88 0.96 0.93 0.98 0.94
1.00 0.92 0.96 0.97 0.96 0.98 0.89 0.94

9th 10th 11th 12th 13th 14th 15th 16th

0.78 0.77 0.92 0.81 0.89 0.86 0.77 0.91
0.92 0.85 0.90 0.77 0.92 0.90 0.89 0.68
0.86 0.88 0.97 0.86 0.92 0.92 0.86 0.99
0.94 0.90 0.93 0.86 0.96 0.93 0.92 0.86

Table II illustrates the fitness values of pbests. Experiments
were conducted 4 times, and the fitness values during 10
generations were averaged. If the fitness values are normalized
to make the fitness value of the GSS driven particle 1, the
other particles’ fitness are all lower than 1, which proves
the GSS driven particle is more successful in finding optimal
parameters.

V. CONCLUSION

The GPSO algorithm is revised in this paper to make clear
its performance. The number of GSS driven particle is limited
to one. By experiments, the superiority of that GSS particle
in finding optimal point is verified.

Parameters which are said to be difficult to optimize is
chosen and the roles of those parameters are scrutinized. Based
on those scrutinies, fitness is defined for parameters; trajectory
error is divided into some sections based on its shape. The
relationship between those trajectory errors and the parameters
are emphasized in new fitness definition. Experiment with the
new fitness definition is future work. In that experiment, the
repeatability problems will be also addressed.
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