
08-TIE-1001.R1 1

  
Abstract— A stabilizing observer based control algorithm for 

an in-wheel-motored vehicle is proposed, which generates direct 
yaw moment to compensate for the state deviations. The control 
scheme is based on a fuzzy rule-based body slip angle ( β ) 
observer. In the design strategy of the fuzzy observer, the vehicle 
dynamics are represented by Takagi-Sugeno-like (T-S) fuzzy 
models. Initially, local equivalent vehicle models are built using 
linear approximations of vehicle dynamics respectively for low 
and high lateral acceleration operating regimes. The optimal β  
observer is then designed for each local model using Kalman filter 
theory. Finally, local observers are combined to form the overall 
control system by using fuzzy rules. These fuzzy rules represent 
the qualitative relationships among the variables associated with 
the nonlinear and uncertain nature of vehicle dynamics, such as 
tire force saturation and the influence of road adherence. An 
adaptation mechanism for the fuzzy membership functions has 
been incorporated to improve the accuracy and performance of 
the system. The effectiveness of this design approach has been 
demonstrated in simulations and in a real-time experimental 
setting. 
 

Index Terms— fuzzy observer, local modeling, vehicle lateral 
dynamics, state feedback. 
 

I. INTRODUCTION 

 
This paper focuses on the design of control strategies to 

enhance the performance and safety of electric vehicles in 
critical driving situations. It has been commonly recognized 
that electric vehicles (EVs) are inherently more suitable to 
realize active safety stability control over conventional Internal 
Combustion engine Vehicles (ICVs). In EVs, the motor torque 
can be measured and controlled accurately; and in-wheel 
motors can be installed in each EVs' rear and front tires. Based 
on these structural merits, vehicle motion can be stabilized by 
additional yaw moment generated as a result of the difference 
in tire driving or braking forces between the right and left side 
of the vehicle, which is so called ‘Direct Yaw-moment Control’ 
(DYC) [1]-[5].  
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Fig.1 shows the main concept of the chassis control system 
utilizing DYC based on the model matching control method 
and optimal control method [3] [4] [6]. 

 
 

 
Fig.1 Vehicle lateral stability control structure. 

 
This system is aimed to maintain the driver’s handling ability 

at the physical limit of adhesion between the tires and the road 
by making the vehicle easily controllable even well below that 
limit.  The dynamics of the 2-DOF (Degree Of Freedom) 
vehicle model can describe the driver’s familiar characteristics 
under normal driving conditions. The body slip angle (β ) and 
yaw rate (γ ) calculated from the model are taken as the desired 
behavior of the vehicle. By applying Model Matching Control, 
the yaw moment optimal decision can be derived from the 
deviations of the state feedback compensator of β  and γ  from 
their desired values. Since sensors for the direct measurement 
of β are very expensive, the construction of an observer for its 
estimation is desirable. 

Generally, such state feedback control method is based on 
the state equations derived from the vehicle dynamics. 
However, the implementation of these techniques are still 
difficult since the vehicle dynamics are highly nonlinear, 
especially for β. Previous authors’ approaches regarding β 
estimation issue used model-based observers with either linear 
or nonlinear equivalent vehicle dynamic models [6]-[8], [9], 
[10]. With regard to linear observer design, the linear 2-DOF 
vehicle model with fixed parameters is adopted. However, this 
approach can not always achieve accurate results in different 
running situations. In the design of nonlinear observers, tires 
characteristics are described by nonlinear functions and with 
more parameters, which can produce relatively more accurate 
results in different running situations compared with linear 
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observers. However, nonlinear observers have the 
disadvantages of  not having a strong theoretical maturity and 
still face difficulties regarding their realtime implementation. 

The main nonlinearity of vehicle dynamics comes from the 
tire force saturation imposed by the limits of tire adherence, 
which makes β response change considerably if the vehicle is 
cornering much more than usual. In other words, the model 
structure or model parameters should vary according to the 
different operating regimes for a more practical controller 
design. In addition, the nonlinear nature of vehicle dynamics is 
further complicated by the influence of the characteristics of 
whole chasis elements (tires, suspensions and steering system). 
It is hard to determine the physical model parameters 
theoretically. Therefore, an effective modeling methodology  is 
the key for the system design. 

To deal with the difficulties associated with nonlinearity 
modeling, as well as to make use of the linear observer 
advantages such as simplicity in the design and implementation, 
the nonlinear vehicle dynamics are represented by 
Takagi-Sugeno (T-S) fuzzy models [11], [12]. Local 
approximation of the nonlinear vehicle model and a dynamical 
interpolation method is introduced in this paper to construct a 
fuzzy model-based control system for β estimation and control. 
Optimal β observer is designed for each local model using 
Kalman filter theory. The proposed system is a combination of 
local linear observers and controllers with varying switching 
partition.  

The first step in the design is concerned with the derivation 
of the system state equations from the vehicle dynamics and 
local approximation of nonlinear tire model.  These modeling 
techniques are considered appropriate for on-line control 
system design (linear 2-DOF vehicle model as in [13]). In the 
next step, a fuzzy-based modeling approach is used to get a 
hybrid-like vehicle model which is calculated as a weighted 
sum of the outputs of two local linear models. For practical 
applications, parameter identification is conducted 
experimentally. An adaptation mechanism of the fuzzy 
membership functions has been included to make the model fit 
different running conditions and road friction changes. The 
membership functions of the weighting factors are chosen to be 
dependent on lateral acceleration and road friction coefficient. 
The two local observers are based on local linear tire models, 
which inherently leads to a relatively simple design, have been 
combined into a single overall observer by means of fuzzy rules. 
Furthermore, the nonlinear global system results show high β 
estimation capabilities and good adaptation to changing road 
friction. A series of simulations are performed to evaluate the 
effectiveness of the proposed β observer when incorporated 
into a DYC-based control scheme.  

 

II. VEHICLE DYNAMICS AND FUZZY MODELING 

 

A. Local  Approximation and Linearization of Vehicle Dynamics  
The system is based on an in-wheel-motored electric vehicle 

dynamics model (Fig. 2).  The main difference with common 
vehicle dynamics is that the direct yaw moment is an additional 

input variable, which is caused by individual motor torque 
between each wheel. 

 

 
Fig.2 2-DOF vehicle model. 

 
The vehicle dynamics are approximately described by the 

following  2-DOF vehicle model equations:  
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Where ya denotes the vehicle lateral acceleration, γ is the yaw 

rate, fδ is the steering angle of the front wheel, N is the direct 
yaw moment, m represents the mass of the vehicle, zI is the yaw 
inertia moment, fl  denotes the distance between the centre of 
the mass and the front axle, rl is the distance between the centre 
of mass and the rear axle, xfF is the longitudinal force of the 

front tires, fFy  and rFy  are the  lateral forces of the front and 
rear tires respectively.  

Let the body slip angleβ and yaw rate γ represent the system 
state variables. By defining the kinematics relationship as 

γ)βv(a y += &  and assuming that fδ  is relatively small for high 

speeds, the vehicle’s state equations are obtained as:  
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The model of equation (2) is nonlinear due to the tire lateral 
force dynamics. By using local operating regime 
approximations, the model can be simplified into an equivalent 
linear 2DOF model by adopting the equivalent tire cornering 
stiffnessC , which is defined by: 

α
F

C y=                                              ( 3 )  

Where yF  is the tire lateral force and α is the tire slip angle at 

its operating point.  
By adopting the value of C  given by (3), the nonlinear 

vehicle dynamic state equations (2) can be transformed into the 
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following equivalent linear state equations at the local 
operating point: 

BuAxx +=&                                                   (4) 

In which, 
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Where, rf CC ~  are the cornering stiffness values of the front 

and rear tires respectively, V  is the longitudinal velocity. 
Since the main nonlinearity in the model comes from the tires, 

the cornering stiffness of the tires will play an important role in 
the formulation of the model used in the estimator. According 
to Fig. 3, these coefficients are large when the tire slip angle 
assumes small values, which are equivalent to the low lateral 
acceleration regimes; on the other hand, the stiffness 
coefficients become small when the tire slip angle increases 
which means that the vehicle is running at high lateral 
accelerations. Hence, to describe the vehicle dynamics by an 
equivalent linear 2-DOF model, local models with different 
C value should be considered, for both low and high lateral 
accelerations.  

 

 
Fig. 3 Tire lateral force characteristics partitioned roughly into 
4 different local dynamics (Lsa: large tire slip angle, Ssa: small 
tire slip angle, Lfr: large friction, Sfr: small friction). 

 

B. Model Parameters Identification 
For the local dynamic models, the equivalent tire cornering 

stiffness,
rf CC ~ , are difficult to determine theoretically 

because their values are influenced by the suspension dynamics, 
tire characteristics and steering system. In this paper, an 
identification method of tire cornering stiffness based on 
experimental tests performed on the electric vehicle is 
proposed. 

According to (2), the steady state cornering relationship with 
steering angle input can be expressed as follows: 
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From (5), the expression of the side force applied to the front 
and rear tires can be deduced as: 
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And the body slip angle of front and rear tires can be obtained 
as: 
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If ya , β , γ  are measured from steady state cornering 

experiments, it follows from the above equations that the tire 
cornering stiffness can be obtained as: 
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For the nonlinearity of vehicle dynamics, cornering 
experiments with low and high ya should be conducted 

respectively to identify the different cornering stiffness values 
in different operating regimes. 

 

C.   Fuzzy Modeling and Local Dynamics 
To simplify the fuzzy modelling procedure, the lateral 

acceleration ya will be assigned two fuzzy sets (large and small) 

as shown in Fig.4.  
 

 
Fig.4 Membership functions adaptation to the lateral acceleration. 

 
Then, using these fuzzy sets, the fuzzy IF-THEN rules for 

the vehicle dynamics model can be defined as follows: 
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Rule i: (local model i)  IF ya is Fi, THEN uBxAx ii +=&  

The overall vehicle dynamics are described by two models 
that take the form of equation (4). The model parameters 
namely the equivalent tire cornering stiffness are identified 
according to the steady state regime given by (8). 

For the local model 1, the tire works at its small slip region, 
1A and 1B are calculated based on the largest value of the 

cornering stiffnessC . For the local model 2 , the tire works at 
its large slip region, 2A and 2B are calculated for a relatively 
small value of the cornering stiffness C .  

Finally, the whole nonlinear dynamics of the vehicle are 
described with the proposed dynamic switching partition by 
interpolating the two models with fuzzy logic. By a proper 
choice of the membership function, the vehicle dynamics can 
be calculated for different operating regimes (from low 

ya value to high ya value).  

Therefore, the following equation is used to represent the 
fuzzy models covering the vehicle dynamics: 
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Where 1w and 2w are the membership functions for local 

model 1 and local model 2. For design simplicity, trapezoidal 
membership functions have been used. The formulation 
of  aw y )(1 and )(2 yaw are as follows: 
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Where the coefficient ywa  describes the value of ya  at the 
tire/road adherence limit (road friction coefficient μ ) when the 
tire force is saturated which is equivalent to severe steering 
dynamics. 

Road condition is one of the most important factors that must 
be considered in vehicle dynamic stability control, since the 
road friction coefficient μ  is uncertain and may change 
according to the road condition, the fuzzy partition describing 
the vehicle model must be adaptive to such variations (Fig.4). 

The value of μ  can be identified with different methods. In 
EVs stability control, one method that the authors adopted 
previously is to identify μ value by analyzing wheel rotation 
dynamics, which takes advantage of accurate knowledge of the 
EVs motor torque values [14], [15]. With the identified 

μ value, ywa is used as a tuning parameter of the weighting 
functions partition to form an adaptation mechanism to cope 
with the variation of tire/road adherence conditions. In this 
work, ywa is set to be a linear function of μ  with the following 
low pass filter to remove the noise: 
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Where μk is the adaptation gain, fT is the constant of 1st order 

low-pass filter. 
 

 

III. β  OBSERVER DESIGN BASED ON FUZZY MODELS 

D. Kalman Filter for Local β  Observer Design 
Based on the local linear models, the β observer is designed 

with Kalman filter theory [16]-[18]. For the real-time 
implementation of the design strategy, the continuous-time 
model of (4) is converted into discrete time model by taking 
into account process noise and measurement noise as follows: 
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Where the covariance vector of process and measurement noise 
are assumed to be the same for all dynamics: 
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The sampled equations with a zero-order hold are obtained 
as:  
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Where sT  is sampling time. 

Using the discrete state space equation (13), a discrete form 
of Kalman estimator can be applied for each linear observer. 
The vehicle lateral acceleration ya  and yaw rate γ  are two 

measurable variables and are chosen as output variables of the 
observer.  
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The recursive discrete Kalman filter algorithm is then applied 
separately to estimate local dynamics as illustrated by Fig. 5. 
 
Where x̂ and ŷ are the estimates of x and y respectively, iL  is 

the feedback gain of local observer which is derived using 
Kalman filter theory. 
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Fig. 5 Implementation of the estimation algorithm based on 

Kalman filter theory.  
 

E. .Hybrid-like Observer Design Based on Fuzzy Models 
A hybrid-like observer is designed based on the fuzzy 

discrete time vehicle models by applying Kalman filter theory 
[9]. The proposed observer structure is as Fig. 6.  

 

 
Fig.6 Structure of hybrid adaptive observer. 

 
The observer consists of two Kalman filter-based local 

observers related to the above local models 1 and 2 respectively. 
The observers outputs are the estimates of 

1obβ and 2obβ respectively.  
 

The fuzzy rules for β observer are defined by the following 
IF-THEN rule structure:  

 
Rule i: (local observer i)    IF ya is Fi, THEN obiob ββ ˆˆ = . 

By introducing this fuzzy logic concept, two local linear 
models were sufficient to cover the main nonlinear features of 
the dynamics and give the proposed observer the ability to 
overcome the limitations associated with the linear observer in 
term of performances. The overall fuzzy observer is given by, 

∑
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The advantages of linear observer such as simple design and 
non-computationally-intensive are conserved while addressing 
the nonlinear problem at the same time.  

 

IV. SIMULATION AND EXPERIMENTAL RESULTS ANALYSIS  

A.  Description of the Experimental Vehicle and Control 
Architecture  

A full description of the Electric Vehicle UOT MARCH II is 
presented in the Appendix. The parameters used in the 
following simulations and observer/controller design have 
been obtained in a previous study [19]. Fig. 7 depicts the 
overall dynamical control scheme applied to UOT MARCH II. 
With reference to Fig. 1, we can clearly distinguish the parts 
which have developed in this work namely: 1- The β  observer 
(red thick line) already implemented and tested, 2- The control 
(red dotted line) to be tested in the near future for safety reasons. 
According to the configuration the vehicle using 4 In-Wheels 
motors, an optimal driving/braking force distribution system 
has been developed in former research to be applied with the 
DYC Control Unit [20].  

 

 
Fig. 7 Vehicle stability control applied to UOT MARCH II. 

 

B. Simulation and Experimental Studies of the Observer 
The effectiveness of the proposed observer structure is tested 

via simulations. A sinusoidal steering angle input is chosen to 
simulate consecutive lane change maneuvers of the vehicle 
body. The amplitude of input steering angle is large enough to 
make the tire span both the linear and nonlinear working 
regions. Simulation results related to different road friction 
conditions are shown in Fig. 8. It is clear that both of the 
sub-observers used to generate the proposed structure cannot fit 
well the real value for the whole operating conditions. This can 
be explained by the fact that they are based on a local model 
with fixed parameters describing a limited segment of vehicle 
operating regime. Comparatively, the hybrid observer gives a 

Proposed 
Observer



08-TIE-1001.R1 6

better estimation, follows closely the real values and has even 
the ability to adapt to different road friction conditions.  
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Fig. 8 Simulation results of the hybrid observer under 
large road friction situation ( 850.μ = ) (top panel) and small 

road friction situation ( 40.μ = ) (bottom panel). 

To evaluate the proposed control scheme under more realistic 
conditions, field tests are conducted on our experimental 
Electric Vehicle “UOT March II”. UOT March II is equipped 
with an acceleration sensor, a gyro sensor and a noncontact 
speed meter which provide measurements of the vehicle state 
variables. 
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Fig. 9 Experimental field test results of β observer 

(steering angle=90°, v=40km/h). 
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Fig. 10 Experimental field Test results of β observer 

( steering angle=90°, v=60 km/h).  
 

Fig. 9 and 10 are the results of field tests of the observer in 
moderate and severe cornering situations. The experiments 
demonstrate that the observer is very effective and suitable for 
real time applications due to its high on-board computational 
speed. 

 

V. SIMULATION OF OPTIMAL YAW MOMENT CONTROL 
BASED ON THE PROPOSED β OBSERVER 

A.  Desired Model and State Deviations Equation 
 
As shown in Fig.1, the control scheme is applied for DYC 

system design by using the model matching control method. 
The desired state variables of β  and γ are determined by a 

2-DOF linear model with front wheel steering angle as input 
according to (4) and are expressed as follows: 
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In addition, γ  should be constrained by its adhesion saturation 
value as follows: 

V
g

d
μγ ≤                                                                                 (19) 

The state deviations variable between the desired value 
dX and actual value X  is assumed to be as follows: 
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According to (4) and (18), the differentiation of the above 
equation leads to the error dynamics: 

N
b
b

EAXXE d ⎥
⎦

⎤
⎢
⎣

⎡
+=−=

22

12.&&&                   (21) 

Equation (21) describes the dynamic relationship between 
the direct yaw moment and vehicle motion state deviations. It 
shows that when a vehicle motion deviations appears, exerting 
a direct yaw moment can reduce them to make the vehicle 
regain stability. 

B.  Optimal Yaw Moment Decision algorithm  
 
Based on the Linear Quadratic Regulator (LQR) method, the 

optimal control input can be calculated by state feedback 
deviations as follows: 

)()( 21
*

dd kkN γγββ −−−−=                                            (22) 

Where the feedback gains 1k and 2k related to the local model 
are determined so that the following performance index is 
minimised: 

dttNtqtqJ )]()()([
2
1 22

2
0

2
1 +Δ+Δ= ∫

∞

γβ            (23) 

Where 1q  and 2q  are weighting coefficients of the state 
deviations which can be chosen to modulate the controller 
sensitivity with respect to β and γ  deviations. For this purpose, 
the coefficient βω  ( 10 ≤≤ βω ) is introduced in the 
performance index as a weighting factor on β deviation. We 
define βω2

1 qq =  and )1(2
2 βω−= qq , and (23) can be 

rewritten as: 
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Small values of β  produce a more important γ matching 
control whereas larger values lead to a more important 
β control. In addition, the vehicle stability is more sensitive to 
β  deviation under low adhesion road conditions than it is 
under high adhesion road conditions. Therefore, βω is 
dependant on β  and the road friction coefficient μ and is 
chosen as follows: 
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Where 0β  is a threshold value which has been set to 10° 
based on the authors’ experience. 

The graph of βω  as a function of β  is plotted in Fig. 11. 
 

 
Fig. 11 Weight of body slip angle deviation for optimal yaw 

moment decision. 
 

C.  Simulation Results of Body Slip Angle Control   
 

In the following simulations, a full four wheels vehicle 
dynamics with nonlinear tire model is used as a mathematical 
model.  

In the simulation study and experimental validation, the 
actuation dynamics will not be considered. They rely 
essentially on the current control of electric motors. So far, it is 
well known that the use of electric motors as actuators is one of 
the advantages of electric vehicles and at the same time 
presents a negligible short delay (i.e. a few ms) in the overall 
controlled system compared to the vehicle dynamics.  

Fig. 12 depicts the simulation results with sinusoidal front 
steering angle input when the road friction coefficient is 0.3 and 
the vehicle is running at a speed of 100km/h. This can represent 
a critical driving situation of continuous lane change maneuver 
on slippery road. If the control is set off, β can assume larger 
values causing the vehicle to loose its stability and unable to 
accomplish the lane change as in normal situations (Fig. 13). 
With the proposed hybrid observer an accurate estimation of 
body slip angle is obtained. By applying DYC based on the 
hybrid observer, the yaw rate γ  is successfully controlled to 
the desired value and the body slip angle β  is guaranteed to be 
limited. However, if DYC was based on the linear observer, the 
incorrect estimation of body slip angle will lead to control 
deterioration.  

Fig.14 is the β - γ  phase plane trajectory related to the 
simulation results. Under DYC control, a limited trajectory 
loop is drawn by the vehicle within the stable area defined for 
our vehicle. Without β  control, this trajectory of β -γ  phase 
plane can not be satisfied and become much larger until the 
vehicle leaves the stable area putting the passengers in danger. 

VI. CONCLUSION 

This paper presented an algorithmic solution of the nonlinear 
vehicle dynamic control problem which has been validated 
both in a simulation environment and real-time. A state 
observer has been designed for an in-wheel-motored electric 
vehicle with Direct Yaw-moment Control (DYC) using fuzzy 
modeling techniques. Takagi-Sugeno (T-S) fuzzy models were 
employed for approximating the nonlinear vehicle dynamics 
with linear local models. An adaptation mechanism was 
introduced to adjust the fuzzy membership functions in 
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response to changes in road friction conditions. The local 
observers design was based on Kalman filter theory and was 
combined with an interpolating mechanism which provided the 
link between the underlying local dynamics. The quantitative 
accuracy and adaptation performance of the proposed observer 
has been verified in simulations and experimentally. We have 
shown that the designed controller rely critically on the 
estimated value of β  and further research and effort will be 
devoted into the implementation of a full dynamic stability 
control of the UOT MARCH II.   
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Fig.12 Slip angle (top panel) and yaw rate (bottom panel) under 

β  control. 
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Fig.13 Vehicle trajectory with and without β  control. 
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APPENDIX 
 

Description of “UOT MARCH II” 
 
The Electric Vehicle named : “UOT (University of Tokyo) 

Electric March II” was constructed in 2001. The most special 
feature of this EV is the in-wheel motor mounted in each wheel. 
We can control each wheel torque completely and 
independently. Regenerative braking is also available. Former 
researchers from Hori Laboratory at the University of Tokyo 
contributed to build this EV by remodeling a Nissan March. Fig. 
A1 shows a sketch of the “UOT MARCH II”.  

 
 

Fig. A1 Sketch of the “UOT MARCH II”. 
 

TABLE I 

 
 
Fig. A2 displays photos describing the main parts of the 

vehicle developed in our laboratory. 

 
Fig. A2 Photos of the vehicle: (a) front motors, (b) rear motors, 

(c) inverters, (d) batteries. 
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