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邦文概要

General Framework of Multirate Sampling Control
and Applications to Motion Control Systems

( マルチレートサンプリング制御の一般的枠組と
モーションコントロール系への応用)

藤本 博志

ロボット・モータ・ハードディスク装置などのメカトロ機器の高速・高精度制御系に

おいては、コンピュータを用いて制御を行うディジタル制御が重要な役割を果たしてい

る。これらの制御のサンプリング周期と制御周期は、計算機やセンサ・アクチュエータ、

AD/DA変換器の性能によって決定されるが、従来型の制御方式では、サンプリング周期

と制御周期を同期させるシングルレート方式が使用されてきた。これに対して、本論文で

は入出力の周期を敢えて多重化するマルチレートサンプリング制御方式の提案を行った。

本論文は前半部では、1) マルチレートフィードフォワード制御を用いた完全追従制御

(Perfect Tracking Control: PTC)、2) マルチレートフィードバック制御を用いた完全外乱

抑圧制御 (Perfect Disturbance Rejection: PDR)、3)マルチレートサンプリング制御を用

いた完全状態一致制御 (Perfect State Matching: PSM)による制御器の離散化法というマ

ルチレート制御系の新しい理論的枠組を構築した。後半部では、これらの核となる制御理

論を、ロボット・サーボモータ・ハードディスク装置・2慣性系・ビジュアルサーボ系な

どの実システムに応用し、計算機シミュレーション及び実機実験により、その有効性を明

らにした。

本論文の内容及び構成は、以下のようになっている。

第 1章では、従来のマルチレートサンプリング制御の研究を振り返り、その問題点を

明らかにし、本研究の位置付けを行なった。従来からマルチレートサンプリング制御に関

しては、零点配置・強安定化・同時安定化など様々な理論的研究が行なわれてきたが、制

御入力が振動的になるなどの問題点が指摘され、これまでにこれらの研究が実システム

に応用されたケースは数少ない。また、低精度エンコーダを用いたサーボモータの速度制

御系や、ハードディスク装置に対して、マルチレート制御を適用する試みもなされてきた
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が、各アプリケーションに対して固有の理論に留まっており、統一的な制御理論を構築す

る段階には到達していない。このような従来の研究を踏まえ、本論文ではマルチレート制

御の統一的な理論体系を構築し、さらに実システムに応用し、実用的な制御方式に発展さ

せた。

目標軌道に対して追従を行なう追従制御系において、従来のディジタル制御方式であ

るシングルレート制御系では、離散時間制御対象が必ず不安定零点を持つことから、安

定な逆系を構成することが不可能となり、その結果大きな追従誤差を生じる問題点があっ

た。これに対して、本論文の第 2章ではマルチレートフィードフォワード制御という新し

い制御手法を導入して、誤差なく目標軌道に追従する完全追従制御 (PTC)を提案した。

さらに、この手法をハードウェアの制約によりサンプラやホールダの機構に制限がある系

や、むだ時間を持つ系や多変数系に対しても対応できるよう理論の拡張を行なった。また

提案する制御器が、伝達関数に基づく簡単な計算により容易に設計できることや、その構

造が非常に見通しが良いことを明らかにした。

モーションコントロールにおいては、制御出力のサンプリング周期が制御入力の周期

よりも長いという制限を持つ制御系が数多く存在する。例えば、ハードディスクのヘッド

の位置決め制御系では、ディスク上に離散的に書かれたサーボシグナルが検出されたとき

のみ位置信号が検出されるが、最近の高速なプロセッサを使用すれば、制御周期を信号検

出の周期よりも 4倍程度は高速に設定することが可能である。また、ロボットのビジュア

ルサーボ系においては、視覚信号は 33[ms]程度のビデオレートでしか検出できないが、制

御入力となるジョイントサーボ系の制御周期は 1[ms]以下と非常に高速である。さらに、

低精度エンコーダを用いたサーボモータの速度制御系においては、速度信号の検出周期を

短くすると、低速時に量子化誤差の影響が非常に大きくなることから、サンプリング周期

を十分に大きく設定することが不可能である。また、近年プロセッサを搭載し、信号処理

と通信の機能を追加した高性能なエンコーダが開発されつつあるが、これを使用したモー

ション制御系においては、位置信号の検出周期は通信の周期に固定化される。

このようなサンプリング周期が相対的に大きい系においては、従来のシングルレート

制御方式では、ホールダによる大きな位相遅れにより安定性が損なわれる問題点や、ある

程度高い周波数領域において、外乱抑圧特性が劣化するという問題点があった。これに対

して第 3章では、サンプル点間オブザーバとマルチレートフィードバック制御という新し

い制御手法を提案し、これにより安定余裕が大幅に改善される手法と、定常状態において

サンプル点間に複数回、外乱を完全に抑圧する制御手法 (完全外乱抑圧制御:PDR)を提案

した。さらに、開ループオブザーバとスイッチ機能を持つフィードフォワード制御器を導

入すれば、ロバスト安定性を犠牲にすることなく、外乱を効果的に抑圧する制御系が構成

できることを明らかにした。

ディジタル制御系の設計においては、従来は連続時間領域で設計した望ましい補償器

を離散近似するという手法が適用されていた。しかしながら、制御性能の向上のために
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は、制御帯域を限界まで広げる必要がある。このような場合には、サンプリング周波数が

十分に高いという仮定が成立しなくなり、従来型の近似的に離散化した制御器では、望ま

しい性能が得られる保証がなく、制御系が不安定になってしまうことすらある。このよう

な現状に対して、第 4章はマルチレートサンプリング制御を導入して閉ループ特性を保存

する新しい制御器の離散化の手法を提案した。その特徴は、ディジタル制御系の状態変数

の閉ループ時間応答が、連続時間領域で設計した望ましい応答に完全に一致 (完全状態一

致:PSM)するというものである。さらに、サンプリング周期が制御周期よりも長いとい

う制限を持つ系にも対応できるよう理論的拡張を行なった。

本論文の後半では、前半部で構築した理論を、実際のモーションコントロール系へ適

用した。第 5章では、まず最初に第 2章で提案したマルチレートフィードフォワード制御

による完全追従制御 (PTC)を、DDロボットのサーボモータの位置制御系に対して実験

及びシミュレーションを行ない、従来型の手法に比べて、追従性能が格段に優れているこ

とを実証した。次に、ハードディスク装置のヘッドの高速移動制御に適用して、その有効

性を確認した。その成果は、最も重要とされているショートスパンシーク動作を、ハード

ウェアの大きな改良をすることなく、従来手法よりも飛躍的に高速化できるというもので

あった。

第 6章では、第 3章で提案したマルチレートフィードバック制御による完全外乱抑圧制

御 (PDR)をハードディスク装置の高精度位置決め制御、及びロボットのビジュアルサー

ボ系に適用した。まず、ハードディスク装置に対して、提案するサンプル点間オブザーバ

を用れば、ホールダによって生じる大きな位相遅れが回復でき、安定余裕が大きく向上す

ることを明らかにした。さらに完全外乱抑圧制御により、従来手法では不可能とされてい

たナイキスト周波数に近い高周波領域においても、効果的に Repeatable Runoutと呼ば

れる周期的な外乱が抑圧できることを示した。さらに、ビジュアルサーボ系に対して、作

業空間コントローラと非線形写像を導入することにより線形化を行ない、提案するマルチ

レートフィードバック制御系を適用した。これにより、周期的な運動を繰り返す目標物体

に対して、誤差なくロボットを追従させることが可能となることを示した。

第 7章では、第 4章で提案した完全状態一致制御 (PSM)による制御器の離散化手法を

モーションコントロールに適用した。まず最初に、外乱オブザーバを用いたサーボモータ

のロバスト位置決め制御系に対して提案手法を適用し、従来手法よりも限界に近い高性能

な設計が可能となることを明らかにした。次にハードディスク装置の振動抑制制御系に対

して、本手法を適用すれば、従来は不可能とされていたナイキスト周波数周辺の振動抑制

制御がマルチレート制御により可能となることを明らかにした。

第 8章では、本論文のまとめとして、提案した完全追従制御・完全外乱抑圧制御・完全

状態一致制御の理論を振り返り、フィードフォワード、フィードバックの両面性や、ハー

ドウェアによるサンプリング機構の制限に関する視点や、応用可能なシステムに基づく観

点から、提案した手法のそれぞれの関連性を見通し、本論文がマルチレート制御の統一的
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な枠組を確立することに成功したと結論づけた。本論文は制御理論的な新規性も重要で

あるが、コンピュータの性能を限界まで利用する、実用的な制御法であるという観点から

も、その工学的重要性は計り知れない。本論文の後半で述べた適用例は、従来の制御手法

の性能を遥かに凌駕し、実際の製品にも適用され、実用化されている。この事実からも本

研究が制御工学に新たなブレークスルーを与え、従来のモーションコントロールが超えら

れなかった壁を打破することに成功したと言うことができる。

なお、本文は英語により記述されていることを付記する。
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Chapter 1

Introduction

1.1 Background of the Research

Owing to recent developments of the computer and interface hardware, digital controllers

are utilized for controlling almost all mechanical systems such as robots, motors, machine

tools, and hard disk drives, because of cost, reliability, flexibility, compactness, etc.

A generalized digital control system is shown in Fig. 1.1, where Pc(s) is a continuous-

time plant to be controlled, C[z] is a discrete-time controller implemented in digital

computer. d(t) and n(t) are disturbance and measurement noise, respectively. Because

the discrete-time controller has to deal with continuous-time signals in the digital control

systems, it needs to have two samplers S for the reference signal r(t) and the output y(t),

and one holder H on the input u(t)1. Therefore, there exist three time periods T r, Ty, and

y(t)

y[i]

u(t)u[i]r[i]r(t)

d(t)

n(t)

S

S

H

(Ty)

(Tu)(Tr)
Pc(s)C[z]

+

−

Figure 1.1: Digital control system.

1The reference signal is often given as a discrete-time signal r[i]. However, in this dissertation, it is

assumed to be a continuous-time signal r(t), and a sampler of the reference input is introduced in order

to construct general framework of multirate sampling control and to consider the intersample response
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Tu which represent the periods of r(t), y(t), and u(t), respectively. The input period T u

is generally decided by the speed of the actuator, D/A converter, or the calculation on

the CPU. Moreover, the output period Ty is also determined by the speed of the sensor

or the A/D converter.

Actual control systems usually hold hardware restrictions on these periods (Tu and/or

Ty). Moreover, in case of multivariable systems, there exist many time periods. However,

the conventional digital control systems make all periods equal to the longest period for

simplification. On the other hand, the multirate sampling control systems have been

studied from the point of view both of control theories and practical applications.

1.1.1 Theoretical Background

The range of theoretical research on digital controllers is very wide especially in the last

several decades. But, as to the subjects related to this dissertation, recent theoretical

advances are as follows [1].

1. Non-conventional digital controllers: general holds, general samplers, multirate con-

trol, time varying control, and periodically time varying control

2. Advanced sampled-data control theory: consideration of intersample response, lift-

ing, fast sample and fast hold approximation, and sampled-data H2 and H∞ prob-

lems.

Non-conventional digital controllers

Recently, non conventional digital controllers have been studied not only for multirate

controller but also for general hold circuits, general samplers, and time varying controllers

by many control theorists. Historically, the generalized hold is firstly introduced in [2].

Thus, this work should be reviewed here before multirate control theory is discussed.

As shown in Fig. 1.2, in the generalized hold approach, the control input is generated

by

u(t) =
∞∑
i=0

h(t − iTf)u[i], (1.1)

where h(t) is an arbitrary hold function and Tf is a frame period. This function is

also called the Chammas-Leondes’ generalized hold [1]. Utilizing the hold function as

a design parameter, it is possible to assign all poles only by the gain output feedback

without the state observer. This approach was extended to feedforward control in [3],

of y(t).
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iTf (i+ 1)Tf (i+ 2)Tf t

Figure 1.2: Generalized hold.

iTf (i+ 1)Tf (i+ 2)Tf t

Figure 1.3: Multirate hold.

where simultaneous pole assignment, exact model matching, decoupling, and optimal

noise rejection are successfully realized.

However, in this method, an arbitrary waveform is assumed to be generated as the hold

function h(t). In practice, it is very difficult to make arbitrary hold function because h(t)

is generally composed of exponential and sinusoidal functions. Thus, in [4], [5] and [6], the

pole assignment method was modified to the multirate hold, in which the control input

is piecewise constant, as shown in Fig. 1.3. Because this scheme is easily implemented

by ordinary D/A converters, the multirate hold is a practical solution of the generalized

hold.

Moreover, it is possible to assign not only poles but also zeros by the generalized

holds [3] and multirate holds [7, 8]. These results have brought great advantages because

the discrete-time plant usually has unstable zeros in the conventional single-rate digital

control system [9] and it is impossible to allocate zeros by feedback control.

On the other hand, the generalized samplers and multirate samplers have been devel-

oped in [1, 8, 10, 11], as dual schemes of generalized holds and multirate holds. In [10], an
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equivalent state feedback with loop transfer recovery (LTR) property is proposed based

on the multirate output control, in which the plant output is detected several times during

one control period. Next, in [8], multirate output control is proposed, which diminishes

all finite zeros and constructs stable inverse systems and output feedback controllers with

LTR property.

Other than the above work, many non-conventional digital controllers including multi-

rate sampling control have been developed from the point of view of the various concepts,

such as strong stabilization [12, 13, 14], simultaneous stabilization and simultaneous pole

assignment [12, 15], decentralized stabilization [16], adaptive control [17, 18], arbitrarily-

large gain-margin [12, 19], parameterization of stabilizing multirate controllers [20, 21],

and feedback linearization for nonlinear system [22]. These results are well surveyed in

[1] which has more than 100 references.

To sum up, the non-conventional digital controllers including multirate controllers can

have the clear advantages, over the conventional single-rate controllers and sometimes even

over the linear time invariant continuous-time controllers [1]. However, [12, 23, 24, 25]

have indicated the theoretical negative aspects of the multirate sampling control. First,

[12, 23] have proved that the feedback characteristics such as disturbance rejection perfor-

mance and stability robustness against unstructured uncertainty can never be improved

by multirate control in cases without hardware restriction on sampling scheme (Ty = Tu).

Second, [24] shows that the zero assign methods sometimes have disadvantages of large

overshoot and oscillation in the inter-sample points because the control input changes

back and forth very quickly. Third, the multirate control system often has very poor

performance against detection noise and modeling error [1, 25]. As a result, the previ-

ous multirate sampling control theories did not have many applications even though the

theoretical advantages were very interesting.

Advanced sampled-data control theory

After the non-conventional digital control theory was eagerly researched mainly in 1980s,

advanced sampled-data control theory has been focused on and developed very rapidly

[26, 27]. Especially from 1990, a lot of important work about this topic has been done,

which has been stimulated by Chen and Francis [28, 29]. The advantage of this theory is

that the intersample behavior can be directly considered and designed.

The problem setup of this framework is shown in Fig. 1.4, whereG(s) is a continuous-

time generalized plant with weighting function, C[z] is a discrete-time controller, H is a

zero-order hold, and S is an ideal sampler. The exogenous input w contains disturbances

and reference signals, and the controlled output z is the signal which should be made
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G(s)

C[z] SH

w z

u y

Figure 1.4: Generalized plant for sampled-data system.

t0 T 2T 3T 4T 5T i0 1 2 3 4

0 T 0 T 0 T 0 T 0 T

Figure 1.5: Continuous-time lifting.

small or zero. The control input u is generated by the discrete-time controller, and the

measured output y is an input variable of the digital controller. This arrangement is

called the hybrid system because it has both continuous-time and discrete-time signals.

The formulation of the advanced sampled-data theory is to find the digital controller

C[z] to minimize typically H2 or H∞ norm from w to z [30, 31, 32, 33, 34]. One of the

most important mathematical methods in this framework is so-called “lifting” technique

which is introduced to deal with the difficulty of the hybrid system [35, 36]. In the lifting

technique, the continuous-time signal is chopped at the sampling points t = 0, T, 2T, · · ·,
and regarded as a sequence of functional segments, as shown in Fig. 1.5. By using this

idea, the hybrid system can be transformed to the equivalent discrete-time system which

preserves the norm.

Moreover, advanced sampled-data theory has been able to define the frequency re-

sponse, which can take into account the intersample behavior [37, 38]. Because the cal-

culation sometimes has numerical difficulty, [39] introduced the fast sample and fast hold

(FSFH) approximation. In the FSFH method, the continuous-time signals z is sampled
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at every T/N , and w is held during T/N [40]. Thus, the original hybrid system can

be converted to the equivalent discrete-time system. The frequency response of FSFH

system has been proved to converge to that of the original hybrid system when N → ∞.
This approximation is a practical and useful approach because it is applicable not only

to the analysis of the frequency response but also to the H2 and H∞ synthesis.

Moreover, this advanced sample-data theory is extended to the multirate control prob-

lem in [41, 42, 43]. Thus, we can say that advanced sampled-data theory is complete from

the theoretical point of view.

However, in the present situation, this theory has solved only H2 and H∞ control

problems, although many advanced topics are still been studied [26]. Thus, it is not

always applicable to all problems, since H2 and H∞ synthesis is not always effective and

it makes several assumptions in obtaining the solutions.

Moreover, because it is based on the small gain theorem to assure the stability robust-

ness, the phase information of the uncertainty ∆ is neglected, while the gain is assumed to

be bounded ‖∆‖∞ ≤ 1. Thus, the conservative controller is generally obtained. Because

of this problem, in highly competitive industries such as the motion control systems of

hard disk drives, the conservativeness of the small gain theorem is sometimes too restric-

tive [44], and conventional analysis remains based on the Nyquist diagram. Especially in

the advanced sampled-data theory, analysis and synthesis based on the small gain theorem

can be more conservative [45]. Thus, it is not always suitable to practical systems with

highly demanding specifications such as very high speed and very high precision motion

control systems.

Although this theory has been applied to several practical systems such as a pneumatic

cylinder system [46] and hard disk drives [47, 48], more practical improvements such as

in [49] will be desired in the future.

1.1.2 Practical Background

On the other hand, many applications have included the multirate sampling control.

For example, in the head positioning system of hard disk drives, the head position is

detected by the servo signal embedded in disks discretely, as shown in Fig. 1.6. Thus, the

sampling frequency is restricted because it is determined by the rotational frequency and

number of the servo signals. On the other hand, the control frequency of the actuator

(voice coil motor) can be set faster than the sampling frequency of the head position.

Therefore, multirate estimation and control have been applied to hard disk drives in

[50, 51, 52, 53, 54, 55].

Another example is the visual servo system of robot manipulators. Although the
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Spindle shaft Disk
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Carriage & Head suspension

Voice coil MotorFrame

Base

Servo signal

Figure 1.6: Hard disk drive.

sampling period of the vision sensor such as a CCD camera is comparatively slow (over

33 [ms]), the control period of the joint servo is very fast (less than 1 [ms]). Therefore,

multirate controllers have been developed and implemented in the visual servo systems

[56, 57, 58].

The third example is the velocity or position control of industrial motors with low

precision encoders. In these systems, the sampling period cannot be set too short, because

the velocity information cannot be detected due to the low resolution of the encoder.

Therefore, the instantaneous speed observer has been developed in [59], which estimates

the inter-sample velocity with use of the discrete-time observer.

Next, the industrial control systems of servomotors have utilized multi-loop multirate

sampling controllers, because the time constants of the current, velocity and position loops

are quite different. Thus, it is a smart solution to set sampling periods of each control

loop independently [60].

Moreover, multirate filter bank is one of the hot research topics in the field of signal

processing. Recently, sampled-data control theory is applied to design of the filter banks

based on the continuous-time signal [61, 62].

In recent years, high performance and high precision intelligent encoders are being

developed which have signal possessors and communication equipment. If these encoders

are implemented to the motion control systems, the sampling frequency is fixed to the

communication speed. Thus, the multirate sampling control will play a more important

role in the future practical motion control systems.
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1.2 Motivations of the Dissertation

As mentioned above, multirate control systems have been very important in various areas

of control engineering. However, these topics have been developed separately both in the-

ory and application. The objective of this dissertation is to construct an integrated theory

of multirate sampling control and to further develop it into practical control methods.

In the first part of this dissertation, generalized theoretical framework for multirate

sampling control is constructed, which is based on novel control strategies of 1) perfect

tracking control (PTC) by multirate feedforward control, 2) perfect disturbance rejection

(PDR) control by multirate feedback control, and 3) perfect state matching (PSM) control

by multirate sampling control. In the second part, the proposed theory is applied to the

practical motion control systems such as servomotors of robot manipulators, hard disk

drives, two-mass systems, and visual servo systems.

The proposed method makes use of the extra degree-of-freedom of control input pro-

vided by multirate control, in the same way as previous theoretical papers [4, 5, 6, 10].

But, the significant feature of the proposed framework is that all the plant states are

directly controlled at every period by using the increased degree-of-freedom of the control

input. Because of this novel methodology, the transient time response of the plant state

becomes very smooth and ripple-free, and the control input is prevented from oscillat-

ing. From the knowledge of the deadbeat control [63], it is easily understood that plant

state becomes ripple-free by controlling state variable. But, this dissertation makes a first

attempt to apply it to the multirate control.

This concept of controlling state variables is very important from the practical point

of view. In many practical problems, the transient response characteristics is sometimes

much more important than optimizing a performance index [64], while recent control

theory is focused on the optimization problem. Especially in motion control systems, the

plant state includes the variables of position and velocity, and the control input generally

corresponds to the force command. Thus, it is physically reasonable to control the plant

state and control input to obtain desirable transient waveforms.

While recent control theories tend to depend on the numerical optimization by Riccati

equation or linear matrix inequality (LMI), this dissertation tries to obtain not numerical

solutions but analytical solutions if it is possible. Moreover, it takes up the challenge

to construct simple and clear control schemes, which are intuitively understandable and

easily applicable to practical motion control systems, because a complex and difficult

control theory does not always obtain the best results in the real world [65].

As mentioned in section 1.1.1, the theory for multirate control systems has been studied
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by many researchers, and many important results have already been obtained. However,

this previous work has never paid attention to the hardware restriction on the sampling

scheme. On the other hand, this dissertation makes first attempt to construct general

framework for systems with hardware restrictions in the sampling scheme.

This dissertation also focuses on the intersample response and sometimes utilizes the

fast sampling technique, following the advanced sampled-data theory. As mentioned in

section 1.1.1, advanced sampled-data theory is applicable to the multirate system [41,

42, 43]. But, the solution does not let us know the physical advantage of the multirate

sampling scheme, although it gives the mathematical optimization. However, by using

the proposed method, we find that the essential and intuitive advantages of multirate

control are 1) to compensate large phase delay generated by the zero-order hold, 2) to

reject disturbance at intersample points, 3) to improve tracking performance without

unstable zero problem, and 4) to control plant state directly at every period. As will be

demonstrated in chapter 6, improvements introduced by multirate control are superior to

those of optimizing intersample response. Thus, it can be said that this dissertation gives

a breakthrough in control engineering.

The most important progress of recent control engineering is the robustness against

plant uncertainty. This dissertation also takes care of this problem. But, in motion control

systems, it has become possible to design robust servo system by simple ways such as the

disturbance observer [66, 67]. Thus, these simple and practical methods are utilized in

this dissertation.

1.3 Outline of the Dissertation

The outline of this dissertation is illustrated in Fig. 1.7. This dissertation consists of two

parts: theory and applications. All chapters on theory are independent from each other,

except for several equations referred from other chapters. The chapters on applications

correspond to the respective chapters on theory.

The details of each chapter are as follows.

In chapter 2, a novel perfect tracking control (PTC) method is proposed based on

multirate feedforward control. The features of PTC are 1) the controller can be designed

without considering the unstable zero problem of discrete-time plants, 2) the plant state

matches the desired trajectories at every sampling point of reference input, and 3) high

robust performance is assured by the robust feedback controller because the proposed

controller is completely independent of the feedback characteristics. Moreover, by gen-

eralizing the relationship between the sampling period of plant output and the control
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Figure 1.7: Outline of this dissertation

period of plant input, the proposed method can be applied to various systems with hard-

ware restriction in the sampling scheme, leading to higher performance. Next, it is shown

that the structure of the proposed perfect tracking controller is very simple and clear.

In chapter 3, novel multirate feedback controllers are proposed for digital control

systems, where there is a restriction that the speed of the A/D converters is slower than

that of the D/A converters. The proposed feedback controller assures perfect disturbance

rejection (PDR) atM intersample points in the steady state. The proposed method is also

extended to systems with time delay. Moreover, an intersample observer is developed in

order to reduce phase delay caused by zero-order hold and to increase the stability margin

by estimation and compensation of the intersample response. Next, the PDR is applied

to the periodic disturbance rejection problem. The novel scheme of repetitive control

is proposed based on the open-loop estimation and switching function, which enables

rejection of periodical disturbance without any sacrifice of the closed-loop characteristics.

Finally, intersample disturbance rejection performance is optimized by the fast sampling

approach.

In chapter 4, a novel discretization method for continuous-time controllers is proposed

based on perfect state matching (PSM) control by which the states in the continuous-
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time systems are completely reserved in the obtained sampled-data system. The features

of the proposed method are 1) multirate input control is employed, 2) the states of the

discretized sampled-data system completely match those of the original continuous-time

closed-loop system at every sampling period, and 3) the proposed method is applicable

to a static state-feedback and/or a dynamic controller. Next, discretization method of

observer is proposed based on multirate output control. Finally, the proposed method is

extended to systems with relatively long sampling periods.

In chapter 5, the perfect tracking control (PTC) proposed in chapter 2 is applied to

several motion control systems. First, the position control system of servomotor for robot

manipulators is considered as an example without special hardware restriction (Tu =

Ty). Combining the proposed feedforward controller with H∞ robust feedback controller,

perfect tracking performance is achieved with robustness. Second, the proposed method is

applied to track-seeking control of hard disk drive which is as an example with time delay

and long sampling period relative to the control input (Tu < Ty). For this system, it is

shown that the proposed controller enables higher speed movement when compared with

the conventional single-rate controller. Simulations and experiments both of servomotors

and hard disk drives are performed, and advantages of this approach are demonstrated.

In chapter 6, the perfect disturbance rejection (PDR) control developed in chapter 3

is applied to motion control systems, where the sampling period of the sensor is shorter

than the control period of the actuator. As examples, track-following mode of hard disk

drive (HDD) and visual servo systems of robot manipulators are considered. First, the

perfect disturbance rejection controller is applied to first-order disturbance mode of re-

peatable runout in HDD based on multirate feedback control. Second, the problem of the

feedback approach for higher disturbance mode is explained, and the open-loop observer

with switching function is implemented in order to overcome the problem. Moreover, the

intersample observer compensates the large delay generated by the hold and improves the

stability margin of the closed-loop system. Finally, the proposed method is applied to

visual servo systems by introducing the workspace controller and perspective transforma-

tion.

In chapter 7, the perfect state matching (PSM) control developed in chapter 4 is

applied to the motion control systems based on multirate sampling control. First, the

position control system for a dc servomotor with disturbance observer is utilized as an ex-

ample without hardware restriction in the sampling scheme. Simulations and experiments

are performed, and advantages of this approach are demonstrated. Because the proposed

method assures response matching independent of the sampling period, it enables to bring

out the maximum performance of a control system. Second, vibration suppression control
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is proposed based on multirate input control for a system in which the Nyquist frequency

is relatively closed to the mechanical resonance mode and the sampling period is longer

than the control period. For a two-mass system model of the hard disk drive, simulations

demonstrate the possibility of controlling the critical resonance mode.

In chapter 8, the proposed three control schemes of PTC, PDR, and PSM are re-

viewed, and the obtained results are classified by the hardware restriction of their sam-

pling schemes and according to the feedforward and feedback approaches. The constructed

framework is summarized, and the conclusion of this dissertation is stated.
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Part I

Theory
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Chapter 2

Perfect Tracking Control Based on

Multirate Feedforward Control

2.1 Abstract

In this chapter, a novel perfect tracking control method based on multirate feedforward

control is proposed. The advantages of the proposed method are 1) the proposed mul-

tirate feedforward controller eliminates the notorious unstable zero problem in designing

the discrete-time inverse system, 2) the states of the plant match the desired trajecto-

ries at every sampling point of reference input, and 3) the feedback characteristics are

completely independent of the proposed controller. Thus, highly robust performance is

assured by the robust feedback controller. Moreover, by generalizing the relationship

between the sampling period of plant output and the control period of plant input, the

proposed method can be applied to various systems with hardware restrictions in the

sampling scheme, leading to higher performance. Next, it is shown that the structure of

the proposed perfect tracking controller is very simple and clear. The proposed method

is applied to position control systems of servomotors and hard disk drives in chapter 5.

2.2 Introduction

In digital motion control systems, tracking controllers are often employed for high-speed

and high-precision servo systems because the controlled plant follows a smoothed desired

trajectory. The best tracking controller is ideally the perfect tracking controller (PTC)

which controls the object with zero tracking error [68]. Perfect tracking control can be

achieved using d-step preview action and a feedforward controller C1[z] which is realized
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Figure 2.1: Conventional perfect tracking control system.

by an inverse of the closed-loop system Gcl[z], as shown in Fig. 2.1.

C1[z] =
1

zdGcl[z]
=
1 + P [z]C2[z]

zdP [z]
(2.1)

r[i] = yd[i+ d] (2.2)

Here, d is the relative degree of Gcl[z] and yd[i] is the desired trajectory.

However, the discrete-time plant P [z] discretized by the zero-order hold usually has

unstable zeros [9]. Thus, C1[z] becomes unstable because Gcl[z] has unstable zeros. There-

fore, in conventional digital control systems utilizing zero-order holds, the perfect tracking

control is usually impossible.

From this viewpoint, two feedforward control methods have been proposed for the

discrete-time plant with unstable zeros [68]. First, the stable pole zero canceling (SPZC)

controller cancels all poles and stable zeros of the closed-loop system, which has both phase

and gain errors caused by the uncancellable unstable zeros. Second, the zero phase error

tracking controller (ZPETC) adds the factors which cancel the phase error, to SPZC.

However, the gain error caused by the unstable zeros remains. There have also been

attempts to compensate for the gain error of ZPETC [69, 70, 71]. However, those efforts

were not able to realize perfect tracking control because zero-order holds were employed.

In this chapter, a novel perfect tracking control method is proposed by using multirate

feedforward control. In the proposed scheme, the tracking error of plant state becomes

completely zero at every sampling period of reference input for a nominal plant with-

out disturbance1. Moreover, by combining the proposed feedforward controller with a

robust feedback controller such as disturbance observer or H∞ controller, high tracking

performance is preserved even if the plant has modeling error and disturbance.

1The word of “perfect tracking control” is originally defined in [68], which means the plant output

perfectly tracks the desired trajectory with zero tracking error at every sampling point.
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The unstable-zeros problem of the discrete-time plant has been resolved by zero assign-

ment based on multirate control [3, 7, 8]. However, it has been shown that those methods

sometimes have the disadvantages of large overshoot and oscillation in the intersample

points because the control input changes back and forth very quickly [24]. On the other

hand, the proposed method never has this problem because all of the plant states (e.g.,

position and velocity) are controlled along the smoothed desired trajectories.

Recently, modern sampled-data control theories have been developed, which can opti-

mize the intersample response (e.g., [27, 26, 42]). However, the proposed method has the

practical advantages that 1) the design method and structure of the controller are simple

and clear, and 2) no complex calculations for optimization are required.

The contents of this chapter are as follows. In section 2.3, the perfect tracking con-

troller is proposed in the simplest case for a single-input single-output (SISO) plant with-

out hardware restrictions in the sampling scheme. Next, the proposed method is extended

to applications in various systems with hardware restrictions by generalizing the sampling

periods.

2.3 Perfect Tracking Control without Hardware Re-

strictions

A digital tracking control system usually has two samplers for the reference signal r(t)

and the output y(t), and one holder on the input u(t), as shown in Fig. 2.2. Therefore,

as mentioned in chapter 1, there exist three time periods Tr, Ty, and Tu which represent

the periods of r(t), y(t), and u(t), respectively. The input period T u is generally decided

by the speed of the actuator, the D/A converter, or the calculations on the CPU. On the

other hand, the output period Ty is determined by the speed of the sensor or the A/D

converter.

In this section, the perfect tracking control is proposed in the simplest case for a

SISO plant without hardware restrictions on the sampler and holder (Ty = Tu) . Because

actual control systems usually have restrictions on Tu and/or Ty, the proposed method is

extended to general systems with these restrictions (Ty �= Tu) in section 2.4.

In the proposed multirate feedforward control, the control input u(t) is changed n

times during one sampling period (Tr) of reference input r(t), as shown in Fig. 2.3. Here

n is the plant order. The advantage of the proposed method is that the tracking error of

plant state becomes perfectly zero at every Tr.
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Figure 2.3: Multirate feedforward control.

2.3.1 Plant Discretization and Parameterization

Consider the continuous-time nth-order plant Pc(s) described by

ẋ(t) =Acx(t) + bcu(t) , y(t) = ccx(t). (2.3)

The discrete-time plant P [zs] discretized by the short sampling period Ty (= Tu) of Fig.

2.4 becomes

x[k + 1] = Asx[k] + bsu[k] (2.4)

y[k] = csx[k], (2.5)

where x[k] = x(kTy), zs
�
= esTy , and

As
�
= eAcTy , bs

�
=

∫ Ty

0
eAcτbcdτ, cs

�
= cc. (2.6)

Thus, the discrete-time plant P [z] discretized by the multirate sampling control of Fig.

2.4 can be represented by

x[i+ 1] = Ax[i] +Bu[i] (2.7)
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y[i] = Cx[i] +Du[i], (2.8)

where x[i] = x(iTr), z
�
= esTr , and multirate input and output vectors u,y are defined as

2

u[i]
�
= [u1[i], · · · , un[i]]

T = [u(kTy), u((k + 1)Ty), · · · , u((k + n − 1)Ty)]
T , (2.9)

y[i]
�
= [y1[i], · · · , yn[i]]

T = [y(kTy), y((k + 1)Ty), · · · , y((k + n − 1)Ty)]
T , (2.10)

and matrices A,B,C,D are given by 3


 A B

C D


 �
=




An
s An−1

s bs An−2
s bs · · · Asbs bs

cs 0 0 · · · 0 0

csAs csbs 0 · · · 0 0
...

...
...

csA
n−1
s csA

n−2
s bs csA

n−3
s bs · · · csbs 0




. (2.11)

Concerning the matrices B and C, the following theorems are obtained in [6, 10, 72].

2The operations of (2.9) and (2.10) are called “discrete-time lifting” in advanced sampled-data control

theory [27] .
3For example, in case of n = 2, (2.11) is obtained as follows.

x[k + 1] = Asx[k] + bsu[k]

x[k + 2] = Asx[k + 1] + bsu[k + 1] = As(Asx[k] + bsu[k]) + bsu[k + 1]

= A2
sx[k] +Asbsu[k] + bsu[k + 1]

y[k] = csx[k]

y[k + 1] = csx[k + 1] = cs(Asx[k] + bsu[k])


x[k + 2]

y[k]

y[k + 1]


 =




A2
s Asbs bs

cs 0 0

csAs csbs 0







x[k]

u[k]

u[k + 1]


 .
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Theorem 2.1 If (Ac, bc) of the continuous system (2.3) is a controllable pair, the input

matrix B of the multirate system (2.7) is nonsingular for almost every sampling period

Ty.

Theorem 2.2 If (Ac, cc) of the continuous system (2.3) is an observable pair, the output

matrix C of the multirate system (2.7) is nonsingular for almost every sampling period

Ty.

These theorems are easily proved in case of the SISO system. If the continuous system

(2.3) is controllable and observable, the discrete-time system (2.4) becomes controllable

and observable for almost every sampling period Ty [73]. Therefore, the matrices B

and C of (2.11) become nonsingular because they are equal to the controllability and

observability matrices of (2.4), respectively.

The proposed method employs the multirate-input control as a two-degree-of-freedom

control, as shown in Fig. 2.2. In the figures, HM and SM represent the multirate hold

and the multirate sampler, respectively. The functions of HM and SM are shown in Fig.

2.4, and defined in (2.9) and (2.10).

In the ideal tracking control system, the transfer characteristic (Gyr) from the com-

mand r to the output y is generally 1. In this chapter, the feedforward controller C 1[z] is

considered so that the transfer characteristic from the desired state xd to the plant state

x can be I .

2.3.2 Design of the Feedback Controller C 2[z]

Before the perfect tracking controller C 1[z] is designed, the feedback controller C 2[z]

must be determined. Here, C 2[z] must be a robust controller which renders the sensitiv-

ity function S[z] = (I − P [z]C 2[z])
−1 sufficiently small at the frequency of the desired

trajectory. The reason is that the sensitivity function S[z] represents variation of the

command response Gyr[z] under the variation of P [z] [74]. The feedback controller sat-

isfying this specification can be designed easily by using a disturbance observer approach

or H∞ theory [66, 67, 75].

For systems without special hardware restrictions in which the feedback loop is single-

rate (Ty = Tu), the feedback controller C2[zs] = {As2, bs2, cs2, ds2} is designed for Pc(s)

with a single-rate sampling period Ty (= Tu), where zs = esTy . Subsequently, C2[zs] is

transferred to an n-input n-output system C2[z] using (2.12), in order to realize C 1[z]
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Figure 2.5: Basic structure of TDOF control.

and C2[z] together, where z = esTy = zns .

C2[z] =




An
s2 An−1

s2 bs2 An−2
s2 bs2 · · · bs2

cs2 ds2 0 · · · 0

cs2As2 cs2bs2 ds2 · · · 0
...

...
...

cs2A
n−1
s2 cs2A

n−2
s2 bs2 cs2A

n−3
s2 bs2 · · · ds2




(2.12)

Because the feedback characteristics such as disturbance rejection performance and sta-

bility robustness are never improved by the multirate control in the case where there is

no hardware restriction in the sampling scheme (Ty = Tu) [12, 23], it is not necessary to

design a n-input n-output multirate system as the feedback controller C2[z]. Therefore,

a single-rate feedback controller C2[zs] is adequate in the case of Ty = Tu.

2.3.3 Design of the Perfect Tracking Controller C 1[z] – State

Space Approach

In this section, the multirate feedforward controllerC 1[z] is designed using the state space

approach. The proposed method can assure perfect tracking at every sampling point Tr.

From Fig. 2.2, the multirate control law of the proposed method is described by 4

u[i] = C1[z]r[i] +C 2[z]y[i] (2.13)

= F x̂[i] +Q[z]ey[i] +K[z] r[i], (2.14)

where K[z],Q[z] ∈ RH∞ are free parameters. Therefore, Fig. 2.2 can be transferred to

Fig. 2.5 [76]. The details of the derivation are shown in Appendix A. In this chapter,

K[z] is a constant matrix K.
4Strictly speaking, (2.13) should be written as U [z] = C1[z]R[z] +C2[z]Y [z]. In this thesis, however,

signals are simply represented in time domain in the same way as [68].
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Figure 2.6: Implementation of the proposed controller.

Because the estimation errors of the observer become zero (x̂[i] = x[i],ey[i] = ŷ[i]−
y[i] = 0) for the nominal plant, the system (2.7) is represented from (2.14) by

x[i+ 1] = (A+BF )x[i] +BKr[i]. (2.15)

Because nonsingularity of matrix B is assured from theorem 2.1, the parameters F and

K can be selected so that the following equations are satisfied.

A +BF = O , BK = I, (2.16)

From (2.16), F and K are given by

F = −B−1A , K = B−1. (2.17)

Therefore, (2.15) is described by

x[i+ 1] = r[i], (2.18)

Utilizing the future desired state, let the reference input be

r[i] = xd[i+ 1], (2.19)

where xd[i] is the desired state. This method of control, where the reference input is

generated from the future desired trajectory, is known as preview control. From (2.18)

and (2.19), we find that perfect tracking x[i] = xd[i] is achieved at every sampling point

Tr.

Here, Fig. 2.2 can be represented by Fig. 2.6 because (2.13) is rewritten as (2.20)

[74]. The derivation is shown in Appendix B. Therefore, the proposed controller is simply

implemented by

u[i] = (M [z]−C 2[z]N [z])Kr[i] +C 2[z]y[i] (2.20)
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Figure 2.7: Perfect tracking controller by the transfer function approach.


 M [z]

N [z]


 =



A+BF B

F I

C +DF D


 =


 I + z−1FB

D + z−1(C +DF )B


 , (2.21)

where M [z] and N [z] are parameters of the coprime factorization of the plant P [z] =

N [z]M [z]−1. The two-degree-of-freedom controller (2.20) should be realized with mini-

mum order. Assuming the initial value of plant is known5, the initial value of controller

(2.20) should be set to be equal to that of the plant x[0].

From (2.16), the proposed controller has a similar structure to that of the robust

deadbeat controller [77] because it is composed of the feedforward controller with dead-

beat characteristics and a robust feedback controller. However, conventional deadbeat

controllers deal with fixed desired trajectories such as step or ramp function and followed

them within several sampling time. On the other hand, the proposed method deals with

arbitrary desired trajectories and there is no tracking delay. Therefore, in this chapter,

novel concepts are introduced such as the preview of the desired trajectory, the sampler

of desired trajectory, desired state variable, and multirate feedforward.

2.3.4 Design of the Perfect Tracking Controller C 1[z] – Transfer

Function Approach

In this section, the perfect tracking controller is designed using the transfer function

approach, which can be understood more intuitively than the state space approach of

section 2.3.3.

5In trajectory tracking control system, this assumption is generally satisfied because the initial velocity

is usually zero. If the initial value of plant x[0] is unknown, it works as an impulse disturbance and the

effect is rejected by the robust feedback controller C2[z].
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From (2.7) and (2.8), the transfer function from x[i+ 1] to u[i] and y[i] is described

by

u[i] = B−1(x[i+ 1]−Ax[i]) = B−1(I − z−1A) x[i+ 1]

=


 O −A
B−1 B−1


x[i+ 1] (2.22)

y[i] = z−1C x[i+ 1] +D u[i]. (2.23)

In (2.22), the nonsingularity of matrix B is assured by theorem 2.1. Because all poles

of the transfer function (2.22) are zero, it is found that (2.22) is a stable inverse system.

Thus, if the control input is calculated by (2.24) as shown in Fig. 2.7, perfect tracking is

guaranteed because (2.24) is an exact inverse plant.

u0[i] = B−1(I − z−1A) xd[i+ 1] (2.24)

The output of the nominal plant model can be calculated by

y0[i] = z−1Cxd[i+ 1] +Du0[i]. (2.25)

When the tracking error e is caused by disturbance or modeling error, it can be eliminated

using the robust feedback controller C2[z] by applying (2.26).

u[i] = u0[i] +C2[z](y[i]− y0[i]) (2.26)

Next, it is shown that the feedforward controller (2.20) obtained by the state space

approach is identical with (2.25) and (2.26), which are designed in this transfer func-

tion approach. From (2.17) and (2.21), two feedforward paths M [z]K and N [z]K are

represented by

u0[i] = M [z]Kxd[i+ 1]

= (I + z−1FB)Kxd[i+ 1]

= (I − z−1B−1AB)B−1xd[i+ 1]

= B−1(I − z−1A)xd[i+ 1], (2.27)

y0[i] = N [z]Kxd[i+ 1]

= (D + z−1(C +DF )B)Kxd[i+ 1]

= (D + z−1(C −DB−1A)B)B−1xd[i+ 1]

= z−1Cxd[i+ 1] +DB−1(I − z−1A)xd[i+ 1]

= z−1Cxd[i+ 1] +Du0[i]. (2.28)
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From the above equations, it is found that the controllers obtained by the two different

approaches are equivalent and the structure of the proposed controller is very simple and

clear as shown in Fig. 2.7.
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2.4 Perfect Tracking Control with Generalized Sam-

pling Periods

In section 2.4, perfect tracking control was proposed for a plant without hardware restric-

tions on the sampler and holder (Ty = Tu) . On the other hand, many industrial systems

often have hardware restrictions on both the sampling periods for detecting plant output

and the control periods for generating plant input. For example, in head-positioning con-

trol of hard disk drives and visual servo systems, the sampling periods of plant output

would be long, because the detection period of servo signals and video signals are shorter

than the period of control input. In contrast, systems with low-speed D/A converters

or CPUs have the restriction that the period of plant input is shorter than the sampling

period of plant output.

In this section, perfect tracking control is extended to applications in various systems

with the above hardware restrictions, by generalizing the output sampling period. Next,

it is shown that the structure of the proposed controller is very simple and clear. Finally,

two examples are presented to demonstrate the advantages of this approach through sim-

ulations and experiments of position control using a dc servomotor. The first example

shows that the proposed multirate feedforward control has better performance than the

single-rate controller even in the usual servo system without the special hardware restric-

tions, in which the sampling period of plant output is equal to the control period of plant

input. The second example indicates that the proposed method is applicable to a system

with special hardware restrictions, in which the output sampling period is longer than the

input period. For this system, the proposed method improves the intersample response.

2.4.1 Generalizations of the Sampling Periods

As mentioned in section 2.3, digital control system generally has three time periods T r, Ty,

and Tu, as shown in Fig. 2.8. Actual control systems usually have restrictions on Tu and/or

Ty because the speed of actuators, sensors, CPU calculations, or A/D–D/A converters is

limited. In conventional digital control systems, these three periods are made equal to

the longer of the two periods Tu and Ty for simplification both of theory and algorithm.

On the other hand, the authors have shown that perfect tracking control can be

achieved on every sampling point Tr by setting Tr = nTu, where n is the plant order ,

as shown in section 2.3 [78]. In the following discussions, Tr = nTu is regarded as the

condition for the perfect tracking control. We should consider the following two cases,

which are very common in the industry. In the first case, Tu is decided in advance by the
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Figure 2.8: Two-degree-of-freedom control system.

y(t)

u(t)

r(t)

Ty

Tu

Tr = Tf

1

1

2

2

3

3 M

n

(a) Case 1 (Ty ≤ Tu)

y(t)

u(t)

r(t)

Ty = Tf

Tu

Tr

1

1 2

2 Nn

(b) Case 2 (Ty > Tu)

Figure 2.9: Multirate sampling control.

hardware restrictions, however, the plant output can be detected at the same or faster

period (Ty ≥ Tu), as shown in Fig. 2.9(a). This case is referred to as case 1 in this chapter,

and includes the usual servo systems of Ty = Tu without special hardware restrictions.

In the second case, Ty is decided in advance, however, the plant input can be changed N

times during Ty, as shown in Fig. 2.9(b). This case is referred to as case 2, and includes

systems with special hardware restrictions such as hard disk drives [79, 80], visual servo

systems [81], and servo systems with low precision encoders [59], as mentioned in section

1.1.2. In this case, the perfect tracking control can be assured at L (
�
= N/n) intersample

points during Ty.

For the above multiperiod systems, the longer period between Tr and Ty is defined

as the frame period Tf [1], and the z-operator is defined as z
�
= esTf . By using these

definitions, cases 1 and 2 can be dealt with together in the following discussions.

Fig. 2.10 shows the proposed multirate control scheme, in which the plant input is
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changed N times during one frame period Tf , and the plant output is also detected M

times during Tf . The positive integers M and N indicate input and output multiplicities,

respectively.

In case 1, the frame period and the input multiplicity are set to Tf = Tr and N = n, as

shown in Fig. 2.9(a). The output multiplicityM is determined by the hardware restriction.

In case 2, the frame period and the output multiplicity are set to Tf = Ty and M = 1,

as shown in Fig. 2.9(b). The input multiplicity is decided by the hardware restriction.

However, it is necessary that N/n (= L) be an integer in the proposed method.

In Fig. 2.10, µj(j = 0, 1, · · · , N) and νk(k = 1, · · · , M) are the parameters for the

timing of input change and output detection, which satisfy conditions (2.29) and (2.30).

0 = µ0 < µ1 < µ2 < ... < µN = 1 (2.29)

0 ≤ ν1 < ν2 < ... < νM < 1 (2.30)

If Tf is divided into equal intervals as shown in Fig. 2.4, these parameters are set to

µj = j/N and νk = (k − 1)/M .

2.4.2 Designs of the Proposed Controller

In this section, the proposed perfect tracking control method is presented. For simplifi-

cation, the plant is assumed to be a SISO system. The proposed method, however, will

be extended to deal with the MIMO system in section 2.5.2.

Plant Discretization and Parameterization

Consider the continuous-time nth-order plant Pc(s) described by

ẋ(t) =Acx(t) + bcu(t) , y(t) = ccx(t). (2.31)
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The discrete-time plant P [z] discretized by generalized multirate sampling control

(Fig. 2.10) becomes

x[i+ 1] = Ax[i] +Bu[i] (2.32)

y[i] = Cx[i] +Du[i], (2.33)

where x[i] = x(iTf), and matrices A,B,C,D and vectors u[i],y[i] are given by


 A B

C D


 �
=




eAcTf b1 · · · bN

c1 d11 · · · d1N

...
...

...

cM dM1 · · · dMN




(2.34)

u[i]
�
= [u1[i], · · · , uN [i]]

T , y[i]
�
= [y1[i], · · · , yM [i]]

T (2.35)

bj
�
=

∫ (1−µ(j−1))Tf

(1−µj)Tf
eAcτbcdτ , ck

�
= cce

AcνkTf (2.36)

dkj
�
=




µj < νk : cc
∫ (νk−µ(j−1))Tf

(νk−µj )Tf
eAcτbcdτ

µ(j−1) < νk ≤ µj : cc
∫ (νk−µ(j−1))Tf

0 eAcτbcdτ

νk ≤ µ(j−1) : 0

. (2.37)

Design of the Feedback Controller C 2[z]

Before the perfect tracking controller C 1[z] is designed, the robust feedback controller

C2[z] must be determined in order to make the sensitivity of the closed-loop system

sufficiently small.

Because systems with special hardware restrictions are considered in this section, the

feedback loop also may become multirate (Ty < Tu or Ty > Tu). Multirate feedback

controllers with these restrictions are proposed in chapter 3 and [41, 42, 43]. These

multirate controllers may improve the feedback characteristics. However, perfect tracking

control can be achieved, even if the single-rate feedback controller is simply designed with

a longer period between Ty and Tu, and transferred to an M -input N -output controller

C2[z] on Tf . For example, the feedback controller in case 2 (Ty > Tu) can be transferred

to a 1-input N -output system by

C2[z] =




As bs

cs ds
...

...

cs ds




, (2.38)

where {As, bs, cs, ds} is a single-rate controller designed with Ty.
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Design of Perfect Tracking Controller C 1[z]

In this section, the multirate feedforward controllerC 1[z] is designed using the state space

approach in the same way as in section 2.3.3. In the proposed method, perfect tracking

control can be assured at every sampling point of reference input Tr. For simplification, the

parameters of multirate control are assumed to be selected as µj = j/N, νk = (k − 1)/M .

However, this assumption can be removed easily in the same way as in chapter 3.

The system of (2.32) is represented with the frame period Tf , and rewritten with the

reference period Tr = Tf/L as 6

x̃[i+ 1] = Ãx[i] + B̃u[i], (2.39)

where q
�
= 1/L = n/N , and where matrices Ã, B̃ and vectors x̃ are given by

x̃[i+ 1]
�
=




x[i+ q]
...

x[i+ lq]
...

x[i+ Lq]




, Ã
�
=




eAcTr

...

eAclTr

...

eAcLTr




(2.40)

B̃
�
=




BL O · · · · · · · · · O
...

. . . O

BL−l · · · BL O · · · O
...

. . . O

B1 B2 · · · · · · · · · BL




(2.41)

Bl = [b(l−1)n+1, · · · , bln] (l = 1, · · · , L). (2.42)

As shown in (2.13), the two-degree-of-freedom control law is described by

u[i] = F x̂[i] +Q[z]ey[i] +Kr[i]. (2.43)

Because the estimation errors of the observer become zero (x̂ = x,ey = ŷ − y = 0) for

the nominal plant, from (2.39) and (2.43), this system is represented by

x̃[i+ 1] = (Ã+ B̃F )x[i] + B̃Kr[i]. (2.44)

And as nonsingularity of matrix Bl can be assured by theorem 2.1, B̃ of (2.41) also

becomes nonsingular. Therefore, the parameters F and K can be selected such that the

following equations are satisfied.

Ã + B̃F = O , B̃K = I, (2.45)
6In case 1, (2.39) is equal to (2.32) (x[i + 1] = Ax[i] +Bu[i] ) because L = 1.
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From (2.45), F and K are given by

F = −B̃−1
Ã , K = B̃

−1
. (2.46)

Therefore, (2.44) is described by

x̃[i+ 1] = r[i], (2.47)

Utilizing the future desired state, let the reference input be

r[i] = x̃d[i+ 1] =




xd[i+ q]
...

xd[i+ Lq]


 , (2.48)

where x̃d[i] is the desired state. From (2.47) and (2.48), we find that perfect tracking

x̃[i] = x̃d[i] is achieved at every sampling point Tr. Using (2.46), the proposed controller

can be implemented by (2.20), as shown in Fig. 2.6.

Structure of Perfect Tracking Controller C 1[z]

In this section, it is shown that the structure of the perfect tracking controller is very

simple and clear. For system without hardware restrictions, that was shown in section

2.3.4. In this section, the results of section 2.3.4 are extended to system with hardware

restrictions (Ty �= Tu). From (2.46) and (2.21), the two elementsM [z]K and N [z]K in

Fig. 2.6 are represented by

M [z]K = (I − z−1B̃
−1
ÃB)B̃

−1
, (2.49)

N [z]K = z−1CBB̃
−1
+D(I − z−1B̃

−1
ÃB)B̃

−1
. (2.50)

On the other hand, from (2.32) and (2.39), the transfer function from u[i] to x̃[i+ 1] is

described by

x̃[i+ 1] =


 A B

Ã B̃


u[i]. (2.51)

The inverse system of (2.51) is given by

u[i] =


 A−BB̃

−1
Ã BB̃

−1

−B̃−1
Ã B̃

−1


 x̃[i+ 1]. (2.52)

Based on the definitions of Ã and B̃ in (2.40) and (2.41), the following equations are

obtained.

A = [

L−1︷ ︸︸ ︷
O, · · · ,O, I]Ã, (2.53)

B = [O, · · · ,O, I]B̃ (2.54)
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Figure 2.11: Structure of the proposed controller.

Thus, the (1, 1) element of matrix (2.52) becomes

A −BB̃
−1
Ã = A− [O, · · · ,O, I]Ã = O. (2.55)

Therefore, (2.52) is given by 7

u[i] =


 O BB̃

−1

−B̃−1
Ã B̃

−1


 x̃[i+ 1]. (2.56)

Based on (2.49) and (2.56), it is found that M [z]K is equal to the transfer function

from x̃[i+ 1] to u[i], which represents the stable inverse system. This point is one of the

advantages of multirate control because the inverse system becomes unstable in single-rate

systems. Moreover, (2.33) is described using (2.56) as 8

y[i] = z−1Cx[i+ 1] +Du[i]

= z−1C[O, · · · ,O, I]x̃[i+ 1]

+D(I − z−1B̃
−1
ÃB)B̃

−1
x̃[i+ 1]. (2.57)

Based on (2.50) and (2.57), it is shown that N [z]K represents the transfer function from

x̃[i+ 1] to y[i].

The structure of the proposed controller is shown in Fig. 2.11. The plant P [z] is driven

by the stable inverse system, in the same way as the case without hardware restriction.

When the tracking error e is generated by disturbance or modeling error, the robust

feedback controller C2[z] acts to eliminate e.

7In case 1, (2.56) becomes u[i] = B−1(I − z−1A) x[i + 1], which is obtained directly from x[i + 1] =

Ax[i] +Bu[i] of (2.32), because B̃ = B.
8In case 1, (2.57) becomes y[i] = z−1Cx[i + 1], because D = O.
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Figure 2.12: Generalized multirate sampling control with time delay.

2.5 Extension to Time Delay and Multivariable Sys-

tem

2.5.1 Extension to System with Time Delay

In this section, the proposed perfect tracking control is extended to plants with time delay.

As shown in Fig. 2.12, the time delay can be considered to exist on the plant output. The

continuous-time plant with time delay Td is described by

ẋ(t) = Acx(t) + bcu(t) (2.58)

y(t) = ccx(t − Td). (2.59)

The time delay can also be considered to exist on the plant input, and expressed by [82]

ẋ(t) = Acx(t) + bcu(t − Td) (2.60)

y(t) = ccx(t). (2.61)

This section adopts (2.59) because it can make this extension more simple theoretically.

Moreover, the time delay is assumed to be Td ≤ Tf for simplification. The proposed

methods, however, can be extended to the time delay of Td > Tf by the same way as [82].

Consider the discrete-time plant discretized by the multirate sampling control with

time delay. Because (2.58) is not related to the time delay, the discrete-time state equation

becomes

x[i+ 1] = Ax[i] +Bu[i], (2.62)

where A and B are given by (2.34). From (2.39), the intersample plant state can be

represented by

x̃[i+ 1] = Ãx[i] + B̃u[i]. (2.63)
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Considering the output equation, some output (y1[i] in case of Fig. 2.12) is detected

at the time before t = iTf , and the other output (y2[i], · · ·yM [i]) is detected from t = iTf

to t = (i+ 1)Tf . The latter output can be easily calculated from (2.33) by selecting the

parameters νk appropriately.

On the other hand, the former output depends on the previous control input u[i− 1],
as shown in Fig. 2.13. Thus, the output is given by

y[i] = cx[i] + gu[i − 1], (2.64)

c
�
= cce

AcνyTf ,g
�
= [g1, · · · , gN ], νy

�
= −Td

Tf
(2.65)

gj
�
=




νy ≤ −1 + µ(j−1) : −cceAcνyTf
∫ (1−µ(j−1))Tf

(1−µj)Tf
eAcτbcdτ

−1 + µ(j−1) ≤ νy < −1 + µj : −cceAcνyTf
∫−νyTf

(1−µj)Tf
eAcτbcdτ

−1 + µj ≤ νy < 0 : 0

, (2.66)

where nu is the number of the of u[i − 1] elements during Td as shown in Fig. 2.13.

Collecting all output, the multirate output vector y[i] = [y1[i], · · · , yM [i]]
T can be

represented by

y[i] = Cδx[i] +Dδu[i] +Gδu[i − 1], (2.67)

where Cδ,Dδ and Gδ are calculated by (2.36), (2.37), and (2.64).

Therefore, by the same discussion as section 2.3.4 and 2.4.2, the perfect tracking

controller can be designed by

u[i] = u0[i] +C2[z](y[i]− y0[i]), (2.68)

where u0[i] and y0[i] are obtained by

u0[i] =


 A B

Ã B̃


−1

x̃d[i+ 1], (2.69)
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Figure 2.14: Perfect tracking controller with time delay.

y0[i] = z−1Cδxd[i+ 1] + (Dδ + z−1Gδ)u0[i] (2.70)

= [O, · · · ,O, z−1Cδ]x̃d[i+ 1] + (Dδ + z−1Gδ)u0[i]. (2.71)

The block diagram of this controller is shown in Fig. 2.14.

2.5.2 Extension to Multivariable System

In the above discussion, the plant was assumed to be a single-input single-output (SISO)

system. In this section, the proposed perfect tracking control method is extended to

multi-input multi-output (MIMO) systems.

Consider the continuous-time plant described by

ẋ(t) = Acx(t) +Bcu(t) (2.72)

y(t) = Ccx(t), (2.73)

Bc = [bc1, · · · , bcm],Cc =



cc1
...

ccp


 (2.74)

where the plant state x ∈ Rn, the plant input u ∈ Rm, and the plant output y ∈ Rp.

For this plant, multirate input and multirate output controls are employed. In these

schemes, the lth (l = 1, 2, · · · , m) plant input is changed N l times during one frame period

Tf , as shown in Fig. 2.15. On the other hand, the qth (q = 1, 2, · · · , p) plant output is

detected Mq times during one frame period, as shown in Fig. 2.16. The discrete-time

transfer function from the lth input to the qthe output is given by

yq[i] =


 A Bl

Cq Dql


ul[i] (2.75)

45



.....

iTf

(i+ µ11)Tf (i+ µ12)Tf

(i+ µ21)Tf (i+ µ2(N2−1))Tf

(i+ µ1(N1−1))Tf

(i+ 1)Tf

u11[i]
u12[i]

u1N1[i]

u21[i]

u2N2[i]x[i]

x[i+ 1]

Figure 2.15: Multirate input control.

..........

iTf

(i+ µ11)Tf

(i+ µ12)Tf

(i+ µ1(j−1))Tf

(i+ µ1j)Tf

(i+ µ1(N1−1))Tf

(i+ 1)Tf

u11[i]

u12[i]
u1N1[i]

u1j [i]

y11[i]

y12[i]
y1k[i] y1M1

[i]y11[i+ 1]

y21[i]

y22[i]

y2M2
[i]

y2M2
[i+ 1]

(i+ ν11)Tf

(i+ ν12)Tf

(i+ ν1k)Tf (i+ ν1M1)Tf

(i+ ν21)Tf

(i+ ν22)Tf

(i+ ν2M2)Tf

Figure 2.16: Multirate output control.

yq[i]
�
= [yq1[i], · · · , yqMq [i]]

T , ul[i]
�
= [ul1[i], · · · , ulNl

[i]]T , (2.76)

The coefficient matrices of (2.75) are obtained from (2.34) by substituting bcl and ccq for

bc and cc, respectively.

From (2.75), the multivariable multirate system is formulated by

x[i+ 1] = Ax[i] +Bu[i] (2.77)

y[i] = Cx[i] +Du[i], (2.78)
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where x[i] = x(iTf), and input and output vectors u[i],y[i] are defined as

u[i]
�
= [u1[i], · · · ,um[i]]

T = [u11[i], · · · , u1N1[i], u21[i], · · · , umNm[i]]
T , (2.79)

y[i]
�
= [y1[i], · · · ,yp[i]]

T = [y11[i], · · · , y1M1[i], y21[i], · · · , ypMp[i]]
T , (2.80)

and matrices A,B,C, and D are given by


 A B

C D


 �
=




eAcTf B1 · · · Bm

C1 D11 · · · D1m

...
...

...

Cp Dp1 · · · Dpm




. (2.81)

Because discrete-time representation is obtained, the perfect tracking controller can

be designed in the same way as section 2.3. The conditions for perfect tracking are given

by

A +BF = O , BK = I, (2.82)

as in (2.16). Thus, the input multiplicities Nl (l = 1, 2, .., mp) should be selected such

that the matrix B can have full row rank. The output multiplicities Mq (q = 1, 2, · · · , p)

are determined by the hardware restriction.

The selections of the Nl are made by the following condition.

Nl ≥ σl (2.83)

where (σ1, ..., σm) is a set of generalized controllability indices of (Ac,Bc) which are

introduced by author [72, 83, 84], and which are defined as follows.

Definition 2.1 Generalized controllability indices of (Ac,Bc) are defined as follows for

Ac ∈ Rn×n and Bc ∈ Rn×m. If (Ac,Bc) is a controllable pair, n linearly independent

vectors can be selected from

{bc1, .., bcm,Acbc1, ..,Acbcm, ..,An−1
c bcm}

where Bc = [bc1, .., bcm]. Letting ϕ be a set of these n vectors, σl are defined by

σl = number{k|Ak−1
c bcl ∈ ϕ} (2.84)

m∑
l=1

σl = n. (2.85)
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In case of the single input plant (m = 1), this index is simply the same number as

the plant order (σ1 = n). The above definition includes that of Kronecker invariants or

controllability indices defined in [6].

Concerning the matrix B, the next theorem is proved by the author in [72] for the

generalized controllability index. In the case of the controllability index, it is also proved

in [6].

Theorem 2.3 Let (Ac,Bc) be a controllable pair. If the input multiplicities satisfy Nl ≥
σl for (l = 1, 2, .., m), for almost all µlj(l = 1, 2, .., m, j = 1, .., N l − 1) and almost all T ,

the matrix B has full row rank, i.e.

rankB = n. (2.86)

Because the full rank of the matrix B is guaranteed by this theorem, the solution of

(2.82) is exactly obtained by

F = −B−A , K = B−, (2.87)

where B− is generalized inverse of matrix B [85]9. By using these parameters F and K,

the perfect tracking controller is given by (2.20), as shown in Fig. 2.6.

2.6 Summary

A novel perfect tracking control method using multirate feedforward control was proposed.

The proposed method was extended to various systems with hardware restrictions on

both the sampling and control periods. Moreover, it was shown that the structure of the

proposed perfect tracking controller is very simple and clear. Next, the proposed method

was extended to systems with time delay and multivariable systems.

The advantage of this method is that the feedforward controller could be designed

without considering the unstable zero problem. Moreover, by combining the proposed

feedforward controller with a robust feedback controller, high robust tracking performance

is obtained.

9If the input multiplicities are selected to minimum number (Nl = σl), the matrix B becomes square

and B− = B−1
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Chapter 3

Perfect Disturbance Rejection

Control Based on Multirate

Feedback Control

3.1 Abstract

In this chapter, novel multirate feedback controllers are proposed for digital control sys-

tems, where the speed of the A/D converters is restricted to be slower than that of the

D/A converters. The proposed feedback controller assures perfect disturbance rejection

(PDR) at M intersample points in the steady state. Next, the proposed method is ex-

tended to systems with time delay. Moreover, the intersample observer is developed in

order to reduce the phase delay caused by zero-order hold and to increase the stability

margin by estimation and compensation of the intersample response.

In section 3.4, the PDR is applied to the periodic disturbance rejection problem. The

novel scheme of repetitive control is proposed based on the open-loop estimation and

switching function, which enables the rejection of periodical disturbance without any

sacrifice of the closed-loop characteristics. Finally, the intersample disturbance rejection

performance is optimized using the fast sampling approach.

The proposed controllers are applied to the track-following modes of hard disk drives

and the visual servo system of robot manipulators in chapter 6.

3.2 Introduction

In chapter 2, a novel multirate feedforward controller has been proposed. Next, in this

chapter, a multirate feedback controller will be considered. Historically, many multirate
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feedback control theories has been developed as reviewed in chapter 1. These theoretical

approaches have reached the negative result that feedback characteristics such as distur-

bance rejection performance and stability robustness are never improved by the multirate

control [12, 23].

However, this theoretical result is limited to the case where there is no hardware

restriction on the sampling scheme (Ty = Tu). On the other hand, many industrial

systems have hardware restrictions in their sampling mechanisms. Thus, in this chapter,

digital control systems where the sampling periods of plant output are longer than the

control periods (Tu < Ty) are considered. For these systems, novel multirate feedback

controllers are proposed which improve disturbance rejection performance and stability

margin.

The restriction of Tu < Ty may be general because D/A converters are usually faster

than the A/D converters. In particular, head-positioning systems of the hard disk drive

(HDD) and visual servo systems of robot manipulators belong to this category, because

the sampling rates of the measurement are relatively slow, as mentioned in section 1.1.2.

The structure of this chapter is as follows. In section 3.3, a novel multirate feedback

controller is proposed, which achieves perfect disturbance rejection (PDR) at M inter-

sample points. Next, an intersample observer is designed, which enables estimation of

intersample plant state and increases stability margin. In the repetitive control system

[86, 87], conventional single-rate controllers do not have sufficient intersample perfor-

mance to reject disturbance in the semi-Nyquist frequency region [88]. In section 3.4, the

proposed perfect disturbance rejection controller is modified for repetitive control, and

applied to reject high order repeatable runout of hard disk drives.

Repetitive feedback controllers based on the internal model principle have the disad-

vantages that closed-loop characteristics worsen and it becomes difficult to assure stability

robustness [88]. Therefore, in section 3.4.2, a novel control scheme that never has these

problems is proposed based on open-loop estimation with switching function and distur-

bance rejection by feedforward approach.

3.3 Perfect Disturbance Rejection Control and Inter-

sample Observer

3.3.1 Plant Discretization by Multirate Sampling

For the restriction of Tu < Ty, the frame period Tf is defined as Tf = Ty , and the

dynamics of the controller is described by Tf . For simplification, the continuous-time
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Figure 3.1: Multirate sampling control.

plant is assumed to be a SISO system in this chapter. The proposed methods, however,

can be extended to deal with the MIMO system in the same way as section 2.5.2.

In the proposed multirate scheme considered in this chapter, the plant input is changed

N times during Tf and the plant state is evaluated M times in this interval, as shown in

Fig. 3.1. The positive integers M and N are referred to as input and state multiplicities,

respectively. N is determined by the hardware restriction. In this section, the state

multiplicity is defined as M = N/n, where n is the plant order.

In Fig. 3.1, µj(j = 0, 1, · · · , N) and νk(k = 1, · · · , M) are parameters for the timing of

input changing and state evaluation, which satisfy the conditions (3.1) and (3.2).

0 = µ0 < µ1 < µ2 < ... < µN = 1 (3.1)

0 < ν1 < ν2 < ... < νM = 1 (3.2)

If Ty is divided at equal intervals, the parameters are set to µj = j/N and νk = k/M .

Consider the continuous-time plant described by

ẋ(t) =Acx(t) + bcu(t) , y(t) = ccx(t). (3.3)

The discrete-time plant discretized by the multirate sampling control of Fig. 3.1 becomes

x[i+ 1] = Ax[i] +Bu[i] , y[i] = Cx[i], (3.4)

where x[i] = x(iT ), and where matrices A,B,C, and vector u[i] are given by
 A B

C O


 �
=


 eAcTf b1 · · · bN

cc 0 · · · 0


 , (3.5)

bj
�
=

∫ (1−µ(j−1))Tf

(1−µj )Tf

eAcτbcdτ , u[i]
�
= [u1[i], · · · , uN [i]]

T . (3.6)
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The intersample plant state at t = (i+ νk)Tf is represented by

x̃[i] = Ãx[i] + B̃u[i], (3.7)

where x̃[i] is a vector composed of the intersample plant state xk[i]
�
= x((i + νk)Tf ) of

Fig. 3.1.

x̃[i]
�
= [xT

1 [i],x
T
2 [i], · · · ,xT

M [i]]
T

= [xT
1 ((i+ ν1)Tf ),x

T
2 ((i+ ν2)Tf), · · · ,xT

M ((i+ 1)Tf )]
T (3.8)

The coefficient matrices of (3.7) are given by

[
Ã B̃

] �
=




Ã1 b̃11 · · · b̃1N

...
...

...

ÃM b̃M1 · · · b̃MN


 , (3.9)

Ãk
�
= eAcνkTf , b̃kj

�
=




µj < νk :
∫ (νk−µ(j−1))Tf

(νk−µj )Tf
eAcτbcdτ

µ(j−1) < νk ≤ µj :
∫ (νk−µ(j−1))Tf

0 eAcτbcdτ

νk ≤ µ(j−1) : 0

.

3.3.2 Design of Perfect Disturbance Rejection Controller

In this section, a new multirate feedback controller is proposed based on the state-space

design method of the disturbance observer.

Consider the continuous-time plant model described by

ẋp(t) = Acpxp(t) + bcp(u(t)− d(t)) (3.10)

y(t) = ccpxp(t), (3.11)

where d(t) is the disturbance input. Let the disturbance model be

ẋd(t) = Acdxd(t) , d(t) = ccdxd(t). (3.12)

For example, step type disturbance can be modeled by

Acd = 0 , ccd = 1, (3.13)

and sinusoidal type disturbance with frequency ωd can be modeled by

Acd =


 0 1

−ω2
d 0


 , ccd = [1, 0]. (3.14)
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The continuous-time augmented system consisting of (3.10) and (3.12) is represented by

ẋ(t) = Acx(t) + bcu(t) (3.15)

y(t) = ccx(t) (3.16)

Ac
�
=


 Acp −bcpccd

O Acd


 , bc

�
=


 bcp

0


 ,x

�
=


 xp

xd




cc
�
= [ccp,0].

Discretizing (3.15) using multirate sampling control, the intersample plant state at t =

(i+ νk)Tf can be calculated from the kth row of (3.7) by

x[i+ νk] = Ãkx[i] + B̃ku[i] (3.17)

Ãk =


 Ãpk Ãpdk

O Ãdk


 , B̃k =


 B̃pk

O


 .

For the plant (3.15) discretized by (3.4), the discrete-time observer at the sampling

points is obtained from Gopinath’s method by

v̂[i+ 1] = Âv̂[i] + b̂y[i] + Ĵu[i] (3.18)

x̂[i] = Ĉv̂[i] + d̂y[i]. (3.19)

As shown in Fig. 3.2, let the feedback control law be

u[i] = up[i] + ud[i] = F px̂p[i] + F dx̂d[i] = F x̂[i], (3.20)

where F
�
= [F p,F d]. Letting ev[i] be the estimation error of the observer (ev[i] = v̂[i]−

v[i]), the following equation is obtained.

x̂[i] = x[i] + Ĉev[i]. (3.21)

From (3.17) to (3.21), the closed-loop system is represented by



xp[i+ νk]

xd[i+ νk]

ev[i+ 1]


 =



Ãpk + B̃pkF p Ãpdk + B̃pkF d B̃pkF Ĉ

O Ãdk O

O O Â






xp[i]

xd[i]

ev[i]


 . (3.22)

Because full row rank of the matrix B̃pk can be assured by theorem 2.3, F d can be selected

such that the (1,2) element of the above equation becomes zero for all k = 1, · · · , M .

Ãpdk + B̃pkF d = O (3.23)
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

+

Figure 3.2: Multirate control with disturbance observer.

- yc(t) y[i]uc(t)

d(t)

u[i]
SHM Pc(s)

[
Â + ĴF Ĉ b̂+ ĴF d̂

F Ĉ F d̂

]
+

Figure 3.3: State space representation of C2[z].

The simultaneous equation of (3.23) for all k becomes

Ãpd + B̃pF d = O, (3.24)

[
Ãpd B̃p

] �
=




Ãpd1 B̃p1

...
...

ÃpdM B̃pM


 . (3.25)

From (3.24), F d is obtained by

F d = −B̃−1

p Ãpd. (3.26)

In (3.22) and (3.23), the influence from disturbance xd[i] to the intersample state

xp[i+νk] at t = (i+νk)Tf can become zero. Moreover, xp[i] and ev[i] at the sampling point

converge to zero at the rate of the eigenvalues of ÃpM + B̃pMF p and Â (the poles of the

regulator and observer). Therefore, perfect disturbance rejection is achieved (xp[i+νk] =

0) in the steady state. The poles of the regulator and observer will be tuned by taking

account of the tradeoff between the performance and stability robustness.
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Substituting (3.18) for (3.20), the feedback type controller is obtained by
 v̂[i+ 1]

u[i]


 =


 Â+ ĴF Ĉ b̂+ ĴF d̂

F Ĉ F d̂





 v̂[i]

y[i]


 , (3.27)

as shown in Fig. 3.3.

3.3.3 Design of Intersample Observer and Feedback Controller

Because the multirate system becomes a MISO system, the feedback gain F p cannot be

uniquely decided only by the pole assignment of ÃpM + B̃pMF p. A simple solution to

eliminate this redundancy is to make the state-feedback control input up[i] hold a constant

value during the sampling period, which is represented by

up[i] =




up1[i]
...

upN [i]


 =



f y

...

f y


 x̂p[i], (3.28)

where f y is the state-feedback gain designed for the sampling period Ty.

Because the above control law generates a large phase delay when using the zero-

order hold, a novel observer which estimates the intersample response is introduced in

this section. By using this observer, the state feedback gain F p is calculated. From the

estimated state (3.19) at the sampling points, the intersample plant state is estimated by1

ˆ̃xp[i] = Ãpx̂p[i] + B̃pu[i], (3.29)

where ˆ̃xp[i] = [x̂p[i + µ0], · · · , x̂p[i + µN−1]]
T , and Ãp and B̃p are calculated by (3.7).

Because the plant output cannot be measured during the sampling period, the intersample

state is calculated based on open-loop sense using the mathematical model. Convergence

of the estimation error can be assured at the sampling points.

Utilizing the intersample estimated state, let the state-feedback control input be

up[i] =




up1[i]
...

upN [i]


 =



fu O

. . .

O fu







x̂p[i]
...

x̂p[i+ µN−1]


 = F u

ˆ̃xp[i], (3.30)

where fu is the state-feedback gain designed for the control period Tu.

Assuming u[i] = up[i] on (3.30), the control input of (3.29) is represented by

up[i] = F u
ˆ̃xp[i] = F u(Ãpx̂p[i] + B̃pup[i]). (3.31)

1In (3.29), ·̂ and ·̃ represent the estimated and intersample variables, respectively.

55



.....
.....

(i − 1)Tf

(i − 1 + µN−nu)Tf

(i − 1 + µN−nu+1)Tf
iTf

u1[i − 1]
uN−nu+1[i − 1] uN [i − 1] u1[i]

u2[i]

y[i]

(i+ νy)Tf

Td

Figure 3.4: Time chart of the time delay (same figure as Fig. 2.13).

Solving (3.31) for up[i], the following equation is obtained.

up[i] = (I − F uB̃p)
−1F uÃpx̂p[i] (3.32)

Thus, F p is obtained by

F p = (I − F uB̃p)
−1F uÃp. (3.33)

Because the proposed intersample observer can compensate for the large phase delay

caused by zero-order hold, the stability margin of the closed-loop system is improved as

will be shown in section 6.2. This approach is essentially equivalent to the instantaneous

speed observer for servomotors [59] and the multirate estimation for hard disk drive [50, 51,

55, 89]. The advantages of the proposed intersample observer are 1) calculation resources

can be saved because the feedback gain (3.33) is obtained by off-line calculation, 2) the

proposed theory is generalized and not oriented to one application, and 3) it is applicable

to systems with time delay.

3.3.4 Extension to systems with time delay

In this section, the proposed multirate feedback control is extended to plants with time

delay in the same way as section 2.5.1. The continuous-time plant with time delay Td is

described by

ẋ(t) = Acx(t) + bcu(t) (3.34)

y(t) = ccx(t − Td), (3.35)

as shown in Fig. 3.4. Because the time delay is considered to be delay due to calculation,

it is assumed to be shorter than the frame period (Td ≤ Tf) for simplification. However,

longer time delay can also be considered in the same way as [82].
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The discrete-time plant with multirate hold can be represented by

x̄[i+ 1] = Āx̄[i] + B̄u[i] (3.36)

ȳ[i] = C̄x̄[i] (3.37)

Ā
�
=


 A O

O O


 , B̄

�
=


 B

E


 , C̄

�
=


 c d

O Inu


 , (3.38)

x̄
�
=


 x

xu


 , ȳ

�
=


 y

xu


 (3.39)

c
�
= cce

AcνyTf ,g
�
= [gN−nu+1, · · · , gN ], (3.40)

E
�
= [O, Inu ], νy

�
= −Td

Tf

(3.41)

where gj is defined in (2.66), nu is a number of the of u[i−1] elements during Td in Fig. 3.4,

and xu is a vector composed of these control inputs (xu[i] = [uN−nu+1[i − 1], · · · , uN [i −
1]]T ).

In (3.37), the measurement variable ȳ includes the past control input xu in order to

make the system observable2.

For the plant with time delay represented by (3.36) and (3.37), the discrete-time

observer at the sampling points is obtained from Gopinath’s method by

v̂[i+ 1] = Âv̂[i] + B̂ȳ[i] + Ĵu[i] (3.42)

x̂[i] = Ĉv̂[i] + D̂ȳ[i]. (3.43)

Using the feedback gain designed in (3.26), let the control law be

u[i] = F̄ x̄[i], F̄
�
= [F d,O]. (3.44)

By the parallel discussion with section 3.3.2, perfect disturbance rejection performance is

preserved by (3.44).

Substituting (3.44) for (3.42) and (3.43), the feedback type observer is obtained by
 v̂[i+ 1]

u[i]


 =


 Â+ ĴF Ĉ B̂ + Ĵ F̄ D̂

F Ĉ F D̂





 v̂[i]

ȳ[i]




=


 Ac bc1 Bc2

Cc dc1 Dc2







v̂[i]

y[i]

xu[i]


 . (3.45)

2If xu is not included in the measurement variable, the system becomes unobservable.
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Using the definition of xu[i+ 1] = Eu[i], state space representation of C 2[z] is obtained

by 


v̂[i+ 1]

xu[i+ 1]

u[i]


 =




Ac Bc2 bc1

ECc EDc2 Edc1

Cc Dc2 dc1







v̂[i]

xu[i]

y[i]


 . (3.46)
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Figure 3.5: Feedforward repetitive control.

3.4 Periodic Disturbance Rejection Control

In this section, PDR is applied to periodic disturbance, and two multirate repetitive con-

trollers are proposed, they are 1) feedback approach based on the internal model principle

and 2) feedforward disturbance rejection approach based on open-loop estimation.

3.4.1 Feedback Repetitive Control

The disturbance with period T0
�
= 2π/ω0 can be represented by the Fourier series as

d(t) = a0 +
∞∑
k=1

ak cos kω0t+ bk sin kω0t. (3.47)

where ω0 is known and ak, bk are unknown parameters. Letting the disturbance model

(3.12) be (3.47), the repetitive feedback controller is obtained by (3.27), having the internal

model s2 + (kω0)
2 in discrete-time domain. Repetitive disturbance is perfectly rejected

(xp[i+ νk] = 0) at M inter-sample points in the steady state.

3.4.2 Feedforward Repetitive Control

Repetitive feedback control based on the internal model principle has the disadvantages

that closed-loop characteristics worsen and it becomes difficult to assure stability robust-

ness [90]. Therefore, in this section, a novel repetitive controller based on open-loop

estimation with switching function and feedforward disturbance rejection is proposed, as

shown in Fig. 3.5

The repetitive disturbance is estimated by the open-loop disturbance observer. When

the estimation converges to the steady state, the switch turns on at t = t0. After that,
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the switch turns off immediately. Repetitive disturbance is calculated by (3.48) from the

initial value x̂d[t0] which contains the amplitude and phase information of the disturbance.

x̂d[i+ 1] = Addx̂d[i], Add = eAcdTf (3.48)

Because the disturbance feedforward F d is obtained by (3.26), perfect disturbance rejec-

tion is achieved at M inter-sample points. The advantage of this approach is that the

feedback controller C2[z] is completely independent of the repetitive controller. Thus,

stability robustness is guaranteed by the feedback controller. With this scheme, it be-

comes possible to construct the repetitive controller without sacrifice of the feedback

characteristics.

Moreover, by introducing the initial value compensation of the feedback controller

C2[z] at t = t0, transient response can be improved after the switching action. If the

initial state of the observer v̂[t0] is set by (3.49), the plant state xp[i] of (3.22) converges

to zero at the rate of the eigenvalues of ÃpM + B̃pMF p at the sampled points. Thus, if

the poles of the regulator are assigned appropriately, it is possible to prevent overshoot.

Ĉv̂[t0] = x[t0]− d̂y[t0] (3.49)

In (3.49), the plant state x[t0] is obtained from the value estimated by the open-loop

observer x̂[t0].

3.4.3 Optimization of the Inter-sample Disturbance Rejection

Performance

In section 3.4.1 and section 3.4.2, the state multiplicity is defined as M = N/n in order to

reject the disturbance perfectly at M inter-sample points. In this section, M is selected

to be more than N/n in order to optimize the inter-sample performance. This approach

is referred to as the fast sampling technique in the advanced sampled-data control theory

[27, 39, 40].

When M is selected to be more than N/n, it is impossible to satisfy (3.24) because

the number of rows of B̃p is larger than that of columns. Therefore, the inter-sample

performance can be optimized by minimizing B̃p for all k(= 1, · · · , M). Thus, the problem

is formulated by

min
F d

‖Ãpd + B̃pF d‖ s. t. ÃpdM + B̃pMF d = O. (3.50)

The above constraint is the condition that the controller includes the disturbance model,

which assures the convergence of xp[i] at the sampling points (k = M).
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From Lagrange’s undetermined multiplier method, the solution of (3.50) is obtained

by

F d = Z[Y T (Y ZY T )−1Y ZXT −XT ,−Y T (Y ZY T )−1]Ãpd, (3.51)

where X
�= [B̃

T

p1, · · · B̃
T

p(M−1)]
T ,Y

�= B̃pM ,Z
�= (XTX)−1, and the Frobenius norm is adopted

in (3.50). The proof is shown in Appendix C. M has to be selected more than N to assure

the non-singularity of Z.

3.5 Summary

In this chapter, digital control systems which have hardware restrictions of Tu < Ty were

assumed. In section 3.3, the multirate feedback controller was proposed, which guarantees

perfect disturbance rejection at M intersample points in the steady state. Next, the

intersample observer was proposed, which increases the stability margin by estimation and

compensation of the intersample response. Moreover, the proposed method is extended

to systems with time delay.

In section 3.4, two multirate repetitive controllers were proposed, they are 1) feedback

approach based on internal model principle and 2) feedforward disturbance rejection ap-

proach based on the open-loop estimation and switching function. By using the latter

approach, it becomes possible to prevent the closed characteristics from worsening when

using the internal model.
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Chapter 4

Controller Discretization Based on

Perfect State Matching

4.1 Abstract

In this chapter, a novel discretization method for continuous-time controllers is proposed

based on perfect state matching (PSM) control. In the PSM, the states in the continuous-

time system are completely reserved in the obtained sampled-data system. The features

of the proposed method are 1) multirate input control is employed, and the lth plant

input is changed Nl times during one sampling period, 2) the states of the discretized

sampled-data system completely match those of the original continuous-time closed-loop

system at every sampling period, and 3) the proposed method is applicable to static state-

feedback and/or dynamic controllers. Next, the continuous-time observer is discretized

using the multirate output control. Moreover, the proposed method is extended to the

systems with long sampling period relative to the control period.

The proposed perfect state matching control is applied to position control systems for

servomotors and vibration suppression control for hard disk drives in chapter 7.

4.2 Introduction

In digital control systems, the controlled plant is a continuous-time system while the

controller is a discrete-time system. Thus, the conversion from continuous-time system

to discrete-time system is required in either the modeling or controller design stage, as

shown in Fig. 4.1. Concerning the issue of when it should be discretized, it is possible to

classify the design of digital controller into three methods [26, 73].

First, the “controller discretization” considered in this chapter is a technique by which
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Figure 4.1: The procedure for the digital control system design

an ideal analog controller designed in continuous-time is converted to an equivalent digital

controller. This approach is also referred as digital redesign [73, 91] or continuous-based

synthesis [26]. In this approach, ideal closed-loop characteristics is preserved if the sam-

pling period is short enough. However, because conventional discretization methods are

based on approximations, they do not assure the ideal closed-loop characteristics and

stability if the sampling period cannot be set short enough.

Second, in discrete-time based design, the plant is modeled in discrete-time, and the

digital controller is designed based on discrete-time theory. This approach assures the

stability of the closed-loop system and the performance at the sampled points. However,

it does not consider the intersample response.

Third, in sampled-data design, the digital controller is obtained directly from the

continuous-time plant considering the intersample response, as mentioned in section 1.1.1.

However, in this approach, only the H2 and H∞ problems have been resolved. The advan-

tage of this approach is that robust stability for the plant uncertainty can be assured. But,

sometimes the approach is overly conservative. This approach is not always applicable,

because H2 and H∞ theory generally have many assumptions.

Moreover, the sampling period has to be determined before the controller design stage
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in the discrete-time based and the sampled-data approaches. In practice, however, the

sampling period sometimes cannot be determined in the design stage, and is changed

several times during the implementation to real systems.

Thus, in this chapter, a novel discretization method of controllers is developed consid-

ering the closed-loop system. The necessity and importance of controller discretization

are as follows [73].

1. An existing analogue controller can be replaced. Thus, the tuning knowledge of

conventional controllers such as PID controller is available.

2. The sampling period depends on the order of the controller and the capability of

the processor and interface. In practice, it cannot be determined prior to implemen-

tation. Thus, the continuous controller is designed based on the continuous-time

model, and it is replaced by the digital controller with the shortest sampling period.

Introducing controller discretization, it is possible to greatly lighten the engineers’

burden when the sampling period is changed.

3. Continuous-time theory has a longer history than discrete-time and sampled-data

theory. Moreover, in continuous-time design, the controller can be designed without

considering Nyquist frequency limitations.

Historically, one of the most popular discretization methods is the Tustin (or bilinear)

transformation, in which an s-domain analog controller is transformed into a z-domain

digital controller by

s =
2(z − 1)
T (z + 1)

. (4.1)

This approach is straightforward, and the stable poles of the controller in s-domain are

mapped inside the unit circle in z-domain. However, the closed-loop stability is not

assured. Therefore, in this approach, the feedback system may become unstable if the

sampling time is set too long.

In [91, 92, 93], discretization methods based on closed-loop characteristics were devel-

oped. However, these attempts do not assure closed-loop stability, because approxima-

tions were made to obtain solutions of the discretization (see chapter 4.3.1). In [94], the

feedforward and feedback gains are altered at every sampling period, so that the states of

the two systems match at the end of N sampling periods. The method in [94] is similar

to the proposed method only in certain special cases. However, the number of times of

gain alternation, N , is redundant compared to the proposed method in this chapter.

The method of [91] was further investigated in [95], and a different approximation was

proposed for obtaining a solution of the discretization, in which the closed-loop stability
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was maintained. However, the transition matrices of the original and approximately

discretized systems are not same. Furthermore, the methods in [91, 92, 93, 94, 95] have a

limitation that the original continuous-time controller must be of the static state-feedback

type and that all of plant state variables must be directly detected.

The other discretization methods for dynamic controllers were developed in [96, 97, 40].

These methods tried to match closed-loop frequency response approximately. However,

because of using these approximations, closed-loop stability could not be assured [96, 97],

and the solution of the discretization could not be obtained in large sampling period [40].

Multirate digital controls have been proposed for applications in the pole/zero assign-

ment problem, strong stabilization, simultaneous stabilization, adaptive control, and so

on, as mentioned in chapter 1. However, this chapter makes the first attempt to apply

multirate digital control to the controller discretization problem.

The purpose of the proposed method is to develop a new digital controller from the

analog controller so that all of the states of the sampled-data closed-loop system com-

pletely match those of the original continuous-time closed-loop system at every sampling

instance. This dissertation refers to the technique as perfect state matching (PSM) con-

trol. Thus, the stability of the closed-loop system is retained, and the transition matrices

of the two systems become identical. In the proposed method, multirate-input digital

control is employed, and the lth plant input is changed Nl times during one sampling pe-

riod. [24] and [83] called this method N-Delay control after [8]. The digital controller can

be automatically discretized by the following procedure. Moreover, discretization method

for an observer is also presented, in which multirate-output digital control is employed.

Therefore, the proposed method can deal with the system even if a part of the plant states

are not directly detected, and it is applicable both to static state-feedback controllers and

dynamic controllers.

4.3 Controller Discretization without Hardware Re-

striction

In this section, novel discretization methods of continuous-time controllers are proposed

for systems without hardware restrictions in the sampling mechanism. After the problems

of the conventional method are explained in section 4.3.1, a discretization method is

proposed for two-degree-of-freedom state-feedback controllers with dynamics based on

multirate input control in section 4.3.2. Next, the continuous-time observer is discretized

based on multirate output control in section 4.3.3.
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4.3.1 Problem of the Conventional Method

In this section, we consider the problem of matching the responses of an existing continuous-

time system as shown in Fig. 4.2, with those of the discrete-time system shown in Fig.

4.3 for the same initial conditions. Consider the linear continuous-time system described

by

ẋ(t) =Acx(t) + bcu(t). (4.2)

Also, let the continuous-time state-feedback control law be

u(t) = f cx(t). (4.3)

The continuous-time closed-loop system becomes

ẋ(t) = (Ac + bcf c)x(t) (4.4)

and its sampled-data system with sampling period T is

x((i+ 1)T ) = e(Ac+bcf c)Tx(iT ). (4.5)

Consider the discrete-time system utilizing conventional zero-order hold described by

x[i+ 1] = Ax[i] + bu[i] (4.6)

where x[i] = x(iT ),A
�
= eAcT , and b

�
=

∫ T
0 eAcτdτbc. Letting the discrete-time state-

feedback control law be u[i] = f (T )x[i], the discrete-time closed-loop system becomes

x[i+ 1] = (A+ bf (T ))x[i]. (4.7)

From (4.5) and (4.7), the discretization problem is to find the discrete-time gain f (T )

from the continuous-time gain f c so that the equation

A + bf (T ) = e(Ac+bcfc)T (4.8)

is satisfied. If the above condition is satisfied, perfect state matching (PSM) control is

achieved, in which the states of the digitally controlled system in (4.7) completely match

those of the continuous-time system in (4.5) at every sampling point. The existence of

f (T ) in (4.8), however, is not always guaranteed because the dimension of the input is

generally less than that of the state. Therefore, in [91, 92], (4.8) is approximately solved

for f (T ). But, because of the approximation, the stability of the obtained digital closed-

loop system is not always assured, and the time response is different from that of the

continuous-time feedback system.
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Figure 4.2: Continuous-time state-feedback control system.
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Figure 4.3: Discrete-time state-feedback control system.

4.3.2 Discretization of Controller by Multirate Input Control

In this section, a novel discretization method for continuous-time controllers is presented

based on multirate input control, in which the lth plant input is changed Nl times during

one sampling period. The introduction of multirate input control increases the input

dimension, thus (4.8) can be solved without any approximation. Moreover, the proposed

method is applicable both to continuous-time dynamic controllers (u = K(s)y) and static

state-feedback controllers (u = fx). The proposed method succeeds in this generalization

by the introduction of 1) the closed-loop augmented system consisting of the plant and

the dynamic controller, and 2) multirate input control.

In this section, a two-degree-of-freedom controller with dynamics is considered as the

original analogue controller. The plant is a linear multi-input multi-output (MIMO) sys-

tem, and all of the plant states are assumed to be measurable. If a part of the plant states

can not be detected directly, the discretized observer should be employed, as presented in

section 4.3.3.
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Controller

ẋck = Ackxck +Bck1r +Bck2xcp

ucp = Cckxck +Dck1r +Dck2xcp

r(t) ucp(t)

xcp(t)

ẋcp = Acpxcp +Bcpucp

ycp = Ccpxcp

Plant ycp(t)

Figure 4.4: Continuous-time control system.

Consider the continuous-time plant described by

ẋcp(t) = Acpxcp(t) +Bcpucp(t) (4.9)

ycp(t) = Ccpxcp(t) (4.10)

where the plant state xcp ∈ Rnp, the plant input ucp ∈ Rmp , and the plant output

ycp ∈ Rpp. As shown in Fig. 4.4, let the original continuous-time controller be

ẋck(t) = Ackxck(t) +Bck1r(t) +Bck2xcp(t) (4.11)

ucp(t) = C ckxck(t) +Dck1r(t) +Dck2xcp(t), (4.12)

where the controller state xck ∈ Rnk and the reference input r ∈ Rmr . This representation

includes a wide class of controllers such as static state feedback controller (u(t) = f cx(t)),

unity feedback controller with dynamics (u(t) = K(s)(r(t) − y(t))), and two-degree-of-

freedom controller (u(t) = C 1(s)r(t)−C2(s)y(t)).

From (4.9) ∼ (4.12), the continuous-time closed-loop augmented system consisting of

the plant and the controller is represented by

˙̄xc(t) = Ācx̄c(t) + B̄cr(t) (4.13)

where

Āc
�
=


 Acp +BcpDck2 BcpCck

Bck2 Ack


 , B̄c

�
=


 BcpDck1

Bck1


 , x̄c

�
=


 xcp

xck


 . (4.14)

Assuming the reference input r is piecewise-constant, i.e. r(t) = r(iT ) for iT ≤ t <

(i+ 1)T , the sampled-data system for the sampling period T becomes

x̄c((i+ 1)T ) = Āx̄c(iT ) + B̄r(iT ) (4.15)

68



.....

iT

(i+ µ11)T (i+ µ12)T

(i+ µ21)T (i+ µ2(N2−1))T

(i+ µ1(N1−1))T

(i+ 1)T

u11[i]
u12[i]

u1N1[i]

u21[i]

u2N2[i]x[i]

x[i+ 1]

Figure 4.5: Multirate input control.

where

Ā
�
= e

¯AcT �
=




np nk

np Ā11 Ā12

nk Ā21 Ā22


, B̄

�
=

∫ T

0
e

¯AcτB̄cdτ
�
=




mr

np B̄1

nk B̄2


. (4.16)

Next, the discrete-time controller is obtained from the original continuous-time control

system (4.15) using multirate input control. In this scheme, the lth (l = 1, 2, · · · , m p) plant

input is changed Nl times during one sampling period as shown in Fig. 4.5. The selection

of the Nl is made with reference to the following condition.

Nl ≥ σl (4.17)

where (σ1, ..., σmp) is a set of generalized controllability indices of (Acp,Bcp) which are

defined in section 2.5.2.

The discrete-time plant using multirate input control is given by

xdp[i+ 1] = Axdp[i] +Bu[i] (4.18)

where xdp ∈ Rnp is the plant state, the coefficient matrices A and B are calculated by

(2.81), and u[i] ∈ RN(N
�
= N1+N2+ ...+Nmp ≥ np) is the multirate input vector defined

by

u[i] = [u11[i], · · · , u1N1[i], u21[i], · · · , umNm[i]]
T , (4.19)

where ulj [i] ∈ R1 is the lth plant input for (i+µl(j−1))T ≤ t < (i+µlj)T (l = 1, .., mp , j =

1, .., Nl), as shown in Fig. 4.5.
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Controller
xdk[i+ 1] = Adkxdp +Bdk1r +Bdk2xdk

u = Cdkxdp +Ddk1r +Ddk2xdk

r[i] u[i] u(t)

HM
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Plant
ẋdp =Acpxdp +Bcpu

ydp = Ccpxdp

ydp(t)

xdp[i]
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Figure 4.6: Discrete-time control system.

As shown in Fig. 4.6, let the discrete-time controller be

xdk[i+ 1] = Adkxdp[i] +Bdk1r[i] +Bdk2xdk[i] (4.20)

u[i] = Cdkxdp[i] +Ddk1r[i] +Ddk2xdk[i]. (4.21)

where the controller state xdk ∈ Rnk . From (4.18) ∼ (4.21), the discrete-time closed-loop

augmented system is represented by

x̄d[i+ 1] = Ādx̄d[i] + B̄dr[i] (4.22)

where

Ād
�
=


 A+BDdk2 BCdk

Bdk2 Adk


 , B̄d

�
=


 BDdk1

Bdk1


 , x̄d

�
=


 xdp

xdk


 . (4.23)

Comparing (4.15) and (4.22), if the following conditions are satisfied, the states of the

digitally controlled system (x̄d) completely match the states of the continuous-time sys-

tem (x̄c) at every sampling period for any arbitrary initial state and piecewise-constant

reference input.
 Ā11 Ā12

Ā21 Ā22


 =


 A +BDdk2 BCdk

Bdk2 Adk


 (4.24)


 B̄1

B̄2


 =


 BDdk1

Bdk1


 (4.25)

Here, the necessary and sufficient condition for the solution of the linear matrix equation

(Ax = b) is

rankA = rank[A, b]. (4.26)
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Therefore, the necessary and sufficient conditions for the existence of C dk,Ddk1, andDdk2

in (4.24) and (4.25) are given by

rankB = rank[B, Ā11 −A]

= rank[B, Ā12] = rank[B, B̄1]. (4.27)

From theorem 2.3, the row rank of matrix B is full, thus, (4.27) is satisfied. As a

result, the existence of the solution of (4.24) and (4.25) is assured. Solving (4.24) and

(4.25), the parameters of the digital controller are given by

Adk = Ā22, Bdk1 = B̄2, Bdk2 = Ā21, Cdk = B�Ā12,

Ddk1 = B�B̄1, Ddk2 = B�(Ā11 −Adp), (4.28)

where B− is the generalized inverse of matrix B [85].

Comments 1) if (Acp,Bcp) is a controllable pair, the proposed method is always ap-

plicable. 2) If the original continuous-time system is stably designed, the stability of the

discretized system is assured because the two transition matrices (4.24) become identi-

cal. Moreover, (4.24) can guarantee the inter-sample stability [27]. 3) The states of the

obtained sampled-data system completely match those of the original continuous-time

closed-loop system at every sampling period, independent of sampling period. Therefore,

the proposed method is superior to conventional methods [91, 92, 93, 94, 95, 96, 97, 40].

4.3.3 Discretization of Observer by Multirate Output Control

Because the digital controller obtained in 4.3.2 makes use of state-feedback control as

shown in (4.20) and (4.21), all states need to be detected directly and instantaneously.

However, in the general case, not all states are always detected directly, and the calculation

time delay may not be negligible. Therefore, we should consider a discrete-time state

observer to feedback the estimated plant state x̂[i] instead of the plant state x[i].

In this section, the discretization method for a state observer is proposed using multirate-

output control based on the duality of the discretization method for the controller. The

advantage of the proposed method is that the discrete-time estimation errors completely

match the continuous-time estimation errors at every frame period.

Consider the designed continuous-time observer of Fig. 4.7 for the continuous-time

plant (4.9) described by

˙̂xcp(t) =Acpx̂cp(t) +Bcpucp(t) +Kcp(ycp −Ccpx̂cp(t)) (4.29)

where x̂cp is the estimated plant state. The estimation error of the continuous-time state
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Figure 4.7: Continuous time observer.
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Figure 4.8: Multirate output control.

ecp(
�
= xcp − x̂cp) becomes

ėcp(t) = ẋcp(t)− ˙̂xcp(t) = (Acp −KcpCcp)ecp(t). (4.30)

The sampled-data system for the frame period Tf is represented by

ecp((i+ 1)Tf) = e(Acp−KcpCcp)Tfecp(iTf). (4.31)

In the proposed method, the multirate output control is employed, in which the qth plant

output is detectedMq times during one frame period as shown in Fig. 4.8, and the discrete-

time estimation errors (edp) completely match the continuous-time estimation errors (ecp)

at every frame period. This control scheme is a duality mechanism of the multirate input

control. The selection of output multiplicities Mq is made with reference to the following
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condition.

Mq ≥ ρq (4.32)

where (ρ1, ..., ρpp) is a set of generalized observability indices of (Acp,Ccp) which are

defined as follows.

Definition 4.1 Generalized observability indices of (Acp,Ccp) are defined as follows for

Acp ∈ Rnp×np and Ccp ∈ Rpp×np . If (Acp,Ccp) is an observable pair, np linearly indepen-

dent vectors can be selected from

{cc1, .., ccpp, cc1Acp, .., ccppAcp, .., ccppA
np−1
cp }

where Ccp = [c
T
c1, .., cTcpp

]T . Letting ϕ be a set of these np vectors, ρq are defined by

ρq = number{k|ccqAk−1
cp ∈ ϕ} (4.33)

pp∑
q=1

ρq = np. (4.34)

The discrete-time plant using multirate input and multirate output control is given by

xdp[i+ 1] = Axdp[i] +Bu[i] (4.35)

y[i] = Cx[i] +Du[i], (4.36)

where the coefficient matrices A,B,C, and D are calculated by (2.81), and y[i] ∈
RM(M

�
= M1 +M2 + ...+Mpp ≥ np) is the multirate output vector defined by

y[i] = [y11[i], · · · , y1M1[i], y21[i], · · · , ypMp[i]]
T , (4.37)

where yqk is the qth plant output at t = (i+ νqk)Tf (q = 1, 2, · · · , pp, k = 1, 2, · · · , Mq).

Using the output y[i], let the discrete-time observer be

x̂dp[i+ 1] = Ax̂dp[i] +Bu[i] +K(y[i]− (Cx̂[i] +Du[i])) (4.38)

where the state of the discrete-time observer x̂dp ∈ Rnp. The estimation error of the

discrete-time state edp(
�
= xdp − x̂dp) is represented by

edp[i+ 1] = xdp[i+ 1]− x̂dp[i+ 1]

= (A−KC)edp[i].
(4.39)

Comparing (4.31) and (4.39), if the following condition is satisfied, the estimation errors

of the continuous-time states (ecp) completely match those of the discrete-time states

(edp) at every frame period.

e(Acp−KcpCcp)Tf = A−KC (4.40)
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From (4.26), the necessary and sufficient condition for existence of K in (4.40) is given

by

rankC = rank


 C

A− e(Acp−KcpCcp)Tf


 . (4.41)

With regards to the matrixC, the next theorem is proved in [72], if ρq is the generalized

observability controllability index. For the case of the observability index, it is also proved

in [10].

Theorem 4.1 Let (Acp,Ccp) be an observable pair. If the output multiplicities satisfy

Mq ≥ ρq for (q = 1, 2, .., pp), for almost all νqk(k = 1, .., Mq) and almost all T , the matrix

C has full column rank, i.e.

rankC = np. (4.42)

Because of this theorem, the column rank C in (4.41) is full, thus, (4.41) is satisfied.

As a result, the existence of K in (4.40) is assured. Solving (4.40), the parameters of the

digital observer are given by

K = (A− e(Acp−KcpCcp)Tf )C�. (4.43)

The discretization method presented in this section is for full order observers only. How-

ever, this result was extended to minimum order observers in [72].
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4.4 Controller Discretization with Sampling Restric-

tion

In this section, hardware restrictions where the sampling period is relatively long (Tu < Ty)

are considered, because this assumption is very common in motion control system as

mentioned in section 1.1.2 and 3.2. For this system, a novel discretization method of

an analogue controller is proposed using perfect state matching based on multirate input

control. In the proposed scheme, the plant state of the digitally controlled system perfectly

matches that of the ideal continuous-time system at M intersample points during Ty.

In the proposed methods of section 4.3, it was impossible to implement the internal

model of disturbance because they do not consider the open-loop characteristics of the

controller. On the other hand, in this section, the augmented system with disturbance

is introduced to estimate and reject disturbance. By this approach, the obtained digital

controller can have an internal model such as an integrator ( 1
z−1
).

For simplification, the continuous-time system is assumed to be composed of a SISO

plant and a one-degree-of-freedom controller with disturbance observer. The proposed

methods, however, can be extended to more general cases in the same way as section

2.5.2 and 4.3.2.

For the restriction of Tu < Ty, the frame period Tf is defined as Tf = Ty [1] , and the

dynamics of the controller is described by Tf .

4.4.1 Design of Continuous-time Controller

In this section, the continuous-time controller is designed based on the regulator and the

disturbance observer.

Consider the continuous-time plant model described by

ẋp(t) = Acpxp(t) + bcp(u(t)− d(t)) (4.44)

y(t) = ccpxp(t), (4.45)

where d(t) is the disturbance input. Let the disturbance model be

ẋd(t) = Acdxd(t) , d(t) = ccdxd(t). (4.46)

For example, the step type disturbance can be modeled by Acd = 0, ccd = 1. The

continuous-time augmented system consisting of (4.44) and (4.46) is represented by

ẋ(t) = Acx(t) + bcu(t) (4.47)

y(t) = ccx(t), (4.48)
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Ac
�
=


 Acp −bcpccd

O Acd


 , bc

�
=


 bcp

0


 ,x

�
=


 xp

xd


 ,

cc
�
= [ccp,0].

For the plant (4.47), the continuous-time observer is designed using Gopinath’s method

as

v̇(t) = Âcv̂(t) + b̂cy(t) + Ĵcu(t) (4.49)

x̂(t) = Ĉcv̂(t) + d̂cy(t). (4.50)

In order to regulate the plant state and reject the disturbance, the continuous-time regu-

lator is designed by

u(t) = f cpx̂p(t) + ccdx̂d(t) = f cx̂(t), (4.51)

f c
�
= [f cp, ccd]. (4.52)

Letting ev be the estimation errors of the observer (ev = v̂ − v), the following equation

is obtained.

x̂(t) = x(t) + Ĉev(t). (4.53)

From the above equations, the closed-loop system is represented by

ẋp(t)

ẋd(t)

ėv(t)


 =



AFcp O bcpf cĈc

O Ad O

O O Âc






xp(t)

xd(t)

ev(t)


 , (4.54)

where AFcp
�
= Acp + bcpf cp. The transition of (4.54) from t = iTf to t = (i + νk)Tf is

represented by

xp[i+ νk]

xd[i+ νk]

ev[i+ 1]


 =




eAFcpνkTf O ∗
O eAdνkTf O

O O e
ˆAcTf






xp[i]

xd[i]

ev[i]


 . (4.55)

4.4.2 Discretization of the Controller by Multirate Input Con-

trol

In this section, the digital controller is obtained from the continuous-time controller de-

signed in section 4.4.1 using multirate input control.
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Figure 4.9: Multirate control with disturbance observer.

Discretizing (4.47) by multirate sampling control, the inter-sample plant state at t =

(i+ νk)Tf can be calculated from the kth row of (3.7) by

x[i+ νk] = Ãkx[i] + B̃ku[i] (4.56)

Ãk =


 Ãpk Ãpdk

O Ãdk


 , B̃k =


 B̃pk

O


 .

For the plant (4.47) discretized by (3.4), the discrete-time observer at the sampling

points is obtained by

v̂[i+ 1] = Âv̂[i] + b̂y[i] + Ĵu[i] (4.57)

x̂[i] = Ĉv̂[i] + d̂y[i]. (4.58)

As shown in Fig. 4.9, let the feedback control law be

u[i] = F px̂p[i] + F dx̂d[i] = F x̂[i], (4.59)

where F
�
= [F p,F d]. From (4.56) ∼ (4.59), the closed-loop system is represented by



xp[i+ νk]

xd[i+ νk]

ev[i+ 1]


 =



Ãpk + B̃pkF p Ãpdk + B̃pkF d B̃pkF Ĉ

O Ãdk O

O O Â






xp[i]

xd[i]

ev[i]


 . (4.60)

Comparing (4.55) and (4.60), if the following conditions are satisfied, the plant state (xp)

of the digitally controlled system completely matches that of the original continuous-time

system at M inter-sample points on t = (i+ νk)Tf .

Ãpk + B̃pkF p = eAFcpνkTf , (4.61)

Ãpdk + B̃pkF d = O, (4.62)

ev[i] = O. (4.63)

77



The simultaneous equations of (4.61) and (4.62) for all k(= 1, · · · , M) become

Ãp + B̃pF p = E, Ãpd + B̃pF d = O, (4.64)

where Ãp, Ãpd, B̃p and E are defined as




Ãp1

...

ÃpM


 ,




Ãpd1

...

ÃpdM


 ,




B̃p1

...

B̃pM


 ,




eAFcpν1Ty

...

eAFcpνMTy


 . (4.65)

Because non-singularity of the matrix Bp is assured by theorem 2.3, F p and F d are

obtained by

F p = B̃
−1

p (E − Ãpd), F d = −B̃−1

p Ãpd. (4.66)

In section 4.3.3, discretization of the observer was proposed based on multirate output

control, where the plant output was detected more frequently. However, in this section,

the discrete-time observer (4.57) is simply obtained, so that the eigenvalues of Â become

identical to those of e
ˆAcTf , because the plant is assumed to have a longer sampling period

(Ty > Tu).

Substituting (4.59) in (4.57), the feedback type controller is obtained by
 v̂[i+ 1]

u[i]


 =


 Â+ ĴF Ĉ b̂+ ĴF d̂

F Ĉ F d̂





 v̂[i]

y[i]


 . (4.67)

4.4.3 Initial Value Compensation

In this section, the initial value of the controller (4.67) is considered in order to eliminate

the estimation error of the observer and satisfy (4.63). From (4.58), if x[0] is known, the

initial value of controller should be set to

Ĉv̂[0] = x[0]− d̂y[0]. (4.68)

By this compensation, it is possible to prevent the overshoot of the step (or initial value)

response because the plant state converges only affected by the mode of the regulator.

Therefore, f cp should be designed to assign the eigenvalues of AFcp to the small (or zero)

overshoot region.

4.5 Summary

In this chapter, novel discretization methods both for controllers and observers were

developed based on multirate input and multirate output control. One of the remarkable
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advantages was that perfect state matching (PSM) control could be assured independent

of the sampling period, in which the states of the sampled-data system became equal to

those of the continuous-time system. As a result, stability of the discretized system was

guaranteed.

Next, the proposed method was extended to systems with long sampling periods rela-

tive to the control input. This extension assured perfect state matching at M intersample

points. Moreover, by introducing the augmented system, the obtained digital controllers

have internal models of disturbance.
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Part II

Applications
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Chapter 5

Applications of Perfect Tracking

Control

5.1 Abstract

In this chapter, the perfect tracking control proposed in chapter 2 is applied to several

motion control systems. First, the position control system of servomotors in robot ma-

nipulators is considered as an example without special hardware restrictions (Tu = Ty).

Combining the proposed feedforward controller with a H∞ robust feedback controller,

perfect tracking performance is achieved with robustness. Second, the proposed method

is applied to the track-seeking control of hard disk drive as an example with time delay

and long sampling period relative to the control input (Tu < Ty). For this system, it is

shown that the proposed controller enables higher speed movement compared with the

conventional single-rate controller. Simulations and experiments both of servomotor and

hard disk drive are performed, and advantages of this approach are demonstrated.

5.2 High Performance Tracking Control for Servo-

motor of Robot Manipulator

In this section, the proposed perfect tracking control method is applied to the position

control system of the servomotor in a two-link direct-drive robot manipulator.

5.2.1 Experimental Setup of Robot Manipulator

The configuration of experimental setup is shown in Fig. 5.1, and photographs are shown

in Fig. 5.2. A personal computer (CPU: AMD-K6-2 300MHz) is used both for real-time
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D/A board

counter
     board

Axis1

Axis2

I/O board

Motor Driver PCTwo Link Robot

encorder

encorder

Figure 5.1: Configuration of experimental setup.

(a) Two-link direct drive robot. (b) Motor diver and control computer.

Figure 5.2: Photographs of experimental setup.

control of servomotors and development of software. In the PC, a D/A converter and a

counter board are implemented to output the reference current and to input the motor

angle. The servomotors are reluctance motors, where the current is controlled by the

motor driver. The encoders generate 38 400 pulses per revolution. In order to realize

real-time control, RTLinux is installed as the real-time operating system [98].

5.2.2 In Case without Hardware Restriction (Case 1: Ty = Tu)

First, the simplest example without hardware restrictions (Ty = Tu, case 1 in Fig. 2.9) is

considered. The servomotor with current control is described by

Pc(s) =
K

Js2
. (5.1)
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Figure 5.3: Simulation results (Ty = Tu = 15[ms])

The feedback controller C2[z] is a 3rd-order strictly proper system obtained from the

continuous-timeH∞ mixed-sensitivity problem and Tustin transformation, which includes

an integrator [75]. Calculating (2.20) and realizing the obtained C1[z] and C2[z] in

minimum order, the controller [C 1,C2] becomes a 5th-order system.

Simulated and experimental results are shown in Fig. 5.3 and Fig. 5.4. The desired

trajectory is a sinusoidal waveform represented by

θd(iTr) = A(1− cos(ωref iTr))

ωd(iTr) = Aωref sin(ωref iTr),
(5.2)

where ωref = 2π × 4[rad/s]. In this system, both the input and output periods are

Ty = Tu = 15[ms]
1. Because this plant is a 2nd-order system, the sampling period of the

reference signal becomes Tr = 30[ms] (N = 2).

1In the experimental results (Fig. 5.4), the output signals are sampled at much shorter than 15 [ms]

in order to display the intersample responses. The sampling period is set relatively long so as to make

the comparison clear.
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Figure 5.4: Experimental results (Ty = Tu = 15[ms])

In the following simulations and experiments, the proposed method is compared with

the SPZC and ZPETC proposed in [68], with the same Ty and Tu. The reference sampling

period Tr of the proposed method is set twice as long as those of SPZC and ZPETC,

because these methods are single-rate approaches and sampling periods are set to Ty =

Tu = Tr = 15[ms]. However, the proposed controller utilizes the desired trajectories of

both position and velocity, while SPZC and ZPETC use those of position only.

Fig. 5.3(a) and (b) show that the proposed method exhibits better performance than

either SPZC or ZPETC. While the responses of SPZC and ZPETC include large tracking

errors caused by the unstable zero, those of the proposed method have zero tracking

error. The simulated time response of the control input is shown in Fig. 5.3(c), which

indicates that the control input of the proposed method is smooth despite using multirate

input control. Thus, we find that the proposed multirate feedforward method is very

practical. Moreover, the experimental result also indicates that the proposed method has

high tracking performance, as shown in Fig. 5.4. Fig. 5.3 and Fig. 5.4 also show that the

intersample responses are very smooth, because not only position but also velocity follows

the desired trajectories at every sampling point Tr.

The frequency responses from the desired trajectory yd[i] to the output y[i] are shown

in Fig. 5.5. Because the proposed method ensures perfect tracking control, the command

response becomes 1 for all frequencies. In comparison, the gain of ZPETC decreases at

high frequencies.

This example indicates that the proposed multirate feedforward controller has higher

tracking performance than the single-rate controller even in the usual servo system (Ty =

Tu) without special hardware restrictions.
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5.2.3 In Case with Sampling Restriction (Case 2: Tu = Ty/N)

Next, it is assumed that the output sampling period is restricted to Ty = 15[ms] by the

hardware, and the control input can be changed more frequently (Tu = Ty/N). In this

case, perfect tracking control is guaranteed at L (= N/n = N/2) points during Ty. The

single-rate feedback controller is designed with a 15[ms] period, and transformed by (2.38).

Fig. 5.6 shows the simulated tracking error of the proposed method for a 4 [Hz] sinu-

soidal desired trajectory. Compared with N = 2, the tracking performance is improved

very much for large input multiplicities of N = 4 and 8, because perfect tracking control

is ensured at L (= N/2) intersample points. This approach is applied to seeking control

of hard disk drives in section 5.3.

5.2.4 Consideration of the intersample tracking error

As the proposed method assures perfect tracking control at every sampling point, in this

section, the frequency response from the desired output to the tracking error is considered
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including the intersample behavior.

When a sinusoidal desired output with angular frequency φ0 is added to this sampled-

data tracking control system, the intersample tracking error is composed of infinitely many

sinusoidal components with angular frequencies

φm
�
= φ0 +mωs (5.3)

where m = 0,±1,±2, · · ·, and ωs =
2π
T
[38]. Therefore, the classical theories in both

continuous-time and discrete-time cannot be used to analyze the intersample behavior.

Analysis methods of the frequency response of sampled-data systems including inter-

sample behavior are presented in [38] and [37]. These approaches have obtained the gain

of the intersample response in infinite frequencies. However, in this section, the frequency

response from sinusoidal desired trajectory with single frequency to intersample tracking

error is considered because the frequency of the desired trajectory can be assumed to

be below the Nyquist frequency. In practice, this concept is important in sampled-data

control system [49].

Therefore, frequency responses of the error ratio of intersample tracking errors are

numerically calculated. The error ratio of the sampled-data system is simply defined as

E2
R(jωref )

�
=

∫ h
0 e2

y(t)dt∫ h
0 y2

d(t)dt
(5.4)

where the tracking error ey(t) = yd(t) − y(t). Although the above definition (5.4) is

different from those given in [38] and [37], it is sometimes very useful in analyzing a

sampled-data system [49].

In this simulation, y(t), yd(t), and period h are the plant position, the desired position,

and the period of the desired trajectory 2π/ωref , respectively. The integrals in (5.4) are

numerically calculated for the very small period ∆t(� T, h).

Calculated results of the error ratio of (5.4) are shown in Fig. 5.7, which indicates

that the tracking error of the proposed method is 100 ∼ 1000 times better than that of

ZPETC and SPZC [68]. In other words, the tracing performance including intersample

behavior is 100 ∼ 1000 times superior.

5.2.5 Comparison with the zero assignment method by multi-

rate control

A significant feature of the proposed method is that the coefficient matrices of the state

equation are directly assigned by multirate control (see (2.16)). Owing to this advantage,

the proposed controller can be simply designed without considering the unstable zero

problem.
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(The error ratio (5.4) vs. frequency of the desired trajectory ωref )

On the other hand, [3, 7, 8] had presented zero assignment methods by the multirate

control. Historically, it was one of the most remarkable results of the multirate sampling

control [1], as mentioned in section 1.1.1.

In this section, the zero assignment method of [3, 7] is applied to perfect tracking

control, and compared with the proposed method. Next, the advantages of the proposed

multirate feedforward control are demonstrated through simulations.

Zero assignment method by multirate control

In this section, the zero assignment method by multirate sampling presented in [3, 7] is

reviewed.

For the discrete-time plant (2.7) discretized by multirate control, let the control law

be

u[i] = gv[i] , g
�
= [g1, · · · , gn]

T . (5.5)

Substituting (5.5) for (2.7), the new discrete-time system is described by

x[i+ 1] = Ax[i] +Bgv[i]. (5.6)

The transfer function from the new input v[i] to the output y[i] is given by

y[i]

v[i]
= cc[zI −A]−1Bg =

ccadj(zI −A)Bg

det(zI −A)
. (5.7)

Because the numerator polynomial of (5.7) becomes (n − 1)th order for almost all T , all

zeros of the new system (5.7) can be arbitrarily assigned by the parameter g ∈ Rn.

Next, consider the perfect tracking controller utilizing this method. First, the parame-

ter g is chosen to match the system (5.7) with a model M [z] which does not have unstable
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Figure 5.8: Perfect tracking system by the zero assignment method

zeros. Second, the feedback controller C2[z] is designed to stabilize the closed-loop system

and to increase the robust performance. Third, let the feedforward controller C1[z] be

C1[z] =
1

zdGcl[z]
=
1 +M [z]C2[z]

zdM [z]
(5.8)

where Gcl[z] is the closed-loop system composed of both M [z] and C2[z], and d is the

relative degree of Gcl[z]. Letting the reference be d-step ahead of the desired output, i.e.

r[i] = yd[i+ d], perfect tracking can be achieved. This control scheme is resented by Fig.

5.8.

Comparison by simulations

Consider the servomotor described by (5.1). The discrete-time plant discretized by the

zero-order hold is given by

P [z] =
T 2K

2J

z + 1

(z − 1)2 . (5.9)

This discrete-time plant has an unstable zero at −1. Thus, utilizing multirate control
(5.5), let the transfer function (5.7) match the following model M [z] with a stable zero.

M [z] =
T 2K

2J

z

(z − 1)2 (5.10)

From the above condition, the parameter g becomes

g = [1.5,−0.5]T . (5.11)

The feedback controller C2[z] is obtained from the H∞ mixed-sensitivity problem for

M [z], and the perfect tracking controller C1[z] is designed by (5.8).

The simulation results for a sinusoidal desired trajectory are shown in Fig. 5.9. While

tracking error of the proposed method is almost zero, the zero assignment method has

large tracking error in the intersample response as shown in Fig. 5.9(a). Moreover, Fig.
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Figure 5.9: Simulation results of the zero assignment method. (T = 1[ms] )

5.9(b) indicates that the zero assignment method is not practical because its control input

is highly oscillating. These problems of the zero assignment method have been indicated in

[24]. According to [24], the zero assignment methods sometimes have the disadvantages of

large overshoot and oscillation in the intersample points because the control input changes

back and forth very quickly.

As a result, it is found that the perfect tracking controller realized by the zero as-

signment method [3, 7] has poorer tracking performance than the proposed method with

regards to the intersample response. The reason is that the zero assignment method forces

the zero to be arbitrarily assigned, and due to this, some stress may occur in the control

loop, and the control input becomes oscillating.

On the other hand, the proposed method has no stress at any point of the control

loop because all states of the plant are controlled to track the desired trajectory of the

plant state. As a result, it can be said that the proposed multirate feedforward control is

a significant and practical methodology for designing the multirate control system.
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5.3 High Speed Seeking Control of Hard Disk Drive

5.3.1 Head-positioning System of Hard Disk Drive

In the head-positioning control of hard disk drives, the control strategy is divided into

three modes: seeking mode, settling mode, and following mode. In the seeking mode, the

head is moved to the desired track as fast as possible. Next, the head is settled to the

track without overshoot in the settling mode. After that, the head needs to be positioned

on the desired track while the information is read or written. In the following mode, the

head is positioned precisely on the desired track under the vibrations generated by disk

rotation and other disturbances.

In long-span seeking, where the seeking distance is comparatively long, high speed

seeking is achieved by the mode-switching controller [99]. In the short-span seeking,

however, single mode controllers based on two-degree-of-freedom control have advantages,

because the mode-switching controller sometimes generates undesirable transient response

[53, 54, 100, 101].

As shown in Fig. 5.10, in head-positioning control by the voice coil motor (VCM), the

head position is detected by the servo signals embedded in the disks discretely. Therefore,

the output sampling period Ty is decided by the number of these signals and the rotation

frequency of the spindle motor. However, it is possible to set the control period Tu shorter

than Ty because of the recent developments of computer technology. Thus, the controller

can be regarded as a multirate control system having the hardware restriction of Tu < Ty.

In section 2.4, digital control systems having the hardware restriction of Tu < Ty

were assumed, which is defined as case 2 in Fig. 2.9(b), and a novel design method

of the multirate feedforward controller was proposed. The proposed method achieved

perfect tracking control (PTC) which has zero tracking error at M intersample points of

Ty. Moreover, the proposed method was extended to systems with time delay in section

2.5.1. In HDD, multirate controllers have also demonstrated higher performance in both

feedforward [54, 53] and feedback [50, 51, 55] characteristics. In this section, the proposed

perfect tracking controller is applied to the track-seeking mode of HDD.

5.3.2 Modeling of the plant

The experimental setup is a 3.5-inch hard disk drive. Let the nominal model of this plant

be

Pc(s) =
KfKa

Mps2
e−sTd. (5.12)
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Figure 5.10: Hard disk drive.

Table 5.1: Parameters of 3.5-inch hard disk drive

Amplifier gain Ka 1.996 A/V

Force constant Kf 2.95 N/A

Mass Mp 6.983 g

Track pitch Tp 3.608 µm/trk

Sampling time Ts 138.54 µsec

Calculation delay Tcalc 38 µsec

Equivalent delay Tequiv 38.7 µsec

Input multiplicity N 4

The parameters of this plant are shown in Table 5.1. While servo signals are being

detected at a constant period of about 138 [µs], the control input can be changed 4 times.

Therefore, the proposed approach is applicable to this plant. In (5.12), the time delay Td =

Tcalc+Tequiv is considered, where Tcalc is the calculation delay of the processor, and Tequiv

is the equivalent delay of the current control and the notch filter for the second mechanical

resonance mode. As shown in Fig. 5.11, the actual plant has the first mechanical resonance

mode at around 2.7 [kHz] and the Nyquist frequency is at 3.6 [kHz]. In spite of these, the

target seeking-time is set to 3 sampling periods (2.4 [kHz]) for one track seeking in the

experiments.

Although only the rigid mode is included in the nominal model in this section, higher

order models will be considered with the mechanical resonance mode in section 7.3.
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Figure 5.11: Frequency responses of plant.

5.3.3 Applications of perfect tracking controller to seeking mode

The perfect tracking controller is designed for input multiplicityN = 4. Because the plant

is a second order system (n = 2), perfect tracking is assured N/n = 2 times during every

sampling period. In the following simulations and experiments, the proposed method is

compared with ZPETC proposed in [68]. The ZPETC is one of the most well-known

and important feedforward controllers for control of mechanical systems. [53] and [100]

applied it to hard disk drive control.

The control period Tu of ZPETC becomes four times as long as that of the proposed

method because ZPETC is a single-rate controller2 and the two methods are compared for

the same sampling period Ty. The feedback controllers of the two methods are the same

single-rate PI-Lead filter. Moreover, the desired trajectory (5.13) is selected, such that

jerk (differential acceleration) is smooth in order not to excite the mechanical resonance

mode.

y∗(s) =
Ar

s(τrs+ 1)4
e−sTd (5.13)

v∗(s) =
Ar

(τrs+ 1)4
e−sTd (5.14)

The parameters of these desired trajectories are shown in Table 5.2. In these experiments,

the multirate feedforward input u0[i] in Fig. 2.6 and Fig. 2.11 is obtained by off-line

calculation in order to save processor resources. Therefore, the order of the feedforward

controller and the desired trajectory are not related to the calculation time delay.

2[53, 102] attempted to extend ZPETC to multirate controllers.
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Table 5.2: Parameters of the trajectories.

Ar[trk] fr(= 1/2πτr) [kHz]

Condition A 1 2.8

Condition B 6 1.7
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Figure 5.12: Simulation results A (1trk).

Simulation results

Simulation results are shown in Fig. 5.12 and Fig. 5.13. The figures (a) and (b) show

that the proposed method gives better performance than ZPETC. While the response

of ZPETC has large tracking errors caused by the unstable zero, that of the proposed

method has almost zero tracking error. Fig. (c) also indicates that the proposed multirate

input is very smooth.

The frequency responses from the desired trajectory yd[i] to the output y[i] are shown

in Fig. 5.14. Because the proposed method (PTC) assures perfect tracking, the command
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Figure 5.13: Simulation results B (6trk).
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Figure 5.14: Frequency responses (y[z]/y∗[z]).

response becomes 1 at all frequencies. However, the gain of ZPETC decreases at high

frequencies. The frequency of the short-span seeking is about 2 [kHz], therefore, the

proposed method has advantages in high speed seeking control.

In the above simulations, the time delay was assumed to be zero (Td = 0). Next,
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Fig. 5.15 shows the tracking errors including time delay Td = 76.7[µs], indicating that

the tracking error becomes zero at 2(= M) intersample points without any loss of the

tracking performance in spite of the existence of the time delay.

Experimental results

Experimental results are shown in Fig. 5.16 and Fig. 5.17. In figure (a), about 1,000

experimental data are overlaid. The figures (b) and (c) are the averages of the data,

showing that the proposed method has high tracking performance. Although the actual

plant has a mechanical resonance mode at around 2.7 [kHz], this mode is not suppressed

by the notch filter in order to preserve the phase margin. In spite of that, the experiment

under condition A (1 [trk]) adopts the wide bandwidth desired trajectory (fr = 2.8 [kHz])

for high speed seeking. Therefore, Fig. 5.16(a)(b) have a overshoot of maximum height

0.4 [µm]. However, this overshoot is within the permissible range because the overshoot

is small for HDD, compared to the track pitch of 3.6 [µm].

Because the position signal is detectable only at the sampling points, the difference be-

tween the proposed method and ZPETC is not clear in Fig. 5.16 and Fig. 5.17. Therefore,

the proposed method is compared by using the average of the seeking-times measured in

2000 experiments. The seeking-time is defined as the time from the start of seeking to

the point where the distance remaining falls under 0.4 [µm] and the overshoot is smaller

than 0.4 [µm].

Table 5.3 shows the average seeking-times obtained in the experiments. The seeking-

time of the proposed method (PTC) is much smaller than that of ZPETC and the con-

ventional settling control [99]. In short-span seeking (1 [trk]), the seeking-time of the

proposed method is 19 and 31 [%] shorter than that of ZPETC and the conventional

method, respectively. In middle-span seeking (6 [trk]), the proposed method is 1 and 6
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Figure 5.16: Experimental results A (1trk).

Table 5.3: Experimental seeking-time.

PTC [ms] ZPETC [ms] Conventional [ms]

A 0.4394 0.5226 0.5738

1trk (3.17Ts) (3.77Ts) (4.14Ts)

B 1.200 1.325 1.933

6trk (8.66Ts) (9.57Ts) (14.0Ts)

sampling periods faster respectively.
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Figure 5.17: Experimental results B (6trk).

5.4 Summary

In this chapter, the perfect tracking control developed in chapter 2 was applied to the

motion control systems.

In section 5.2, two examples of position control using the servomotor of a robot ma-

nipulator were examined, and the advantages of the proposed method were demonstrated

through simulations and experiments. The first example demonstrated that the proposed

multirate controller had higher performance than the conventional single-rate controller,

even in normal systems (Ty = Tu) without special hardware restrictions. The second ex-

ample also indicated that the intersample response was improved by multirate feedforward

control for systems with a long sampling period (Ty > Tu).

Next, in section 5.3, the proposed method was applied to the track-seeking mode of

hard disk drives. The simulations and experiments demonstrated that the perfect track-

ing controller succeeded in achieving very fast seeking compared with the conventional
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(a) DK31CJ-72

(b) DK32CJ-36/18

Figure 5.18: Products with perfect tracking controller.

methods. These experiments were performed in cooperation with Hitachi. After the ex-

periments, Hitachi engineers have improved and implemented the proposed method in the

latest drives shown in Fig. 5.18. According to the specifications of these products [103],

the seeking time has improved very much compared with the products of other manu-

factures. The proposed method has partly contributed to the high data rate in these

products.
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Chapter 6

Applications of Perfect Disturbance

Rejection

6.1 Abstract

In this chapter, the perfect disturbance rejection (PDR) control developed in chapter 3 is

applied to motion control systems in which the sampling period of the sensor is shorter

than the control period of the actuator. As examples, we look at the track-following mode

of hard disk drives (HDD) and the visual servo system of robot manipulators. First, the

perfect disturbance rejection controller is applied to the first-order disturbance mode of

repeatable runout in HDD based on multirate feedback control. Second, the problem

of the feedback approach is explained for higher disturbance modes, and the open-loop

observer with switching function is implemented in order to overcome the problem. The

intersample observer also compensates for the large delay generated by the hold and

improves the stability margin of the closed-loop system. Finally, the proposed method is

applied to visual servo systems by introducing the workspace controller and perspective

transformation.

6.2 High Precision Following Control of HDD by PDR

with Intersample Observer

6.2.1 Track Following Mode of Hard Disk Drive

In this section, the perfect disturbance rejection (PDR) control system proposed in chapter

3 is applied to the track-following mode of hard disk drives. The block diagram of the

following mode is shown in Fig. 6.1. The disturbance dy(t) represents vibration of the
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Figure 6.1: Following mode.

track generated by disk rotation, which is called track runout. The objective of this mode

is to position the head on the desired track while information is being read or written and

keeping the position error pe(t) zero. n(t) and du(t) represent measurement noise and

acceleration disturbance, respectively.

In the following mode, two kinds of disturbance should be considered: repeatable and

non-repeatable runout. Repeatable runout (RRO) is synchronous with the disk rotation,

and non-repeatable runout (NRRO) is asynchronous. There exist three approaches to

reject RRO; (1) repetitive control, (2) feedback control based on the internal model prin-

ciple, and (3) identification and feedforward control. In this section, the RRO is modeled

by a sinusoidal disturbance, and it is perfectly rejected at M intersample points in the

steady state. Therefore, the proposed approach of this section belongs to category (2).

6.2.2 Effects of perfect disturbance rejection and intersample

observer

The controlled plant is the 3.5-inch hard disk drive used in section 5.3.2. The nominal

plant is modeled by

Pc(s) =
KfKa

Mps2
e−sTd. (6.1)

The parameters of this plant are shown in Table 5.1 of the previous chapter.

The disturbance models are considered as follows.

(A) : d(s) =
1

s(s2 + ω2
R)

, (B) : d(s) =
1

s
(6.2)

The model (A) makes the sensitivity function S(s) small at low frequencies and the

rotation frequency of the disk ωR(= 2π120). The model (B) is introduced for comparison
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Figure 6.2: Simulated results on the following mode.

with conventional PI-lead filters, because the controller consisting of state-feedback and

disturbance observer for (B) becomes 2nd order with an integrator. In this section, only

first order repeatable runout is considered as the disturbance model (A). However, high

order runout is considered in section 6.3.

The perfect disturbance rejection controllers are designed withN = 2, 4. The proposed

method is compared with the single-rate disturbance observer, in which the disturbance

is modeled by d[z] = Z[d(s)].

All poles of the regulator and observer are assigned to exp(−2πfclTs) as shown in

Table 6.1. These poles are selected to set the open-loop 0 dB cross-over to about 500[Hz].

Fig. 6.2(a) shows the sensitivity and complimentary sensitivity functions (S[z] and T [z])

for model (A) and (B).
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Effects of Perfect Disturbance Rejection Control

Fig. 6.2 shows the simulated results for a 120[Hz] sinusoidal runout added from t = 0, with

amplitude 1 [trk] = 3.6[µm]. Although the transient position errors are large, the steady

state position errors of the controller (A) become zero at the sampling points, because the

feedback controller has the internal model of the RRO. However, Fig. 6.2(c) shows that

the intersample responses have tracking error even in the steady state. It is shown that

errors of the plant position and velocity become zero at every Ts/M(= 2Ts/N) for the

proposed controllers. Moreover, the intersample position errors of the proposed multirate

methods are much smaller than that of the single-rate controller. Fig. 5.6 and Fig. 6.2(c)

have very similar results indicating that the performance improves with increase of the

input multiplicity both in the feedforward and the feedback characteristics.

Consideration of Time Delay in Perfect Disturbance Rejection Control

In the above simulations, the time delay is assumed to be zero (Td = 0) for simplification.

Next, the extended PDR with time delay is introduced, which was proposed in section

3.3.4. Fig. 6.3(a) shows the frequency response of the sensitivity and complementary

sensitivity functions with time-delay1. Compared with the case of Td = 0, the sensitivity

worsens due to the time delay although the poles of both closed-loop systems are set to be

identical. Thus, the convergence of the transient response for Td = 75 [µs] becomes slower

than that for Td = 0, as shown Fig. 6.3(b). However, Fig. 6.3(c) shows that disturbance

rejection performance in the steady state is maintained by the extended controller, and

perfect disturbance rejection is achieved at M(= N/2) intersample points.

Effects of Intersample Observer

The open loop characteristics are shown in Table 6.1 and Fig. 6.4. It is shown that

the gain and phase margin are increased by the multirate feedback using the proposed

intersample observer, in the same way as [50, 89]. However, this is the first attempt to

reject RRO by multirate feedback control, thus, these results are significant in showing

that the stability margin is recovered by multirate control for model (A). Moreover, in the

proposed intersample observer, calculation resources can be saved because the feedback

gain (3.33) is obtained by off-line calculation. The proposed scheme is applicable to

various plants and types of disturbance because the proposed theory is very general.

1Some parameters such as Ts of Fig. 6.3 are set to be different from those of Fig. 6.2 in order to make

Fig. 6.3(c) clear.
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Figure 6.3: Simulated results of PDR with time delay (Ty = 200[µs], Td = 75[µs])

Table 6.1: The open loop characteristics.

Disturbance Model A A B B

Input multiplicity N 1 4 1 4

Closed-loop poles fcl 240 240 390 390

Gain margin [dB] -6.93 -6.95 11.9 12.5

180 deg cross-over [Hz] 249 249 1573 1635

Phase margin [deg] 29.5 29.6 35.8 36.2

0 dB cross-over [Hz] 507 510 505 506
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Figure 6.4: Frequency responses of open loop characteristics (N = 1)

104



10
1

10
2

10
3

−100

−80

−60

−40

−20

0

20

40

f [Hz]

G
ai

n 
[d

B]

Feedback

S[z]
T[z]

(a) Feedback

10
1

10
2

10
3

−100

−80

−60

−40

−20

0

20

40

f [Hz]

G
ai

n 
[d

B]

Feedforward

S[z]
T[z]

(b) Feedforward
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6.3 High-order Periodic Disturbance Rejection Con-

trol for HDD

6.3.1 Feedforward and Feedback Repetitive Control

In this section, the multirate repetitive controllers proposed in section 3.4 are applied to

the track-following mode of hard disk drives.

The nominal plant is modeled by

Pc(s) =
KfKa

Mp

1

s2
, (6.3)

where the parameters of the plant are shown in Table 5.1. High order repeatable runout

is considered at 1st, 10th, and 20th order2, and modeled by

d(t) =
∑

k=1,10,20

ak cos kω0t+ bk sin kω0t, (6.4)

where ω0 = 2π120[rad/sec].

Fig. 6.5 shows the closed-loop characteristics both of the feedback (Fig. 3.2) and

feedforward (Fig. 3.5) repetitive control systems. Fig. 6.5(a) indicates the disadvantages

of the feedback repetitive controller, where the closed-loop characteristics worsens and

it becomes difficult to assure stability robustness. On the other hand, in the proposed

feedforward repetitive control (Fig. 3.5), the closed-loop characteristics depend only on

C2[z] which does not need to have the internal model of (6.4). Therefore, the feedback

characteristics are better than those of the feedback approach as shown in Fig. 6.5(b).

2In practice, several large modes should be selected through experimental analysis.
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Figure 6.6: Feedforward repetitive control.

dy(t) = Tp sin kω0t, Tp = 3.6µm, k = 20.
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Figure 6.7: Error ratio ER(k).

(20th order corresponds to 2.4 [kHz].)

Fig. 6.6 shows the simulated results of the proposed repetitive feedforward control

under the 20th order sinusoidal runout. The switch turns on only at t0 = 10[ms]. As

shown in Fig. 6.6(a), the position error converges quickly after the switching action.

Moreover, it is shown that the proposed initial value compensation (IVC) can prevent

the large overshoot. Fig. 6.6(b) shows that the intersample response of the conventional

single-rate controller has large errors in the steady state. On the other hand, the errors of

the plant position and velocity become zero at every Ty/2 with the proposed controllers
3.

Moreover, the intersample position error of the proposed multirate method is much smaller

than that of the single-rate controller.

Fig. 6.7 shows analyzed results of the error ratio ER(k) for the disturbance order k.

3In the proposed method, perfect disturbance rejection is assured M (= N/np = 4/2 = 2) times during

Ty.
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Figure 6.8: Optimized intersample response.

Considering the intersample response, the error ratio is calculated by

E2
R(k)

�
=

∫ ts+kT0
ts

pe2(t)dt∫ ts+kT0
ts

d2
y(t)dt

, (6.5)

where dy(t) = Tp sin kω0t, T0 = 2π/ω0, and ts is selected as 20[s] in order to evaluate the

steady state. In the high frequency region close to the Nyquist frequency (3.6[kHz]), the

disturbance rejection performance is much improved by the proposed multirate control,

compared with the single-rate controller. Therefore, it is shown that the proposed method

demonstrates effective performance for high-order disturbance.

6.3.2 Optimization of the Intersample Performance

In the above simulations (Fig. 6.5 ∼ 6.7), the state multiplicity is selected as M = N/n(=

2) to reject the disturbance perfectly at M intersample points. In Fig. 6.8, however, the

intersample performance is optimized by (3.51).

As shown in Fig. 6.8(a), the optimized intersample response of M = 10 is not much

improved compared with the case without optimization of M = 2. Therefore, it can

be said that the selection of M = N/n proposed in section 3.4.1 is reasonable in the

engineering sense because F d of (3.26) is simpler than that of (3.51) and PDR is intuitively

understandable. However, the optimization approach is valuable because it is applicable to

the case where N/n is non-integer. As shown in Fig. 6.8(b), the intersample performance

is improved with higher input multiplicity N .
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Figure 6.9: Two-link DD robot with camera.

Figure 6.10: Photographs of robot with camera.

6.4 Visual Servoing of Robot Manipulator by Repet-

itive Disturbance Rejection Control

6.4.1 Sampling Restriction in Visual Servo System

In this section, the visual servo problem is considered [104, 105], in which the camera

mounted on the robot manipulator tracks a moving object as shown in Fig. 6.9 and

Fig. 6.10. Although the sampling period of the vision sensor such as a CCD camera is

comparatively slow (over 33 [ms]), the control period of joint servo is fast (less than 1

[ms]). Therefore, multirate controllers have been developed and implemented in the visual

servo system [56, 57, 58]. In this section, it is assumed that the motion of the object is

periodic, and repetitive disturbance rejection control is applied based on the multirate

feedback and feedforward approaches developed in section 3.4.

In order to focus on the dynamical problems of the multirate system, the kinematical

problems of the visual servo system are assumed to be simple: the object movement is in
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Figure 6.11: Workspace controller (inner-loop).

two-dimensional plane, and the depth information between the camera and the object z

is known.

6.4.2 Modeling of Visual Servo System

First, the work space position controller is designed in order to control the camera po-

sition as shown in Fig. 6.11 [106]. Because this controller employs the robust distur-

bance observer (DOB) in the joint space, each joint axis is decoupled. Therefore, if the

non-singularity of Jacobian Jaco is assured, the transfer function from the work space

acceleration command ẍref
c to the work space position xc(= [Xc, Yc]

T ) can be regarded

as a double integrator system for the frequency region below the cut-off frequency [106].

Letting xref
c be the control input u of the outer visual servo system, the plant is modeled

by the analog system (6.6) because the sampling period of the interloop is very short (1

[ms] in this experiment).

xc(s) = P c(s)u(s), P c(s)
�
=

Kp

s2 +Kds+Kp

I2 (6.6)

In Fig. 6.11, the parameters of the position controller are set toKp = diag{100, 100} and
Kd = diag{20, 20}.

Next, the perspective model of the camera is derived [107]. In Fig. 6.11, the object

position (x, y) on the camera coordinate system is determined only by the relative position

between the camera position xc and object position xo. Therefore, the following model

is obtained because (x, y) is mapped to the feature point ξ on the image plane, as shown

in Fig. 6.12 [56].

ξ =
f

z


 x

y


 = f

z


 cos θ sin θ

− sin θ cos θ





 Xo − Xc

Yo − Yc


 (6.7)

Here f is the focus distance, z is the distance between the object and camera in the Z-axis

direction, and θ
�
= q1 + q2. Equation (6.7) is described by ξ = ι(θ)(xo − xc) = ι(θ)xe.
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Figure 6.13: Visual servo system.

Fig. 6.13 shows the proposed control system. In this experiment, the desired feature

ξref is set to zero because the camera is controlled to be positioned just below the object.

The movement of the object can be modeled as the output disturbance xo. Therefore, the

proposed method can achieve high tracking performance because the periodic motion can

be rejected by the proposed PDR. Moreover, the control system of Fig. 6.13 is linearized

and diagonalized by the inverse transformation ι−1(θ) of (6.7)4. Thus, the controllers can

be designed independently in the x and y axes. The sampling period of the image and the

control period of the position command xref
c are set to Ty = 100 [ms] and Tu = 25 [ms],

respectively. Because the input multiplicity is N = 4 and the order of plant (6.6) is n = 2,

perfect disturbance rejection is assured at 2(= N/n) intersample points. Td represents the

time delay caused by image processing. Because this delay generates difficulty in control

system, [108, 109, 110] have developed compensation methods for this delay, however, in

this section, the time delay is assumed to be zero (Td = 0) for simplification because the

4In case of the setup of Fig. 6.13, ι−1(θ) is easily obtained from the inverse matrix of (6.7). In general

case, it can be calculated from the inverse Jacobian [105].
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Figure 6.14: Frequency responses S[z], T [z].
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Figure 6.15: Position Error Xo − Xc (simulation).

proposed perfect disturbance rejection control is applicable to systems with time delay,

as demonstrated in section 6.2.2.

6.4.3 Simulation and experimental results

For the visual servo system, results parallel to those of the HDD in section 6.3 are obtained.

In the experiments, the two-link direct drive robot mentioned in section 5.2 is utilized,

and a personal computer is used both for joint servo control and image processing. The

repetitive disturbance is modeled for k = 1st, 3rd, and 5th order. The period of the

object’s movement is T0 = 0.5[s].

Fig. 6.14 shows the sensitivity and complementary sensitivity functions S[z] and T [z]

both of the feedback (Fig. 3.2) and the feedforward (Fig. 3.5) control systems. Fig. 6.14(a)
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Figure 6.16: Experimental results (Ty = 400 [ms], N = 4) .

indicates the disadvantages of the feedback repetitive controller, where the closed-loop

characteristics worsen and it becomes difficult to assure stability robustness. On the

other hand, in the proposed feedforward repetitive control (Fig. 3.5), the closed-loop

characteristics depends only on C2[z] which does not need to have the internal model of

repetitive disturbance. Therefore, the feedback characteristics are better than those of

the feedback approach for the visual servo system, just as they are for the HDD.

Fig. 6.15 shows the simulated results of position error Xo − Xc for circular movement

of the object. As shown in Fig. 6.15(a), the position error of the feedforward controller

converges quickly after the switching action at t0 = 1.0[s], while that of the feedback

controller has large transient errors. In the steady state, the errors of the plant position

and velocity become zero at every Ty/2 with the proposed controllers as shown in Fig.

6.15(b). The intersample position error of the proposed multirate method is much smaller

than that of the single-rate controller.

The experimental results are shown in Fig. 6.16. In this experiments, the image is
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Figure 6.17: Error ratio ER(k).

detected at every 100 [ms]. In order to display the intersample response, the sampling

period is set to Ty = 400 [ms] in the controller. Fig. 6.16(a) shows that the tracking error

of the proposed multirate controller is much smaller than that of the single-rate controller.

Moreover, as shown in Fig. 6.16(b) and (c), the camera position is very smooth because the

multirate controller generates the intersample reference signal based on the disturbance

model. Note that the amplitude and phase of the target movement are assumed to be

unknown, and the information is estimated by the observer.

Fig. 6.17 shows analyzed results of the error ratio ER(k) for the disturbance order k.

Considering the intersample response, the error ratio is calculated by

E2
R(k)

�
=

∫ t0+kT0
t0

(Xo(t)− Xc(t))
2dt∫ t0+kT0

t0
X2

o (t)dt
(6.8)

where Xo(t) = sin kω0t, ω0 = 2π/T0, and ts is selected as 4 [s] in order to evaluate the

steady state. In the high frequency region close to the Nyquist frequency, disturbance

rejection performance is much improved by the proposed multirate control, compared with

the single-rate controller. Therefore, it is shown that the proposed method demonstrates

effective performance for high-order disturbance, just as for the case of HDD.

6.5 Summary

In this chapter, the perfect disturbance rejection (PDR) control developed in chapter

3 was applied to the track-following mode of hard disk drives (HDD) and visual servo

systems of robot manipulators, having restrictions in the sampling mechanisms.

In section 6.2, the first order repeatable runout (RRO) of HDD was considered as a

disturbance model, and it was perfectly rejected at M intersample points. Next, it was

shown that in the steady-state performance is preserved even if the plant contains time
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delay. Finally, the intersample observer was implemented, and analysis of the frequency

response proved the recovery of the stability margin.

Second, in section 6.3, high order RRO was taken into account, and feedback and

feedforward multirate control were compared. The advantage of the feedforward approach

is demonstrated by the frequency response of the closed-loop system. Moreover, by the

use of the optimization of intersample response, it was shown that the proposed PDR

gave practical and reasonable results.

Third, in section 6.4, the proposed method is applied to the visual servo system of robot

manipulators. By using the workspace controller with the robust joint servo system and

the inverse transformation of nonlinear perspective transformation, the system becomes

a linear system and applicable to the proposed theory.
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Chapter 7

Applications of Perfect State

Matching

7.1 Abstract

In this chapter, the perfect state matching (PSM) control developed in chapter 4 is applied

to motion control systems based on multirate sampling control. First, the position control

system for a dc servomotor with disturbance observer is utilized as an example without

hardware restriction in the sampling scheme. Simulations and experiments are performed,

and the advantages of this approach are demonstrated. Because the proposed method

assures the response matching independent of sampling period, it enables to bring out the

maximum performance of a control system.

Second, vibration suppression control is proposed based on multirate input control for

a system in which the Nyquist frequency is relatively closed to the mechanical resonance

mode and the sampling period is longer than the control period. For a two-mass system

model of hard disk drive, simulations demonstrate the possibility of controlling the critical

resonance mode.

7.2 Discretization of a Position Controller for Servo-

motor with Disturbance Observer

7.2.1 Discretization of Controller

In this section, the proposed discretization method is applied to the position control

system for a dc servomotor with disturbance observer as shown in Fig. 7.1 based on the

perfect state matching control.
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Figure 7.1: The position control with the disturbance observer.

In the experiments, DSP(NEC: µPD77230, 32-b floating point) is used, and the 1/100

gear ratio dc servomotor is driven by a 10-kHz switching frequency MOSFET chopper.

The pulse counter generates 1 000 pulses per revolution on the motor shaft (it becomes

100 000 pulse/revolution on the geared shaft), and the speed is detected by a tachometer

through a 12-b A/D converter [111].

In the design of the continuous-time controller, assuming that the disturbance torque

d is a step function, the plant is represented by

ẋcp(t) =Acpxcp(t) + bcpucp(t) (7.1)

Acp =



0 1 0

0 −B
J

− 1
J

0 0 0


 , bcp =



0
K
J

0


 ,xcp =




θ

ω

d




where θ is angular position, ω is angular velocity, and ucp is the dc voltage of the motor

terminal. Assuming the command input r to be a step function, the continuous-time

control law is given by

ucp = Kp(r − θ) − Kdω +
1
Kn

d̂

= f cpx̂cp + gcpr
(7.2)

where f cp = [−Kp,−Kd,
1
Kn
], gcp = Kp, x̂cp = [θ, ω, d̂]T . As shown in Fig. 7.1, the

continuous-time disturbance observer is also given by

˙̂vc(t) = Âcv̂c(t) + B̂cω(t) + Ĵcucp(t)

d̂(t) = v̂c(t) + lc ω(t)
(7.3)

where Âc = −ωc, B̂c = −Bnωc + Jnω2
c , Ĵc = Knωc, and ωc is the cut-off frequency of the

low pass filter.
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The nominal values of the plant constants are Jn = 0.0730 [kg·m2] , Bn = 3.26

[kg·m2/s], Kn = 0.388 [N·m/V]. The continuous-time control parameters are Kp =

8.91, Kd = −4.99, ωc = 300 [rad/s].

First, the control law (7.2) is discretized. Although (Acp,Bcp) in (7.1) is not control-

lable, the conditions in (4.27) are satisfied for input multiplicityN1 = 2. From (4.28), the

discretized control laws for T = 0.4[ms], µ11 = 0.5 are obtained, as follows.


 u11[i]

u12[i]


 =


 −33.4 3.38 2.57

−33.6 3.34 2.57







θ[i]

ω[i]

d̂[i]


+


 33.4
33.6


 r[i]

Second, the disturbance observer in (7.3) is redesigned in the same way as in section

4.3.3 [72]. For T = 0.4 [ms], µ11 = 0.5, the discrete-time observer is obtained by

v̂d[i+ 1] = Âdv̂d[i] + B̂dω[i] + Ĵ11u11[i] + Ĵ12u12[i]

d̂[i] = v̂d[i] + ld ω[i]
(7.4)

where ld = −20.8, Âd = 0.887, B̂d = 1.99, Ĵ11 = 2.12× 10−2, Ĵ12 = 2.21 × 10−2.

7.2.2 Simulations and Experiments

Because the proposed method utilizes the multirate input control with N = 2, the output

sampling period T is twice as long as the input sampling period Tu. In the following

simulations and experiments, the proposed method is compared with the Tustin (bilinear)

transformation with the same input sampling period in order to make the calculation costs

of two systems equal for fair comparison. Therefore, the output sampling period of the

proposed method is twice as long as that of the Tustin transformation.

Simulated and experimental results are shown in Fig. 7.2 and Fig. 7.3. For the very

short sampling period (0.2 [ms]), we find that the Tustin transformation and the proposed

transformation have almost the same time response. However, for the long sampling pe-

riod (8 [ms]), as shown in Fig. 7.2 and Fig. 7.3(b), the proposed method gives better

performance than the Tustin transformation. While the responses of Tustin transfor-

mation are unstable, those of the proposed method are stable, and exactly match the

continuous-time responses.

The simulated time responses of the control input are shown in Fig. 7.2(c), which

indicates that the control input of the proposed method is smooth despite using multirate

control.
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Figure 7.2: Simulation results.
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Figure 7.3: Experiment results.
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Figure 7.4: Frequency responses.

7.2.3 Frequency Responses of the Closed-loop Systems

The frequency responses from the command input (r) to the plant state (θ) are shown in

Fig. 7.4(a). In the wide frequency band below the Nyquist frequency, the discrete-time

response obtained by the proposed method (Gyr[z]) matches the continuous-time response

(Gyr(s)). That is guaranteed by (4.15), (4.22), (4.24) and (4.25).

The frequency responses from the disturbance torque (d) to the plant state (θ) are

also shown in Fig. 7.4(b), which indicates that the longer the sampling period is, the

poorer the disturbance rejection performance is. Therefore, Fig. 7.4(b) shows the practical

limitations of the sampling period for the proposed method.

7.2.4 Disturbance Responses

The simulation results of the time responses for step function type disturbances (5 [N ·m],
t > 1 [s]) are shown in Fig. 7.5. For the short sampling period (0.4 [ms]), the discretized

system has almost the same performance as the continuous-time system. However, as

mentioned above (Fig. 7.4(b)), the disturbance rejection performance becomes poor for

the large sampling period (16 [ms]).

The time responses of the disturbance estimation errors are shown in Fig. 7.5(b). The

estimation error of the discrete-time observer obtained by the proposed method completely

matches that of the continuous-time observer at every sampling period. Fig. 7.5(b) also

assures that there is no offset between the command input (r) and the plant state (θ).
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7.3 Vibration Suppression Control in Semi-Nyquist

Frequency Region for HDD

7.3.1 Vibration Suppression Control with Sampling Restriction

Vibration suppression control is an important problem in motion control systems of steel

rolling mill, flexible arm, large-scale space structure, hard disk drive, etc. Thus, a lot of

controllers have been developed for two or multi-mass systems [112, 113, 114, 115].

However, if the resonance mode is relatively closed to the Nyquist frequency, it is

very difficult to suppress this mode because conventional single-rate controllers do not

have enough performance in the semi-Nyquist frequency region. In this section, a novel

vibration suppression controller is proposed for this critical mode by introducing multirate

input control. The proposed methods are further applied to the head-positioning system

of hard disk drives.

Vibration suppression controllers have been proposed with various different approaches

in the continuous-time system [112]. To implement them in digital control systems, the

designed analog controllers are discretized by the Tustin transformation or other methods.

Because these transformations are based only on the open-loop characteristics of the

controller, the closed-loop has poor performance or becomes unstable when the resonance

mode is close to the Nyquist frequency.

On the other hand, in section 4.3, a novel discretization method of controllers was pro-

posed based on the perfect state matching (PSM) control with multirate sampling control,

in which the closed-loop characteristics were taken into account. Moreover, in section 4.4,

it was extended to systems with relatively long sampling periods. In this section, the pro-

posed method is applied to the vibration suppression control system where the resonance

mode is in the semi-Nyquist frequency region. The advantages of the proposed method

are that 1) the controller is discretized based on the closed-loop characteristics, and 2)

the plant state of the digitally controlled system completely matches that of the original

continuous-time system at M inter-sample points during Ty.

7.3.2 Modeling of the plant with mechanical resonance mode

In this section, the proposed vibration suppression controllers are applied to the settling

and following modes of the 3.5-inch hard disk drive used in section 5.3.2. Taking account

of the mechanical resonance mode, let the nominal model of this plant be

Pc(s) =
KfKa

Mp

1

s2

ω2
1n

s2 + 2ζ1nω1ns+ ω2
1n

. (7.5)
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Table 7.1: Parameters of the 3.5-inch hard disk drive including mechanical resonance

mode.

Amplifier gain Ka 1.996 A/V

Force constant Kf 2.95 N/A

Mass Mp 6.983 g

Track pitch Tp 3.608 µm/trk

Sampling time Ts 138.54 µsec

Input multiplicity N 4

Mechanical resonance ω1n 2π × 2.7× 103 rad/sec

Damping ζ1n 0.1
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Figure 7.6: Frequency responses of plant.

The parameters of this plant are shown in Table 7.1. This model is obtained from the

frequency response of Fig. 5.11 in the experimental analysis. As shown in Fig. 7.6, the

actual plant has the first mechanical resonance mode at around 2.7 [kHz], and its variation

range is ± 500 [Hz]. The Nyquist frequency (3.6 [kHz]) is close to this resonance mode.

Therefore, it is very difficult to suppress the vibration with the conventional single-rate

controller.

7.3.3 Vibration Suppression Control Based on Multirate Input

Control

The continuous-time controller is designed by the regulator and disturbance observer, in

which the disturbance is modeled by the step type function d(s) = 1/s, the poles of the

regulator are set to (s+ωc)
4, and those of the observer are set to (s+ωc)

2(s2+2ζ1ω1ns+

ω2
1n). As shown in Fig. 7.7, this controller has notch characteristics at the resonance

frequency. The parameter ωc is tuned such that the bandwidth of the closed-loop system
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Figure 7.7: Frequency responses of controller.
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Figure 7.8: Step and disturbance responses (ω1 = ω1n).

is set as high as possible, and the ± 1 [kHz] resonance variation is stabilized. Fig. 7.7 also

shows that the Tustin transformation has large approximation error because the resonance

mode is close to the Nyquist frequency.

Simulated results are shown in Fig. 7.8, which indicate that the proposed method

has better performance than the Tustin transformations. In Fig. 7.8(b), the “Multirate

Tustin” method consists of the digital controller discretized by Tustin transformation with

Ty/N and the interpolator which has an up-sampler and a zero-order-hold [116]. While

the responses of the Tustin transformations are oscillating, those of the proposed method

have no vibration and show a step response identical to the ideal continuous-time system.

Fig. 7.9 shows the sensitivity and complementary sensitivity functions (S[z] and T [z])

of the closed loop systems. As shown in Fig. 7.9(b), the proposed method retains the
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Figure 7.9: Frequency responses (S[z] and T [z]).

ideal characteristics of the original continuous-time controller (Fig. 7.9(a)) because the

proposed method is based on the closed-loop system. On the other hand, in conventional

Tustin transformations (Fig. 7.9 (c) and (d)), the closed-systems are quite different from

the original analog system, because those controllers are discretized based only on the

open-loop characteristics.

Fig. 7.10 shows the responses for the case where the frequency of the mechanical reso-

nance mode fluctuates 500 [Hz], indicating that the proposed method has high robustness.

Because the frequency response of the closed-loop system is well preserved as shown in

Fig. 7.9, the high robustness of the original analogue system is maintained in the obtained

discrete-time system.
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Figure 7.10: Step and disturbance under parameter variation (ω1 = ω1n − 500[Hz]).

7.4 Summary

In this chapter, the novel discretization method of continuous-time controllers developed

in chapter 4 was applied to motion control systems based on the perfect state matching

(PSM) control with multirate sampling control.

In section 7.2, position control using a dc servomotor was selected as an example,

and simulations and experiments were performed. The results indicated that the pro-

posed method had better performance than the Tustin transformed digital controller.

The disturbance rejection performances were considered in both the time and frequency

domains.

Next, in section 7.3, a novel vibration suppression controller was developed for the

2-mass system of hard disk drives, in which the mechanical resonance mode is relatively

close to the Nyquist frequency. Simulation results show the possibility of controlling this

critical mode by multirate input control.

In order to obtain a high performance control system, the control bandwidth has

to be set as wide as possible. However, in conventional methods such as the Tustin

transformation, it is impossible to broaden the bandwidth too much, because the closed-

loop system becomes unstable. On the other hand, the proposed method allows us to try

the limits of the given hardware.

In this dissertation, perfect state matching is proposed for the controller discretization

problem. However, it is applicable not only to the discretization but also to the model

matching problem. By using PSM, the plant state can be controlled to match desirable

continuous-time systems in both the feedforward and feedback characteristics. Thus, it

can be said that the PSM is one of the fundamental schemes for multirate sampling control
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together with PTC and PDR.
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Chapter 8

Conclusion

In this dissertation, a general framework of multirate sampling control was constructed,

and was developed into practical methodology by applying it to various motion control

systems. In the first part, three fundamental control schemes were developed theoreti-

cally. They were 1) perfect tracking control (PTC) by multirate feedforward control, 2)

perfect disturbance rejection (PDR) control by multirate feedback control, and 3) perfect

state matching (PSM) control by multirate sampling control. In the second part, the pro-

posed schemes were applied to practical motion control systems such as servomotors of

robot manipulators, hard disk drives, two-mass systems, and visual servo systems. These

applications demonstrated that the proposed methods were very effective in the practical

motion control systems even when there were severe specifications.

This work can be classified by the hardware restrictions in the sampling scheme and

according to the feedforward and feedback approaches, as shown in Table 8.1. While

previous theoretical research dealt mainly with the case without sampling restrictions

(Tu = Ty) as mentioned in chapter 1, this dissertation considered the cases with and

without the restrictions in both feedforward and feedback schemes. Particularly, systems

with relatively long sampling period were given emphasis because many motion control

systems are in this category.

The details of this framework are summarized in Table 8.1.

For the multirate feedforward approach, a novel perfect tracking control (PTC) method

was proposed in chapter 5. First, this theory was constructed for the case without hard-

ware restrictions (Tu = Ty) in section 2.3. Second, it was extended to the cases with

unequal sampling periods (Tu < Ty and Tu > Ty) in section 2.4. Third, time delay

and multivariable systems were handled in section 2.5. Moreover, it was shown that the

structure of the proposed perfect tracking controller was very simple and clear.

The perfect tracking control was applied to motion control systems in chapter 5. As
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an example without hardware restrictions (Tu = Ty), position control system using the

servomotor of a robot manipulator was examined in section 5.2, and the advantages of

the proposed method were demonstrated through simulations and experiments. Next,

in section 5.3, the proposed method was applied to the track-seeking mode of hard disk

drives, as an example with time delay and long sampling period relative to the control

period (Tu < Ty).

In the multirate feedback approach, systems with long sampling period were dealt

with in chapter 3, because the feedback characteristics such as disturbance rejection per-

formance and stability robustness are never improved by multirate control for the case

without hardware restrictions [12, 23]. For these systems, perfect disturbance rejection

(PDR) control was developed in section 3.3, which cancels the effects of disturbance of the

plant state at M intersample points in the steady state. Next, the intersample observer

was proposed, which increased the stability margin by estimation and compensation of

the intersample response. The proposed method was further extended to systems with

time delay. In section 3.4, two multirate repetitive controllers were proposed, which were

1) feedback approach based on internal model principle and 2) feedforward disturbance

rejection approach based on the open-loop estimation and switching function. By using

the latter approach, it became possible to reject high-order periodic disturbance without

sacrifice of the closed-loop characteristics.

The perfect disturbance rejection (PDR) controller was applied to the track-following

mode of hard disk drives (HDD) and the visual servo systems of robot manipulators in

chapter 6. In section 6.2, the first order repeatable runout (RRO) of HDD was rejected by

PDR. The intersample observer was implemented, and analysis of the frequency response

proved the recovery of the stability margin. In section 6.3, high-order RRO was taken

into account, and it was rejected by both feedback and feedforward multirate control.

The advantage of the feedforward approach was demonstrated by the frequency response

of the closed-loop system. Next, in section 6.4, simulations and experiments showed that

PDR had high performance in the visual servo system of robot manipulators.

In section 4.3, novel discretization methods for both controller and observer were

developed based on perfect state matching (PSM) control. This method was applicable

to both feedforward and feedback controllers. In section 4.4, PSM was extended to the

system with relatively long sampling period (Tu < Ty). The remarkable advantages of

the PSM were 1) the proposed method was based on the closed-loop system and 2) the

transient responses were preserved independent of the sampling period. As a result, the

stability of the discretized system was assured.

Perfect state matching (PSM) control was applied to motion control systems in chapter
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7. In section 7.2, position control using a dc servomotor was selected as an example, and

simulations and experiments were performed, the results of which indicated that the

proposed method had better performance than the Tustin transformed digital controller.

Next, in section 7.3, a novel vibration suppression controller was developed for hard

disk drives, in which the mechanical resonance mode was relatively close to the Nyquist

frequency.

In the application part of this dissertation, the proposed methods were not applied

to systems with hardware restriction of short sampling period (Tu > Ty). There may be

no appropriate applications at the laboratory level, however, this category includes large

scale systems such as chemical plants and steel mills. For these systems, it is possible to

improve plant state estimation by using multirate output control, which can be extended

from the results of section 4.3.3.

As a conclusion, this dissertation succeeded in constructing a general and integrated

framework of multirate sampling control. While the theoretical novelty is important, the

engineering significance is immeasurable, since the proposed methods proved to be prac-

tical methods which make full use of computer performance. In the application examples,

the performance of the proposed method was superior to that of the conventional method.

Moreover, the proposed method has already been implemented in commercial products.

These facts show that this dissertation is a major breakthrough in control engineering

and has broken down the wall which conventional technology could not overcome.
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Restriction case 1 (Tu > Ty) case 2 (Tu = Ty) case 3 (Tu < Ty)

Applications Large scale system Usual system, Ser-

vomotor

HDD, Visual servo system

Feedforward

• Perfect track-
ing control

(section 2.4)

• Controller
discretiza-

tion (section

4.3,7.2)

• Perfect track-
ing control

(section 2.3,

5.2)

• Inter-sample perfect

tracking control (section

2.4, 5.3)

• Feedforward repetitive

disturbance rejection

(section 3.4, 6.3)

Feedback

• Improvement
of Estimation

(Extension of

section 4.3.3)

• Controller
and observer

discretiza-

tion (section

4.3,7.2)

• Perfect disturbance re-

jection (section 3.3, 6.2)

• Intersample observer

(section 3.3, 6.2)

• Feedback repetitive dis-
turbance rejection (sec-

tion 3.4, 6.3)

• Controller discretization
(section 4.4)

• Vibration suppression in
semi-Nyquist frequency

region (section 7.3)

Table 8.1: General framework of multirate sampling control for digital motion control
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Appendix A

Proof of (2.14)

In this section, it is shown that (2.14) equals (2.13). It has already been proved for the

case of one-degree-of-freedom [76]. It is now extended to two-degree-of-freedom.

Let the right and left coprime factorizations of P [z] be

P [z] =NM−1 = M̃
−1
Ñ . (A.1)

All internally stabilizing controllers C 1 and C2 can be parameterized as in [74]

C1 = (X̃ −QÑ )−1K, (A.2)

C2 = (X̃ −QÑ )−1(Ỹ −QM̃ )

= (Y −MQ)(X −NQ)−1, (A.3)

where X,Y , X̃, Ỹ ∈ RH∞ satisfy the following Bezout identity.
 X̃ −Ỹ
−Ñ M̃





 M Y

N X


 = I (A.4)

Here, the following theorem is proved in [76].

Theorem A.1 Suppose P [z] = C(zI − A)−1B +D where (A,B) is stabilizable and

(C,A) is detectable. Select F and K such that AF
�
= A+BF and AH

�
= A+HC are

stable. The parameters satisfying (A.1) and (A.4) are represented by

M [z] =


 AF B

F I


 , N [z] =


 AF B

C +DF D




X̃[z] =


 AH −B −HD

F I


 , Ỹ [z] =


 AH −H

F O




M̃ [z] =


 AH H

C I


 , Ñ [z] =


 AH B +HD

C D



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X[z] =


 AF −H
C +DF I


 , Y [z] =


 AF H

−F O


 .

From the above parameterization, it is shown that (2.14) equals (2.13). In Fig. 2.5,

consider the state observer described by

x̂[i+ 1] = AHx̂[i]−Hy[i] + (B +HD)u[i]

ŷ = Cx̂[i] +Du[i], (A.5)

where x̂ is the estimated plant state. Equation (A.5) can be represented by the following

transfer functions.

x̂ = −(zI −AH)
−1Hy + (zI −AH)

−1(B +HD)u,

ŷ = −C(zI −AH)
−1Hy

+{C(zI −AH)
−1(B +HD) +D}u

= (I − M̃ )y + Ñu (A.6)

The error of the estimated output is obtained as

ey = ŷ − y = −M̃y + Ñu. (A.7)

From the above equations, (2.14) is transformed into (2.13) as follows.

u = F x̂+Qey +Kr

= −F (zI −AH)
−1Hy + F (zI −AH)

−1(B +HD)u

+Qey +Kr

= Ỹ y + (I − X̃)u+Q(−M̃y + Ñu) +Kr (A.8)

(X̃ −QÑ )u = (Ỹ −QM̃)y +Kr (A.9)

u = (X̃ −QÑ )−1(Ỹ −QM̃ )y

+(X̃ −QÑ )−1Kr (A.10)

= C1r +C2y (A.11)
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Appendix B

Derivation of (2.20)

From (A.2), the derivation of (2.20) is as follows [74].

C1 = (X̃ −QÑ )−1K

= (X̃ −QÑ )−1{(X̃ −QÑ )M − (Ỹ −QM̃)N}K (B.1)

Since the following equations are satisfied from the Bezout identity (A.4),

X̃M − Ỹ N = I, M̃N = ÑM (B.2)

(B.1) is rewritten as

C1 = {M − (X̃ −QÑ )−1(Ỹ −QM̃ )N}K
= (M −C2N )K. (B.3)
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Appendix C

Proof of (3.51)

In this section, the optimum solution of (3.50) is obtained by the Lagrange’s undetermined

multiplier method.

Defining Ãpd =


 AX

AY


, the problem of (3.50) can be rewritten as

min
F d

∥∥∥∥∥∥

 AX

AY


+


 X

Y


F d

∥∥∥∥∥∥ s. t. AY + Y F d = O. (C.1)

If the Frobenius norm is adopted, this problem can be formulated by

min
F d

‖E‖F , E = AX +XF d, s. t. AY + Y F d = 0 (C.2)

Decomposing each row as AX = [ax1, · · · ,axnp],AY = [ay1, · · · ,aynp ],E = [e1, · · · ,enp ],

and F d = [f 1, · · · ,fnp
], (C.2) is rewritten as

min
F d

‖ei‖2, ei = axi +Xf i, s. t. ayi + Y f i = 0, for i = 1, · · · , np, (C.3)

because ‖E‖2
F =

∑np

i=1 ‖ei‖2
2.

The problem of (C.3) can be solved by the Lagrange’s undetermined multipliermethod.

The Lagrange function is defined by

g = eTi ei + λT (ayi + Y f i)

= (axi +Xf i)
T (axi +Xf i) + λT (ayi + Y f i)

= aT
xiaxi + aT

xiXf i + fT
i X

Taxi + fT
i X

TXf i + λTayi + λTY f i. (C.4)

The solution of (C.3) is obtained from (C.5) and (C.6).

∂g

∂f i

= (aT
xiX)

T +XTaxi + 2X
TXf i + (λ

TY )T

= 2XTaxi + 2X
TXf i + Y Tλ = 0, (C.5)
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∂g

∂λ
= ayi + Y f i = 0 (C.6)

(C.5) is rewritten as

f i = −ZXTaxi −ZY Tλ/2, (C.7)

where Z = (XTX)−1. Substituting (C.6) for (C.7), it becomes

ayi − Y ZXTaxi − Y ZY Tλ/2 = 0. (C.8)

Thus, the undetermined multiplier λ is obtained by

λ = 2(Y ZY T )−1(ayi − Y ZXTaxi). (C.9)

Substituting (C.7) for (C.9), the solution of (C.3) is given by

f i = −ZXTaxi −ZY T (Y ZY T )−1(ayi − Y ZXTaxi)

= (ZY T (Y ZY T )−1Y ZXT −ZXT )axi −ZY T (Y ZY T )−1ayi. (C.10)

Finally, (3.51) is proved by considering all i(= 1, · · · , np) as

F d = (ZY T (Y ZY T )−1Y ZXT −ZXT )AX −ZY T (Y ZY T )−1AY

= Z[Y T (Y ZY T )−1Y ZXT −XT ,−Y T (Y ZY T )−1]Ãpd. (C.11)
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