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Notation

1>

O ~8

>
E

defined as

matrix

row or column vector
identity matrix

zero matrix
transpose of A

inverse of A

continuous-time system
discrete-time system
continuous-time signal

discrete-time signal

2C(z:I-A)"'B+D

: shorthand for state space realization

the set of real n-dimensional vectors

the set of n x m real matrices

the set of proper and stable rational functions

norm of vector or matrix

2

z—transformation
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A
= /> |%i|? : the 2-norm of vector x

\/ >iz1 >ty |aij[* : the Frobenius norm of matrix A



Chapter 1

Introduction

1.1 Background of the Research

Owing to recent developments of the computer and interface hardware, digital controllers
are utilized for controlling almost all mechanical systems such as robots, motors, machine
tools, and hard disk drives, because of cost, reliability, flexibility, compactness, etc.

A generalized digital control system is shown in Fig. 1.1, where P.(s) is a continuous-
time plant to be controlled, C|[z] is a discrete-time controller implemented in digital
computer. d(t) and n(t) are disturbance and measurement noise, respectively. Because
the discrete-time controller has to deal with continuous-time signals in the digital control
systems, it needs to have two samplers S for the reference signal r(t) and the output y(t),

and one holder H on the input u(¢)'. Therefore, there exist three time periods T, T}, and

,,,,,,,,,,,,,,,,,,,,,,,,,,,, d(t)
r(t) rli] uli] u(t) y(t)
S H p
T Cl ) )
S . n(t)
yli] (Ty)

Figure 1.1: Digital control system.

!The reference signal is often given as a discrete-time signal r[i]. However, in this dissertation, it is
assumed to be a continuous-time signal r(t), and a sampler of the reference input is introduced in order

to construct general framework of multirate sampling control and to consider the intersample response

12



T, which represent the periods of r(t),y(t), and u(t), respectively. The input period T,
is generally decided by the speed of the actuator, D/A converter, or the calculation on
the CPU. Moreover, the output period 7, is also determined by the speed of the sensor
or the A/D converter.

Actual control systems usually hold hardware restrictions on these periods (7, and/or
T,). Moreover, in case of multivariable systems, there exist many time periods. However,
the conventional digital control systems make all periods equal to the longest period for
simplification. On the other hand, the multirate sampling control systems have been

studied from the point of view both of control theories and practical applications.

1.1.1 Theoretical Background

The range of theoretical research on digital controllers is very wide especially in the last
several decades. But, as to the subjects related to this dissertation, recent theoretical

advances are as follows [1].

1. Non-conventional digital controllers: general holds, general samplers, multirate con-

trol, time varying control, and periodically time varying control

2. Advanced sampled-data control theory: consideration of intersample response, lift-
ing, fast sample and fast hold approximation, and sampled-data H, and H,, prob-

lems.

Non-conventional digital controllers

Recently, non conventional digital controllers have been studied not only for multirate
controller but also for general hold circuits, general samplers, and time varying controllers
by many control theorists. Historically, the generalized hold is firstly introduced in [2].
Thus, this work should be reviewed here before multirate control theory is discussed.

As shown in Fig. 1.2, in the generalized hold approach, the control input is generated
by

a(t) = 3 h(t — iTy)uli), (1.1)

i=0

where h(t) is an arbitrary hold function and 77 is a frame period. This function is
also called the Chammas-Leondes’ generalized hold [1]. Utilizing the hold function as
a design parameter, it is possible to assign all poles only by the gain output feedback

without the state observer. This approach was extended to feedforward control in [3],

of y(t).
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where simultaneous pole assignment, exact model matching, decoupling, and optimal
noise rejection are successfully realized.

However, in this method, an arbitrary waveform is assumed to be generated as the hold
function A(t). In practice, it is very difficult to make arbitrary hold function because h(t)
is generally composed of exponential and sinusoidal functions. Thus, in [4], [5] and [6], the
pole assignment method was modified to the multirate hold, in which the control input
is piecewise constant, as shown in Fig. 1.3. Because this scheme is easily implemented
by ordinary D/A converters, the multirate hold is a practical solution of the generalized
hold.

Moreover, it is possible to assign not only poles but also zeros by the generalized
holds [3] and multirate holds [7, 8]. These results have brought great advantages because
the discrete-time plant usually has unstable zeros in the conventional single-rate digital
control system [9] and it is impossible to allocate zeros by feedback control.

On the other hand, the generalized samplers and multirate samplers have been devel-

oped in [1, 8, 10, 11], as dual schemes of generalized holds and multirate holds. In [10], an
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equivalent state feedback with loop transfer recovery (LTR) property is proposed based
on the multirate output control, in which the plant output is detected several times during
one control period. Next, in [8], multirate output control is proposed, which diminishes
all finite zeros and constructs stable inverse systems and output feedback controllers with
LTR property.

Other than the above work, many non-conventional digital controllers including multi-
rate sampling control have been developed from the point of view of the various concepts,
such as strong stabilization [12, 13, 14], simultaneous stabilization and simultaneous pole
assignment [12, 15], decentralized stabilization [16], adaptive control [17, 18], arbitrarily-
large gain-margin [12, 19|, parameterization of stabilizing multirate controllers [20, 21],
and feedback linearization for nonlinear system [22]. These results are well surveyed in
[1] which has more than 100 references.

To sum up, the non-conventional digital controllers including multirate controllers can
have the clear advantages, over the conventional single-rate controllers and sometimes even
over the linear time invariant continuous-time controllers [1]. However, [12, 23, 24, 25]
have indicated the theoretical negative aspects of the multirate sampling control. First,
[12, 23] have proved that the feedback characteristics such as disturbance rejection perfor-
mance and stability robustness against unstructured uncertainty can never be improved
by multirate control in cases without hardware restriction on sampling scheme (7}, = T,).
Second, [24] shows that the zero assign methods sometimes have disadvantages of large
overshoot and oscillation in the inter-sample points because the control input changes
back and forth very quickly. Third, the multirate control system often has very poor
performance against detection noise and modeling error [1, 25]. As a result, the previ-
ous multirate sampling control theories did not have many applications even though the

theoretical advantages were very interesting.

Advanced sampled-data control theory

After the non-conventional digital control theory was eagerly researched mainly in 1980s,
advanced sampled-data control theory has been focused on and developed very rapidly
26, 27]. Especially from 1990, a lot of important work about this topic has been done,
which has been stimulated by Chen and Francis [28, 29]. The advantage of this theory is
that the intersample behavior can be directly considered and designed.

The problem setup of this framework is shown in Fig. 1.4, where G(s) is a continuous-
time generalized plant with weighting function, C/[z] is a discrete-time controller, H is a
zero-order hold, and § is an ideal sampler. The exogenous input w contains disturbances

and reference signals, and the controlled output z is the signal which should be made
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Figure 1.4: Generalized plant for sampled-data system.
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Figure 1.5: Continuous-time lifting.

small or zero. The control input w is generated by the discrete-time controller, and the
measured output y is an input variable of the digital controller. This arrangement is
called the hybrid system because it has both continuous-time and discrete-time signals.

The formulation of the advanced sampled-data theory is to find the digital controller
C'[z] to minimize typically Hs or Hy norm from w to z [30, 31, 32, 33, 34]. One of the
most important mathematical methods in this framework is so-called “lifting” technique
which is introduced to deal with the difficulty of the hybrid system [35, 36]. In the lifting
technique, the continuous-time signal is chopped at the sampling points t = 0,7, 2T, - - -
and regarded as a sequence of functional segments, as shown in Fig. 1.5. By using this
idea, the hybrid system can be transformed to the equivalent discrete-time system which
preserves the norm.

Moreover, advanced sampled-data theory has been able to define the frequency re-
sponse, which can take into account the intersample behavior [37, 38]. Because the cal-
culation sometimes has numerical difficulty, [39] introduced the fast sample and fast hold

(FSFH) approximation. In the FSFH method, the continuous-time signals z is sampled
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at every T'/N, and w is held during 7'/N [40]. Thus, the original hybrid system can
be converted to the equivalent discrete-time system. The frequency response of FSFH
system has been proved to converge to that of the original hybrid system when N — oo.
This approximation is a practical and useful approach because it is applicable not only
to the analysis of the frequency response but also to the Hy and H,, synthesis.

Moreover, this advanced sample-data theory is extended to the multirate control prob-
lem in [41, 42, 43]. Thus, we can say that advanced sampled-data theory is complete from
the theoretical point of view.

However, in the present situation, this theory has solved only H, and H., control
problems, although many advanced topics are still been studied [26]. Thus, it is not
always applicable to all problems, since Hy and H,, synthesis is not always effective and
it makes several assumptions in obtaining the solutions.

Moreover, because it is based on the small gain theorem to assure the stability robust-
ness, the phase information of the uncertainty A is neglected, while the gain is assumed to
be bounded ||A|l« < 1. Thus, the conservative controller is generally obtained. Because
of this problem, in highly competitive industries such as the motion control systems of
hard disk drives, the conservativeness of the small gain theorem is sometimes too restric-
tive [44], and conventional analysis remains based on the Nyquist diagram. Especially in
the advanced sampled-data theory, analysis and synthesis based on the small gain theorem
can be more conservative [45]. Thus, it is not always suitable to practical systems with
highly demanding specifications such as very high speed and very high precision motion
control systems.

Although this theory has been applied to several practical systems such as a pneumatic
cylinder system [46] and hard disk drives [47, 48], more practical improvements such as
in [49] will be desired in the future.

1.1.2 Practical Background

On the other hand, many applications have included the multirate sampling control.
For example, in the head positioning system of hard disk drives, the head position is
detected by the servo signal embedded in disks discretely, as shown in Fig. 1.6. Thus, the
sampling frequency is restricted because it is determined by the rotational frequency and
number of the servo signals. On the other hand, the control frequency of the actuator
(voice coil motor) can be set faster than the sampling frequency of the head position.
Therefore, multirate estimation and control have been applied to hard disk drives in
[50, 51, 52, 53, 54, 55].

Another example is the visual servo system of robot manipulators. Although the
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Figure 1.6: Hard disk drive.

sampling period of the vision sensor such as a CCD camera is comparatively slow (over
33 [ms]), the control period of the joint servo is very fast (less than 1 [ms]). Therefore,
multirate controllers have been developed and implemented in the visual servo systems
[56, 57, 58].

The third example is the velocity or position control of industrial motors with low
precision encoders. In these systems, the sampling period cannot be set too short, because
the velocity information cannot be detected due to the low resolution of the encoder.
Therefore, the instantaneous speed observer has been developed in [59], which estimates
the inter-sample velocity with use of the discrete-time observer.

Next, the industrial control systems of servomotors have utilized multi-loop multirate
sampling controllers, because the time constants of the current, velocity and position loops
are quite different. Thus, it is a smart solution to set sampling periods of each control
loop independently [60].

Moreover, multirate filter bank is one of the hot research topics in the field of signal
processing. Recently, sampled-data control theory is applied to design of the filter banks
based on the continuous-time signal [61, 62].

In recent years, high performance and high precision intelligent encoders are being
developed which have signal possessors and communication equipment. If these encoders
are implemented to the motion control systems, the sampling frequency is fixed to the
communication speed. Thus, the multirate sampling control will play a more important

role in the future practical motion control systems.
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1.2 Motivations of the Dissertation

As mentioned above, multirate control systems have been very important in various areas
of control engineering. However, these topics have been developed separately both in the-
ory and application. The objective of this dissertation is to construct an integrated theory
of multirate sampling control and to further develop it into practical control methods.

In the first part of this dissertation, generalized theoretical framework for multirate
sampling control is constructed, which is based on novel control strategies of 1) perfect
tracking control (PTC) by multirate feedforward control, 2) perfect disturbance rejection
(PDR) control by multirate feedback control, and 3) perfect state matching (PSM) control
by multirate sampling control. In the second part, the proposed theory is applied to the
practical motion control systems such as servomotors of robot manipulators, hard disk
drives, two-mass systems, and visual servo systems.

The proposed method makes use of the extra degree-of-freedom of control input pro-
vided by multirate control, in the same way as previous theoretical papers [4, 5, 6, 10].
But, the significant feature of the proposed framework is that all the plant states are
directly controlled at every period by using the increased degree-of-freedom of the control
input. Because of this novel methodology, the transient time response of the plant state
becomes very smooth and ripple-free, and the control input is prevented from oscillat-
ing. From the knowledge of the deadbeat control [63], it is easily understood that plant
state becomes ripple-free by controlling state variable. But, this dissertation makes a first
attempt to apply it to the multirate control.

This concept of controlling state variables is very important from the practical point
of view. In many practical problems, the transient response characteristics is sometimes
much more important than optimizing a performance index [64], while recent control
theory is focused on the optimization problem. Especially in motion control systems, the
plant state includes the variables of position and velocity, and the control input generally
corresponds to the force command. Thus, it is physically reasonable to control the plant
state and control input to obtain desirable transient waveforms.

While recent control theories tend to depend on the numerical optimization by Riccati
equation or linear matrix inequality (LMI), this dissertation tries to obtain not numerical
solutions but analytical solutions if it is possible. Moreover, it takes up the challenge
to construct simple and clear control schemes, which are intuitively understandable and
easily applicable to practical motion control systems, because a complex and difficult
control theory does not always obtain the best results in the real world [65].

As mentioned in section 1.1.1, the theory for multirate control systems has been studied
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by many researchers, and many important results have already been obtained. However,
this previous work has never paid attention to the hardware restriction on the sampling
scheme. On the other hand, this dissertation makes first attempt to construct general
framework for systems with hardware restrictions in the sampling scheme.

This dissertation also focuses on the intersample response and sometimes utilizes the
fast sampling technique, following the advanced sampled-data theory. As mentioned in
section 1.1.1, advanced sampled-data theory is applicable to the multirate system [41,
42, 43]. But, the solution does not let us know the physical advantage of the multirate
sampling scheme, although it gives the mathematical optimization. However, by using
the proposed method, we find that the essential and intuitive advantages of multirate
control are 1) to compensate large phase delay generated by the zero-order hold, 2) to
reject disturbance at intersample points, 3) to improve tracking performance without
unstable zero problem, and 4) to control plant state directly at every period. As will be
demonstrated in chapter 6, improvements introduced by multirate control are superior to
those of optimizing intersample response. Thus, it can be said that this dissertation gives
a breakthrough in control engineering.

The most important progress of recent control engineering is the robustness against
plant uncertainty. This dissertation also takes care of this problem. But, in motion control
systems, it has become possible to design robust servo system by simple ways such as the
disturbance observer [66, 67]. Thus, these simple and practical methods are utilized in

this dissertation.

1.3 Outline of the Dissertation

The outline of this dissertation is illustrated in Fig. 1.7. This dissertation consists of two
parts: theory and applications. All chapters on theory are independent from each other,
except for several equations referred from other chapters. The chapters on applications
correspond to the respective chapters on theory.

The details of each chapter are as follows.

In chapter 2, a novel perfect tracking control (PTC) method is proposed based on
multirate feedforward control. The features of PTC are 1) the controller can be designed
without considering the unstable zero problem of discrete-time plants, 2) the plant state
matches the desired trajectories at every sampling point of reference input, and 3) high
robust performance is assured by the robust feedback controller because the proposed
controller is completely independent of the feedback characteristics. Moreover, by gen-

eralizing the relationship between the sampling period of plant output and the control
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Figure 1.7: Outline of this dissertation

period of plant input, the proposed method can be applied to various systems with hard-
ware restriction in the sampling scheme, leading to higher performance. Next, it is shown
that the structure of the proposed perfect tracking controller is very simple and clear.

In chapter 3, novel multirate feedback controllers are proposed for digital control
systems, where there is a restriction that the speed of the A/D converters is slower than
that of the D/A converters. The proposed feedback controller assures perfect disturbance
rejection (PDR) at M intersample points in the steady state. The proposed method is also
extended to systems with time delay. Moreover, an intersample observer is developed in
order to reduce phase delay caused by zero-order hold and to increase the stability margin
by estimation and compensation of the intersample response. Next, the PDR is applied
to the periodic disturbance rejection problem. The novel scheme of repetitive control
is proposed based on the open-loop estimation and switching function, which enables
rejection of periodical disturbance without any sacrifice of the closed-loop characteristics.
Finally, intersample disturbance rejection performance is optimized by the fast sampling
approach.

In chapter 4, a novel discretization method for continuous-time controllers is proposed

based on perfect state matching (PSM) control by which the states in the continuous-

21



time systems are completely reserved in the obtained sampled-data system. The features
of the proposed method are 1) multirate input control is employed, 2) the states of the
discretized sampled-data system completely match those of the original continuous-time
closed-loop system at every sampling period, and 3) the proposed method is applicable
to a static state-feedback and/or a dynamic controller. Next, discretization method of
observer is proposed based on multirate output control. Finally, the proposed method is
extended to systems with relatively long sampling periods.

In chapter 5, the perfect tracking control (PTC) proposed in chapter 2 is applied to
several motion control systems. First, the position control system of servomotor for robot
manipulators is considered as an example without special hardware restriction (7, =
T,). Combining the proposed feedforward controller with H, robust feedback controller,
perfect tracking performance is achieved with robustness. Second, the proposed method is
applied to track-seeking control of hard disk drive which is as an example with time delay
and long sampling period relative to the control input (7, < T}). For this system, it is
shown that the proposed controller enables higher speed movement when compared with
the conventional single-rate controller. Simulations and experiments both of servomotors
and hard disk drives are performed, and advantages of this approach are demonstrated.

In chapter 6, the perfect disturbance rejection (PDR) control developed in chapter 3
is applied to motion control systems, where the sampling period of the sensor is shorter
than the control period of the actuator. As examples, track-following mode of hard disk
drive (HDD) and visual servo systems of robot manipulators are considered. First, the
perfect disturbance rejection controller is applied to first-order disturbance mode of re-
peatable runout in HDD based on multirate feedback control. Second, the problem of the
feedback approach for higher disturbance mode is explained, and the open-loop observer
with switching function is implemented in order to overcome the problem. Moreover, the
intersample observer compensates the large delay generated by the hold and improves the
stability margin of the closed-loop system. Finally, the proposed method is applied to
visual servo systems by introducing the workspace controller and perspective transforma-
tion.

In chapter 7, the perfect state matching (PSM) control developed in chapter 4 is
applied to the motion control systems based on multirate sampling control. First, the
position control system for a dc servomotor with disturbance observer is utilized as an ex-
ample without hardware restriction in the sampling scheme. Simulations and experiments
are performed, and advantages of this approach are demonstrated. Because the proposed
method assures response matching independent of the sampling period, it enables to bring

out the maximum performance of a control system. Second, vibration suppression control
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is proposed based on multirate input control for a system in which the Nyquist frequency
is relatively closed to the mechanical resonance mode and the sampling period is longer
than the control period. For a two-mass system model of the hard disk drive, simulations
demonstrate the possibility of controlling the critical resonance mode.

In chapter 8, the proposed three control schemes of PTC, PDR, and PSM are re-
viewed, and the obtained results are classified by the hardware restriction of their sam-
pling schemes and according to the feedforward and feedback approaches. The constructed

framework is summarized, and the conclusion of this dissertation is stated.
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Part 1

Theory
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Chapter 2

Perfect Tracking Control Based on
Multirate Feedforward Control

2.1 Abstract

In this chapter, a novel perfect tracking control method based on multirate feedforward
control is proposed. The advantages of the proposed method are 1) the proposed mul-
tirate feedforward controller eliminates the notorious unstable zero problem in designing
the discrete-time inverse system, 2) the states of the plant match the desired trajecto-
ries at every sampling point of reference input, and 3) the feedback characteristics are
completely independent of the proposed controller. Thus, highly robust performance is
assured by the robust feedback controller. Moreover, by generalizing the relationship
between the sampling period of plant output and the control period of plant input, the
proposed method can be applied to various systems with hardware restrictions in the
sampling scheme, leading to higher performance. Next, it is shown that the structure of
the proposed perfect tracking controller is very simple and clear. The proposed method

is applied to position control systems of servomotors and hard disk drives in chapter 5.

2.2 Introduction

In digital motion control systems, tracking controllers are often employed for high-speed
and high-precision servo systems because the controlled plant follows a smoothed desired
trajectory. The best tracking controller is ideally the perfect tracking controller (PTC)
which controls the object with zero tracking error [68]. Perfect tracking control can be

achieved using d-step preview action and a feedforward controller C[z] which is realized
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Figure 2.1: Conventional perfect tracking control system.
by an inverse of the closed-loop system G|z], as shown in Fig. 2.1.
1 1 + P[z]Cs[7]
sl — _ 2.1
1l2] 29G4 2] 2P|z (2.1)
r[i] = yali + d| (2.2)

Here, d is the relative degree of G 4[z] and y4[i] is the desired trajectory.

However, the discrete-time plant P|[z] discretized by the zero-order hold usually has
unstable zeros [9]. Thus, C1[z] becomes unstable because G 4[z] has unstable zeros. There-
fore, in conventional digital control systems utilizing zero-order holds, the perfect tracking
control is usually impossible.

From this viewpoint, two feedforward control methods have been proposed for the
discrete-time plant with unstable zeros [68]. First, the stable pole zero canceling (SPZC)
controller cancels all poles and stable zeros of the closed-loop system, which has both phase
and gain errors caused by the uncancellable unstable zeros. Second, the zero phase error
tracking controller (ZPETC) adds the factors which cancel the phase error, to SPZC.
However, the gain error caused by the unstable zeros remains. There have also been
attempts to compensate for the gain error of ZPETC [69, 70, 71]. However, those efforts
were not able to realize perfect tracking control because zero-order holds were employed.

In this chapter, a novel perfect tracking control method is proposed by using multirate
feedforward control. In the proposed scheme, the tracking error of plant state becomes
completely zero at every sampling period of reference input for a nominal plant with-
out disturbance!. Moreover, by combining the proposed feedforward controller with a
robust feedback controller such as disturbance observer or H., controller, high tracking

performance is preserved even if the plant has modeling error and disturbance.

!The word of “perfect tracking control” is originally defined in [68], which means the plant output

perfectly tracks the desired trajectory with zero tracking error at every sampling point.
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The unstable-zeros problem of the discrete-time plant has been resolved by zero assign-
ment based on multirate control [3, 7, 8]. However, it has been shown that those methods
sometimes have the disadvantages of large overshoot and oscillation in the intersample
points because the control input changes back and forth very quickly [24]. On the other
hand, the proposed method never has this problem because all of the plant states (e.g.,
position and velocity) are controlled along the smoothed desired trajectories.

Recently, modern sampled-data control theories have been developed, which can opti-
mize the intersample response (e.g., [27, 26, 42]). However, the proposed method has the
practical advantages that 1) the design method and structure of the controller are simple
and clear, and 2) no complex calculations for optimization are required.

The contents of this chapter are as follows. In section 2.3, the perfect tracking con-
troller is proposed in the simplest case for a single-input single-output (SISO) plant with-
out hardware restrictions in the sampling scheme. Next, the proposed method is extended
to applications in various systems with hardware restrictions by generalizing the sampling

periods.

2.3 Perfect Tracking Control without Hardware Re-

strictions

A digital tracking control system usually has two samplers for the reference signal r(¢)
and the output y(t), and one holder on the input u(t), as shown in Fig. 2.2. Therefore,
as mentioned in chapter 1, there exist three time periods 7,7y, and 7}, which represent
the periods of r(t),y(t), and u(t), respectively. The input period 7', is generally decided
by the speed of the actuator, the D/A converter, or the calculations on the CPU. On the
other hand, the output period T}, is determined by the speed of the sensor or the A/D
converter.

In this section, the perfect tracking control is proposed in the simplest case for a
SISO plant without hardware restrictions on the sampler and holder (7, = T;,) . Because
actual control systems usually have restrictions on T, and/or Tj,, the proposed method is
extended to general systems with these restrictions (T}, # T),) in section 2.4.

In the proposed multirate feedforward control, the control input u(t) is changed n
times during one sampling period (7)) of reference input r(t), as shown in Fig. 2.3. Here
n is the plant order. The advantage of the proposed method is that the tracking error of

plant state becomes perfectly zero at every T..
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Figure 2.3: Multirate feedforward control.

2.3.1 Plant Discretization and Parameterization
Consider the continuous-time nth-order plant P.(s) described by
x(t) = Acx(t) + bou(t) , y(t) = cex(t). (2.3)

The discrete-time plant P[z,] discretized by the short sampling period T), (= T),) of Fig.

2.4 becomes
xzlk+1] = Asx[k] + bsulk] (2.4)
ylk] = csxlkl, (2.5)
where (k] = x(kT),), zs 2 5Ty and
A, 2 eAcTy, b, 2 /OTy eAchch, Cs 2 Ce. (2.6)

Thus, the discrete-time plant P[z] discretized by the multirate sampling control of Fig.
2.4 can be represented by

x[i+1] = Ax[i]+ Buli (2.7)
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Figure 2.4: Multirate sampling control at same interval.

yli] = Cx[i| + Dulil, (2.8)

where x[i] = x(iT}), z = £ ¢sTr | and multirate input and output vectors u,y are defined as
ulil = fulil, - unlil)” = [T u((k+ DT ul(k+n = DT, (29)

yli] 2 [alil- - yalil]” = [T, y((k+ DT,) - y((k+n = DT, (2.10)

and matrices A, B, C, D are given by 3

A" | Av B, A™%, ... Ab, b, |
e cs 0 0 e 00
21 c.A, c.b. 0 .0 0| (2.11)
Cc|D , . .
I (:SAZ_1 cSAZ_QbS cSAZ_?’bS .- esby 0 |

Concerning the matrices B and C, the following theorems are obtained in [6, 10, 72].

2The operations of (2.9) and (2.10) are called “discrete-time lifting” in advanced sampled-data control
theory [27] .
3For example, in case of n = 2, (2.11) is obtained as follows.

xk+1] = sxlk] + bsulk]
x[k+2] = sk + 1] + bsulk + 1] = A (Asx[k] + boulk]) + byu[k + 1]
= A2x[k] + Ab.ulk] + boulk + 1]
ylkl = w[k]

ylk+1] = cszlk+ 1] = cs(Asz[k] + bsulk])

[k + 2] AQ\Ab b, a[k]
ylk] = ulk]

ylk +1] A, 0 ulk + 1]
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Theorem 2.1 If (A, b.) of the continuous system (2.3) is a controllable pair, the input
matriz B of the multirate system (2.7) is nonsingular for almost every sampling period
T,

Y-

Theorem 2.2 [f (A, c.) of the continuous system (2.3) is an observable pair, the output
matriz C of the multirate system (2.7) is nonsingular for almost every sampling period
T,

Y-

These theorems are easily proved in case of the SISO system. If the continuous system
(2.3) is controllable and observable, the discrete-time system (2.4) becomes controllable
and observable for almost every sampling period 7, [73]. Therefore, the matrices B
and C of (2.11) become nonsingular because they are equal to the controllability and
observability matrices of (2.4), respectively.

The proposed method employs the multirate-input control as a two-degree-of-freedom
control, as shown in Fig. 2.2. In the figures, H s and Sy represent the multirate hold
and the multirate sampler, respectively. The functions of H rs and Sy are shown in Fig.
2.4, and defined in (2.9) and (2.10).

In the ideal tracking control system, the transfer characteristic (G, ) from the com-
mand r to the output y is generally 1. In this chapter, the feedforward controller C1[z] is
considered so that the transfer characteristic from the desired state x4 to the plant state

x can be I.

2.3.2 Design of the Feedback Controller Cs|[z]

Before the perfect tracking controller C'[z] is designed, the feedback controller C's[z]
must be determined. Here, C'5[z] must be a robust controller which renders the sensitiv-
ity function S[z] = (I — P[z]C2[z])~! sufficiently small at the frequency of the desired
trajectory. The reason is that the sensitivity function S[z] represents variation of the
command response G, [z| under the variation of P|z] [74]. The feedback controller sat-
isfying this specification can be designed easily by using a disturbance observer approach
or Hy theory [66, 67, 75].

For systems without special hardware restrictions in which the feedback loop is single-
rate (1, = T,,), the feedback controller Cyzs] = {As2, bsa, €52, ds2} is designed for P.(s)

sTy

with a single-rate sampling period T}, (= Tj,), where z, = e Subsequently, Cs|z;] is

transferred to an n-input n-output system Cs[z] using (2.12), in order to realize C|z]
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and Cs|z] together, where z = e*Tv = 27

AL | AThe AL by by
Cs2 d82 0 0
02[2] = Ccs2Ag Cs2bso ds2 0
An—l An—2b An—3b d
L Cs2 Ao Cs2 Ao 52 Cs2A 4o s2 s2 ]

(2.12)

Because the feedback characteristics such as disturbance rejection performance and sta-

bility robustness are never improved by the multirate control in the case where there is

no hardware restriction in the sampling scheme (7, = T,,) [12, 23], it is not necessary to

design a n-input n-output multirate system as the feedback controller Cs[z]. Therefore,

a single-rate feedback controller Cy[z,] is adequate in the case of T}, = T,.

2.3.3 Design of the Perfect Tracking Controller C[z] — State
Space Approach

In this section, the multirate feedforward controller C';[z] is designed using the state space

approach. The proposed method can assure perfect tracking at every sampling point 7.

From Fig. 2.2, the multirate control law of the proposed method is described by *

uli] = Ci[2]r[i] + Cylz]yli]
= Fa[i] + Q[z)e,[i] + K[z] r[i],

(2.13)
(2.14)

where K|z],Q[z] € RH , are free parameters. Therefore, Fig. 2.2 can be transferred to

Fig. 2.5 [76]. The details of the derivation are shown in Appendix A. In this chapter,

Kz] is a constant matrix K.

4Strictly speaking, (2.13) should be written as U[z] = C1[z]R[z] + C2[2]Y[2]. In this thesis, however,

signals are simply represented in time domain in the same way as [68].
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Figure 2.6: Implementation of the proposed controller.

Because the estimation errors of the observer become zero (Z[i| = x[i], e,[i] = y[i] —

y|i] = 0) for the nominal plant, the system (2.7) is represented from (2.14) by
xz[i+ 1] = (A+ BF)z[i]+ BKr][i]. (2.15)

Because nonsingularity of matrix B is assured from theorem 2.1, the parameters F' and

K can be selected so that the following equations are satisfied.

A+BF =0, BK =1, (2.16)
From (2.16), F' and K are given by

F=-B'A, K=B" (2.17)
Therefore, (2.15) is described by

x[i + 1] = r[i], (2.18)
Utilizing the future desired state, let the reference input be

rli] = xq[i + 1], (2.19)

where x4[i] is the desired state. This method of control, where the reference input is
generated from the future desired trajectory, is known as preview control. From (2.18)
and (2.19), we find that perfect tracking x[i] = x4[i] is achieved at every sampling point
T,.

Here, Fig. 2.2 can be represented by Fig. 2.6 because (2.13) is rewritten as (2.20)
[74]. The derivation is shown in Appendix B. Therefore, the proposed controller is simply
implemented by

ufi] = (M[z] — C[z] N[z]) Kr[i] + Cs[2]yli] (2.20)
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Figure 2.7: Perfect tracking controller by the transfer function approach.

[A+BF|B|

F I | =
C+DF | D

where M [z] and N|z] are parameters of the coprime factorization of the plant P[z] =
N[z]M|z]7!. The two-degree-of-freedom controller (2.20) should be realized with mini-

mum order. Assuming the initial value of plant is known®, the initial value of controller
(2.20) should be set to be equal to that of the plant x[0].

(2.21)

I+:'FB
D+:Y(C+DF)B |’

From (2.16), the proposed controller has a similar structure to that of the robust
deadbeat controller [77] because it is composed of the feedforward controller with dead-
beat characteristics and a robust feedback controller. However, conventional deadbeat
controllers deal with fixed desired trajectories such as step or ramp function and followed
them within several sampling time. On the other hand, the proposed method deals with
arbitrary desired trajectories and there is no tracking delay. Therefore, in this chapter,
novel concepts are introduced such as the preview of the desired trajectory, the sampler

of desired trajectory, desired state variable, and multirate feedforward.

2.3.4 Design of the Perfect Tracking Controller C[z] — Transfer
Function Approach
In this section, the perfect tracking controller is designed using the transfer function

approach, which can be understood more intuitively than the state space approach of

section 2.3.3.

°In trajectory tracking control system, this assumption is generally satisfied because the initial velocity
is usually zero. If the initial value of plant z[0] is unknown, it works as an impulse disturbance and the

effect is rejected by the robust feedback controller Cs[z].
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From (2.7) and (2.8), the transfer function from x[i + 1] to w[i] and y[i] is described

uli] = B '(z[i+1] - Az[i])= B (I — 2 "A) x[i + 1]
B N s 2.22)
= |55 xfi + 1] (2.
yli] = 27'C z[i + 1]+ D uli]. (2.23)

In (2.22), the nonsingularity of matrix B is assured by theorem 2.1. Because all poles
of the transfer function (2.22) are zero, it is found that (2.22) is a stable inverse system.
Thus, if the control input is calculated by (2.24) as shown in Fig. 2.7, perfect tracking is

guaranteed because (2.24) is an exact inverse plant.

woli] = B™(I — 27" A) x4li + 1] (2.24)
The output of the nominal plant model can be calculated by

Yoli] = 27 'Cxyli + 1] + Dugli]. (2.25)

When the tracking error e is caused by disturbance or modeling error, it can be eliminated

using the robust feedback controller C5[z] by applying (2.26).
uli] = uoli] + Ca2)(y[i] — yolil) (2.26)

Next, it is shown that the feedforward controller (2.20) obtained by the state space
approach is identical with (2.25) and (2.26), which are designed in this transfer func-
tion approach. From (2.17) and (2.21), two feedforward paths M|[z]K and N|[z]K are
represented by

woli] = M[z]Kx4[i+ 1]
= (I+:'FB)Kxli +1]
= (I-2'B'AB)B 'z4[i + 1]
= B NI —z'A)xli +1], (2.27)

yoli] = N[2|Kaxgli+1]
= (D+:2(C+ DF)B)Kz,i + 1]
= (D+2z'(C-DB'A)B)B 'z i + 1]
= 2 'Cxyfi+ 1]+ DB (I — 2 ' A)x,fi + 1]
= 27 'Cxli + 1] + Dugli]. (2.28)
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From the above equations, it is found that the controllers obtained by the two different
approaches are equivalent and the structure of the proposed controller is very simple and

clear as shown in Fig. 2.7.
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2.4 Perfect Tracking Control with Generalized Sam-
pling Periods

In section 2.4, perfect tracking control was proposed for a plant without hardware restric-
tions on the sampler and holder (7}, = T},) . On the other hand, many industrial systems
often have hardware restrictions on both the sampling periods for detecting plant output
and the control periods for generating plant input. For example, in head-positioning con-
trol of hard disk drives and visual servo systems, the sampling periods of plant output
would be long, because the detection period of servo signals and video signals are shorter
than the period of control input. In contrast, systems with low-speed D/A converters
or CPUs have the restriction that the period of plant input is shorter than the sampling
period of plant output.

In this section, perfect tracking control is extended to applications in various systems
with the above hardware restrictions, by generalizing the output sampling period. Next,
it is shown that the structure of the proposed controller is very simple and clear. Finally,
two examples are presented to demonstrate the advantages of this approach through sim-
ulations and experiments of position control using a dc servomotor. The first example
shows that the proposed multirate feedforward control has better performance than the
single-rate controller even in the usual servo system without the special hardware restric-
tions, in which the sampling period of plant output is equal to the control period of plant
input. The second example indicates that the proposed method is applicable to a system
with special hardware restrictions, in which the output sampling period is longer than the

input period. For this system, the proposed method improves the intersample response.

2.4.1 Generalizations of the Sampling Periods

As mentioned in section 2.3, digital control system generally has three time periods 7', T},
and T, as shown in Fig. 2.8. Actual control systems usually have restrictions on 7, and/or
T, because the speed of actuators, sensors, CPU calculations, or A/D-D/A converters is
limited. In conventional digital control systems, these three periods are made equal to
the longer of the two periods T}, and 7}, for simplification both of theory and algorithm.

On the other hand, the authors have shown that perfect tracking control can be
achieved on every sampling point 7). by setting 7, = nT;,, where n is the plant order ,
as shown in section 2.3 [78]. In the following discussions, T, = nT, is regarded as the
condition for the perfect tracking control. We should consider the following two cases,

which are very common in the industry. In the first case, T, is decided in advance by the
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Figure 2.9: Multirate sampling control.

hardware restrictions, however, the plant output can be detected at the same or faster
period (T}, > T,,), as shown in Fig. 2.9(a). This case is referred to as case 1 in this chapter,
and includes the usual servo systems of 7T}, = T, without special hardware restrictions.
In the second case, T), is decided in advance, however, the plant input can be changed N
times during 77, as shown in Fig. 2.9(b). This case is referred to as case 2, and includes
systems with special hardware restrictions such as hard disk drives [79, 80], visual servo
systems [81], and servo systems with low precision encoders [59], as mentioned in section
1.1.2. In this case, the perfect tracking control can be assured at L (é N/n) intersample
points during 7.

For the above multiperiod systems, the longer period between T, and 7}, is defined

as the frame period T [1], and the z-operator is defined as z 2 Ty,

By using these
definitions, cases 1 and 2 can be dealt with together in the following discussions.

Fig. 2.10 shows the proposed multirate control scheme, in which the plant input is
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Figure 2.10: Generalized multirate sampling control.

changed N times during one frame period 7%, and the plant output is also detected M
times during 7'r. The positive integers M and N indicate input and output multiplicities,
respectively.

In case 1, the frame period and the input multiplicity are set to Ty = T, and N = n, as
shown in Fig. 2.9(a). The output multiplicity M is determined by the hardware restriction.

In case 2, the frame period and the output multiplicity are set to Ty =T, and M =1,
as shown in Fig. 2.9(b). The input multiplicity is decided by the hardware restriction.
However, it is necessary that N/n (= L) be an integer in the proposed method.

In Fig. 2.10, pj(j = 0,1,---,N) and vg(k = 1,---, M) are the parameters for the
timing of input change and output detection, which satisfy conditions (2.29) and (2.30).

O=po < <pe<..<punv=1 (2.29)
0<im<wm<..<vy<l (2.30)

If Ty is divided into equal intervals as shown in Fig. 2.4, these parameters are set to
i =7/N and v, = (k—1)/M.

2.4.2 Designs of the Proposed Controller

In this section, the proposed perfect tracking control method is presented. For simplifi-
cation, the plant is assumed to be a SISO system. The proposed method, however, will
be extended to deal with the MIMO system in section 2.5.2.

Plant Discretization and Parameterization

Consider the continuous-time nth-order plant P.(s) described by

z(t) = Acx(t) + bou(t) , y(t) = ccx(t). (2.31)
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The discrete-time plant P[z] discretized by generalized multirate sampling control
(Fig. 2.10) becomes

xz[i+1] = Ax[i|+ Buli (2.32)
yli] = Cx[i| + Dulil, (2.33)
where x[i] = x(iT), and matrices A, B, C, D and vectors u[i], y[i] are given by
[ eAch bl PR bN 1
C|D : : :
| cm | dun o dun |
RIAN . 1T RIAN . 1T
wli] = [wilil, - unlil], yli] = [yald], - yumli] (2.35)
by 2 o) eATbudr | e £ e (236)
Hj < Vi : Ccf((l:f :;(]Tfl) Ts Ach dr
dkj = H(i-1) <y < ot Ccf()( kD TfeACTbch : (237)

Vi S (-1 0

Design of the Feedback Controller C,|z]

Before the perfect tracking controller C'[z] is designed, the robust feedback controller
Cs[z] must be determined in order to make the sensitivity of the closed-loop system
sufficiently small.

Because systems with special hardware restrictions are considered in this section, the
feedback loop also may become multirate (T, < T, or T, > T,). Multirate feedback
controllers with these restrictions are proposed in chapter 3 and [41, 42, 43]. These
multirate controllers may improve the feedback characteristics. However, perfect tracking
control can be achieved, even if the single-rate feedback controller is simply designed with
a longer period between T}, and 7, and transferred to an M-input N-output controller
Cs|z] on Ty. For example, the feedback controller in case 2 (7, > T),) can be transferred
to a l-input N-output system by

_ alb, 3
c, | ds

C,lz] = R (2.38)
c, | ds

where { Ay, b, s, d;} is a single-rate controller designed with T},
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Design of Perfect Tracking Controller C|[z]

In this section, the multirate feedforward controller C';[z] is designed using the state space
approach in the same way as in section 2.3.3. In the proposed method, perfect tracking
control can be assured at every sampling point of reference input 7;.. For simplification, the
parameters of multirate control are assumed to be selected as p; = j/N, v, = (k —1)/M.
However, this assumption can be removed easily in the same way as in chapter 3.

The system of (2.32) is represented with the frame period T, and rewritten with the
reference period T, = Ty/L as ©

&[i + 1] = Az[i] + Buli], (2.39)

where ¢ 21 /L =n/N, and where matrices A, B and vectors & are given by

[ x[i + q| ] [ A ]
Zli+1]2 | alitlg |, A2 | Adr (2.40)
| x[i + Lq] | I ¢AcLT: ]
' B, O .- ... ... O]
: o
B2|B,, - B, O --- O (2.41)
: o
B, B, -+ - - By |
Bl = [b(l—l)n-i-h T '7bln] (l = 17 U aL) (242)

As shown in (2.13), the two-degree-of-freedom control law is described by
uli] = Fzli] + Q[z]ey[i] + Krl[i]. (2.43)

Because the estimation errors of the observer become zero (z = x,e, = y —y = 0) for

the nominal plant, from (2.39) and (2.43), this system is represented by
zi+ 1] = (A+ BF)z[i] + BKr[i]. (2.44)

And as nonsingularity of matrix B; can be assured by theorem 2.1, B of (2.41) also
becomes nonsingular. Therefore, the parameters F' and K can be selected such that the

following equations are satisfied.

A+BF =0, BK=1, (2.45)
®In case 1, (2.39) is equal to (2.32) (z[i + 1] = Az[i] + Buli] ) because L = 1.
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From (2.45), F and K are given by
F=-B'A, K=B " (2.46)
Therefore, (2.44) is described by
o[t + 1] = v, (2.47)
Utilizing the future desired state, let the reference input be
Tali + q]
rli] = #qli + 1] = : , (2.48)
x4l + Lq|
where &,4[i] is the desired state. From (2.47) and (2.48), we find that perfect tracking

&[i] = x4t] is achieved at every sampling point 7). Using (2.46), the proposed controller

can be implemented by (2.20), as shown in Fig. 2.6.

Structure of Perfect Tracking Controller C|[z]

In this section, it is shown that the structure of the perfect tracking controller is very
simple and clear. For system without hardware restrictions, that was shown in section
2.3.4. In this section, the results of section 2.3.4 are extended to system with hardware
restrictions (T, # T,,). From (2.46) and (2.21), the two elements M [z] K and N[z]K in
Fig. 2.6 are represented by

MK = (I-:'B'AB)B, (2.49)

N[:]JK = »'CBB™'+D(I-:"'B'AB)B". (2.50)

On the other hand, from (2.32) and (2.39), the transfer function from w[i] to &[i + 1] is
described by

A | B
)i+ 1| = | ——| uli]. 2.51
i+1 [ = } g 251)
The inverse system of (2.51) is given by
_ A-BB 'A|BB’
uli] = ~ -1~ =1
-B'A | B

Based on the definitions of A and B in (2.40) and (2.41), the following equations are

&[i + 1. (2.52)

obtained.
L-1
——~ ~
A = [0,---,0,I|A, (2.53)
B = [0,---,0,I|B (2.54)
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Figure 2.11: Structure of the proposed controller.

Thus, the (1,1) element of matrix (2.52) becomes
A-BB'A=A-[0,--,0,I|A=0. (2.55)

Therefore, (2.52) is given by 7

-1

&[0+ 1]. (2.56)

um:{ O |BB

B A ‘ B

Based on (2.49) and (2.56), it is found that M[z]K is equal to the transfer function
from &[i + 1] to w[i], which represents the stable inverse system. This point is one of the
advantages of multirate control because the inverse system becomes unstable in single-rate

systems. Moreover, (2.33) is described using (2.56) as ®

yli] = z'Cz[i + 1] + Duli]
= z'C[O,---,0,I|z[i + 1]

+D(I-:'B ' AB)B '&[i + 1]. (2.57)
Based on (2.50) and (2.57), it is shown that IN[z] K represents the transfer function from

x[i + 1] to y[i].
The structure of the proposed controller is shown in Fig. 2.11. The plant P|[z] is driven
by the stable inverse system, in the same way as the case without hardware restriction.
When the tracking error e is generated by disturbance or modeling error, the robust

feedback controller C's|z] acts to eliminate e.

"In case 1, (2.56) becomes u[i] = B~ (I — z='A) x[i + 1], which is obtained directly from x[i + 1] =
Ax[i] + Buli] of (2.32), because B = B.
8In case 1, (2.57) becomes y[i] = z~1Cx[i + 1], because D = O.
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Figure 2.12: Generalized multirate sampling control with time delay.

2.5 Extension to Time Delay and Multivariable Sys-

tem

2.5.1 Extension to System with Time Delay

In this section, the proposed perfect tracking control is extended to plants with time delay.
As shown in Fig. 2.12, the time delay can be considered to exist on the plant output. The

continuous-time plant with time delay T} is described by

z(t) = Acx(t)+ beu(t) (2.58)
y(t) = cox(t—Ty). (2.59)

The time delay can also be considered to exist on the plant input, and expressed by [82]

z(t) = Acx(t)+ beu(t — Ty) (2.60)
y(t) = cox(t). (2.61)

This section adopts (2.59) because it can make this extension more simple theoretically.
Moreover, the time delay is assumed to be T; < T for simplification. The proposed
methods, however, can be extended to the time delay of Ty > Ty by the same way as [82].

Consider the discrete-time plant discretized by the multirate sampling control with
time delay. Because (2.58) is not related to the time delay, the discrete-time state equation

becomes
xli + 1] = Az[i] + Buli], (2.62)

where A and B are given by (2.34). From (2.39), the intersample plant state can be
represented by

@i + 1] = Az[i] + Buli]. (2.63)
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Figure 2.13: Time chart of the time delay.

Considering the output equation, some output (y[i] in case of Fig. 2.12) is detected
at the time before ¢ = iT', and the other output (y2[i],- - - yali]) is detected from ¢ = iTs
tot = (i+ 1)Ty. The latter output can be easily calculated from (2.33) by selecting the
parameters v, appropriately.

On the other hand, the former output depends on the previous control input w[i — 1],

as shown in Fig. 2.13. Thus, the output is given by

yli] = cx[i] + guli — 1], (2.64)
A ApT. A a Tq
c=cee cVy f’g:[gl’...’gN]’l/y:—T— (265)
f
o <=L b Aoty () Ay
A —y T
g; = -1+ H—1) < Uy < -1+ 17 _cceACVny f(l—ufj)‘Tf eAC bch ) (266)

—1+p <y, <0 . 0

where n,, is the number of the of wu[i — 1] elements during 7 as shown in Fig. 2.13.

Collecting all output, the multirate output vector y[i] = [y1[i],---,yan[i]]T can be
represented by
yli] = Csxli] + Dsuli] + Gsuli — 1], (2.67)

where Cjs, D5 and G are calculated by (2.36), (2.37), and (2.64).
Therefore, by the same discussion as section 2.3.4 and 2.4.2, the perfect tracking

controller can be designed by
wi] = uoli] + C2[z](yli] — yoli)), (2.68)

where ug|i] and y,[i] are obtained by

N RN 1 2.69
woli] = 1 B Zali + 1], (2.69)
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Figure 2.14: Perfect tracking controller with time delay.

yoli] = 27 'Cszyli + 1]+ (Ds + 27 Gs)ugli] (2.70)
= [0,--+,0,z7'Cs|z4[i + 1] + (Ds + 27 Gs)uoli]. (2.71)

The block diagram of this controller is shown in Fig. 2.14.

2.5.2 Extension to Multivariable System

In the above discussion, the plant was assumed to be a single-input single-output (SISO)
system. In this section, the proposed perfect tracking control method is extended to
multi-input multi-output (MIMO) systems.

Consider the continuous-time plant described by

z(t) = A.x(t)+ B.u(t) (2.72)
y(t) = Cex(t), (2.73)
B.=[ba, -, bon],Cc= | : (2.74)

where the plant state & € R", the plant input w € R™, and the plant output y € R".
For this plant, multirate input and multirate output controls are employed. In these
schemes, the [th (I = 1,2,---,m) plant input is changed N; times during one frame period
Ty, as shown in Fig. 2.15. On the other hand, the ¢th (¢ = 1,2,---,p) plant output is
detected M, times during one frame period, as shown in Fig. 2.16. The discrete-time

transfer function from the [th input to the gthe output is given by

y,li] = [%’Di} wi (2.75)
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Figure 2.15: Multirate input control.
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Figure 2.16: Multirate output control.

Y[ = ali) - yarn )7, wli) 2 fuali], - w [)7, (2.76)

The coefficient matrices of (2.75) are obtained from (2.34) by substituting b, and ¢, for
b. and c., respectively.
From (2.75), the multivariable multirate system is formulated by
xzli+1] = Ax[i]+ Buli (2.77)
yli] = Cx[i| + Dulil, (2.78)
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where x[i] = x(iTy), and input and output vectors u[i], y[i] are defined as

1>

u[z] [ul[i]?"'vum[i“T = [ull[i]?"'7u1N1 [i]?u21[i]?"'7umNm[iHT7 (2'79)

1>

yli] [y l], -yl = [yaald), - yaan i), yaalil, - ypns, [))7 (2.80)

and matrices A, B, C, and D are given by

(AT | B, ... B, |
{—’—A B}é Cir |Pu - Dim | (2.81)
C|D : : :

| C, |Dy - Dy

Because discrete-time representation is obtained, the perfect tracking controller can
be designed in the same way as section 2.3. The conditions for perfect tracking are given
by

A+BF=0, BK=1, (2.82)

as in (2.16). Thus, the input multiplicities N; (I = 1,2,..,m,) should be selected such
that the matrix B can have full row rank. The output multiplicities M, (¢ =1,2,---,p)
are determined by the hardware restriction.

The selections of the N; are made by the following condition.
Nl 2 o)} (283)

where (o1,...,0.,) is a set of generalized controllability indices of (A., B.) which are
introduced by author [72, 83, 84], and which are defined as follows.

Definition 2.1 Generalized controllability indices of (Ac, B.) are defined as follows for
A. € R”" and B, € R™™. If (A, B.) is a controllable pair, n linearly independent

vectors can be selected from
{ber, .., bem, Acber, .., Acbem, ., AV b, )
where B, = [be1, .., bem). Letting ¢ be a set of these n vectors, oy are defined by

o1 = number{k|AF'b, € ) (2.84)

> o =n. (2.85)
=1
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In case of the single input plant (m = 1), this index is simply the same number as
the plant order (o3 = n). The above definition includes that of Kronecker invariants or
controllability indices defined in [6].

Concerning the matrix B, the next theorem is proved by the author in [72] for the
generalized controllability index. In the case of the controllability index, it is also proved
in [6].

Theorem 2.3 Let (A., B.) be a controllable pair. If the input multiplicities satisfy N, >
o for (1 =1,2,..,m), for almost all p;;(l =1,2,..,m,j5=1,.., N, — 1) and almost all T,

the matriz B has full row rank, i.e.
rankB = n. (2.86)

Because the full rank of the matrix B is guaranteed by this theorem, the solution of
(2.82) is exactly obtained by

F=-B A, K=B", (2.87)

where B~ is generalized inverse of matrix B [85]°. By using these parameters F and K,

the perfect tracking controller is given by (2.20), as shown in Fig. 2.6.

2.6 Summary

A novel perfect tracking control method using multirate feedforward control was proposed.
The proposed method was extended to various systems with hardware restrictions on
both the sampling and control periods. Moreover, it was shown that the structure of the
proposed perfect tracking controller is very simple and clear. Next, the proposed method
was extended to systems with time delay and multivariable systems.

The advantage of this method is that the feedforward controller could be designed
without considering the unstable zero problem. Moreover, by combining the proposed
feedforward controller with a robust feedback controller, high robust tracking performance

is obtained.

9Tf the input multiplicities are selected to minimum number (N; = ¢;), the matrix B becomes square
and B~ = B!
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Chapter 3

Perfect Disturbance Rejection
Control Based on Multirate
Feedback Control

3.1 Abstract

In this chapter, novel multirate feedback controllers are proposed for digital control sys-
tems, where the speed of the A/D converters is restricted to be slower than that of the
D/A converters. The proposed feedback controller assures perfect disturbance rejection
(PDR) at M intersample points in the steady state. Next, the proposed method is ex-
tended to systems with time delay. Moreover, the intersample observer is developed in
order to reduce the phase delay caused by zero-order hold and to increase the stability
margin by estimation and compensation of the intersample response.

In section 3.4, the PDR is applied to the periodic disturbance rejection problem. The
novel scheme of repetitive control is proposed based on the open-loop estimation and
switching function, which enables the rejection of periodical disturbance without any
sacrifice of the closed-loop characteristics. Finally, the intersample disturbance rejection
performance is optimized using the fast sampling approach.

The proposed controllers are applied to the track-following modes of hard disk drives

and the visual servo system of robot manipulators in chapter 6.

3.2 Introduction

In chapter 2, a novel multirate feedforward controller has been proposed. Next, in this

chapter, a multirate feedback controller will be considered. Historically, many multirate
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feedback control theories has been developed as reviewed in chapter 1. These theoretical
approaches have reached the negative result that feedback characteristics such as distur-
bance rejection performance and stability robustness are never improved by the multirate
control [12, 23].

However, this theoretical result is limited to the case where there is no hardware
restriction on the sampling scheme (7, = 7). On the other hand, many industrial
systems have hardware restrictions in their sampling mechanisms. Thus, in this chapter,
digital control systems where the sampling periods of plant output are longer than the
control periods (7, < T,) are considered. For these systems, novel multirate feedback
controllers are proposed which improve disturbance rejection performance and stability
margin.

The restriction of T,, < T, may be general because D/A converters are usually faster
than the A/D converters. In particular, head-positioning systems of the hard disk drive
(HDD) and visual servo systems of robot manipulators belong to this category, because
the sampling rates of the measurement are relatively slow, as mentioned in section 1.1.2.

The structure of this chapter is as follows. In section 3.3, a novel multirate feedback
controller is proposed, which achieves perfect disturbance rejection (PDR) at M inter-
sample points. Next, an intersample observer is designed, which enables estimation of
intersample plant state and increases stability margin. In the repetitive control system
[86, 87], conventional single-rate controllers do not have sufficient intersample perfor-
mance to reject disturbance in the semi-Nyquist frequency region [88]. In section 3.4, the
proposed perfect disturbance rejection controller is modified for repetitive control, and
applied to reject high order repeatable runout of hard disk drives.

Repetitive feedback controllers based on the internal model principle have the disad-
vantages that closed-loop characteristics worsen and it becomes difficult to assure stability
robustness [88]. Therefore, in section 3.4.2, a novel control scheme that never has these
problems is proposed based on open-loop estimation with switching function and distur-

bance rejection by feedforward approach.

3.3 Perfect Disturbance Rejection Control and Inter-

sample Observer

3.3.1 Plant Discretization by Multirate Sampling

For the restriction of T, < T, the frame period 7% is defined as Ty = T, , and the

dynamics of the controller is described by T%. For simplification, the continuous-time
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Figure 3.1: Multirate sampling control.

plant is assumed to be a SISO system in this chapter. The proposed methods, however,
can be extended to deal with the MIMO system in the same way as section 2.5.2.

In the proposed multirate scheme considered in this chapter, the plant input is changed
N times during T’ and the plant state is evaluated M times in this interval, as shown in
Fig. 3.1. The positive integers M and N are referred to as input and state multiplicities,
respectively. N is determined by the hardware restriction. In this section, the state
multiplicity is defined as M = N/n, where n is the plant order.

In Fig. 3.1, p1;(j =0,1,---,N) and vi(k = 1,---, M) are parameters for the timing of
input changing and state evaluation, which satisfy the conditions (3.1) and (3.2).

O:u0<,u1<,u2<...<uN:1 (31)
O<y<m<..<vy=1 (3.2)

If T}, is divided at equal intervals, the parameters are set to pu; = j/N and v, = k/M.

Consider the continuous-time plant described by
x(t) = Acx(t) + beu(t) , y(t) = cox(t). (3.3)
The discrete-time plant discretized by the multirate sampling control of Fig. 3.1 becomes
xli+ 1] = Az[i]| + Buli] , yli] = Cz[i], (3.4)

where x[i| = x(iT'), and where matrices A, B, C, and vector u[i] are given by

A B é eAch ‘ bl . bN (3 5)
C O CC ‘ 0 e O ? .
(I=p—1))T
b, £ / PO Ay dr i) 2 Tuali], - unli]]” (3.6)
(1—p5)Ty
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The intersample plant state at t = (i + vy )T is represented by

2

where @[] is a vector composed of the intersample plant state xy[i] = x((i + v4)Ty) of

Fig. 3.1.

!
1>

[i]
= (21 (i +v0)Tp) 2y (i + ) Ty), -2y (0 + DT (3.8)

The coefficient matrices of (3.7) are given by

Al Bll e BIN
Bl=| ¢ | : L (3.9)

AM BMl BMN

A

. (ve—pi—1)) T A
i < Vg S H]]Tf <Tb.dr

A > AN v
Ak = €ACVka, bkj = H(i—1) < < My fO( k=h-n)Ty ACTb dr .

Vi S (-1 0

3.3.2 Design of Perfect Disturbance Rejection Controller

In this section, a new multirate feedback controller is proposed based on the state-space
design method of the disturbance observer.

Consider the continuous-time plant model described by
(1) = Acpy(t) + bey(u(t) — d(t)) (3.10)
y(t) = copy(t), (3.11)
where d(t) is the disturbance input. Let the disturbance model be
Z4(t) = Acaza(t) , d(t) = ccaza(t). (3.12)
For example, step type disturbance can be modeled by
Aug=0, cq=1, (3.13)

and sinusoidal type disturbance with frequency w, can be modeled by

0 1
Acd = |: 9 ] , Ced = [1,0] (314)
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The continuous-time augmented system consisting of (3.10) and (3.12) is represented by

z(t) = A.x(t)+ boul(t) (3.15)
y(t) = cox(t) (3.16)
Acé{Acp _bcpccd}’bcé{bcp}’wé{wp}

O Acd 0 L4
C. = [Cep, 0].

Discretizing (3.15) using multirate sampling control, the intersample plant state at ¢ =
(i + vy)Ty can be calculated from the kth row of (3.7) by

xli+ 1] = Apzli]+ Bruli] (3.17)

Ak _ Apk %pdk ,Bk _ Bpk '
O Ay 0

For the plant (3.15) discretized by (3.4), the discrete-time observer at the sampling
points is obtained from Gopinath’s method by

oli+1] = Av[i]+ by[i] + Juli] (3.18)
zli] = Cofi] + dyli. (3.19)

As shown in Fig. 3.2, let the feedback control law be
uli] = upli] + wyli| = Fpapli] + Faxqli) = Fali], (3.20)

where F 2 [F,, F4]. Letting e,[i] be the estimation error of the observer (e,[i] = v[i] —

v[i]), the following equation is obtained.
&[i] = x[i] + Ce,li. (3.21)

From (3.17) to (3.21), the closed-loop system is represented by

a:p[z + I/k] Apk + Bkap Apdk + Bkad Bkaé a:p[z]
xyli+ 1) | = o) Ay, o) xyi] | - (3.22)
el + 1] (0] (0] A e,li]

Because full row rank of the matrix Bpk can be assured by theorem 2.3, F'; can be selected

such that the (1,2) element of the above equation becomes zero for all k =1,---, M.

Apdk + Bkad =0 (323)
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F

Figure 3.2: Multirate control with disturbance observer.

'U,[Z] HMuc(t) 3 PC(S) ye(t) S y[l]

Figure 3.3: State space representation of Csz].

The simultaneous equation of (3.23) for all £ becomes

A,+B,F;, = O, (3.24)

A, | B

pl

1>

| A, | B, | : : (3.25)

Ade BpM

From (3.24), F4 is obtained by
Fs=-B, A, (3.26)

In (3.22) and (3.23), the influence from disturbance x4[i] to the intersample state
xpli+vg] at t = (i4+vy)Tr can become zero. Moreover, x,[i] and e,[i] at the sampling point
converge to zero at the rate of the eigenvalues of APM + BpMFp and A (the poles of the
regulator and observer). Therefore, perfect disturbance rejection is achieved (x,[i + vy] =
0) in the steady state. The poles of the regulator and observer will be tuned by taking

account of the tradeoff between the performance and stability robustness.
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Substituting (3.18) for (3.20), the feedback type controller is obtained by
A+JFC b+ JFd | | oi
i { ol } , (3.27)
Yy

FC Fd

vli + 1]

2]

as shown in Fig. 3.3.

3.3.3 Design of Intersample Observer and Feedback Controller

Because the multirate system becomes a MISO system, the feedback gain F',, cannot be
uniquely decided only by the pole assignment of ApM + BpMFp. A simple solution to
eliminate this redundancy is to make the state-feedback control input w,[i] hold a constant

value during the sampling period, which is represented by

Up1 [4] -fy
wil=| ¢+ [=|: |&h (3.25)

upN [7’] fy

where f, is the state-feedback gain designed for the sampling period 7.

Because the above control law generates a large phase delay when using the zero-
order hold, a novel observer which estimates the intersample response is introduced in
this section. By using this observer, the state feedback gain F', is calculated. From the

estimated state (3.19) at the sampling points, the intersample plant state is estimated by!

a,[i] = Aya,li] + Byulil, (3.29)
where @,[i] = [&,[i + po], -, &p[i + py_1]]7, and A, and B, are calculated by (3.7).
Because the plant output cannot be measured during the sampling period, the intersample
state is calculated based on open-loop sense using the mathematical model. Convergence
of the estimation error can be assured at the sampling points.

Utilizing the intersample estimated state, let the state-feedback control input be
Up1 [7] fu 0] 1]
upli] = : = : = F,x,[i], (3.30)
unlil | L0 £ ] | @li ]

where f, is the state-feedback gain designed for the control period T,,.
Assuming u[i] = u,[i] on (3.30), the control input of (3.29) is represented by

upli] = Fui'p[i] = Fu(Api'p[i] + Bpu,[i). (3.31)

In (3.29), © and - represent the estimated and intersample variables, respectively.

95



(i -1+ :uN—nu+1)Tf

(i —1)Ty Ty

Figure 3.4: Time chart of the time delay (same figure as Fig. 2.13).

Solving (3.31) for u,|i], the following equation is obtained.

w,li] = (I — F,B,) 'F,A,&,[i] (3.32)
Thus, F', is obtained by

F,=(I-F,B)"'F,A,. (3.33)

Because the proposed intersample observer can compensate for the large phase delay
caused by zero-order hold, the stability margin of the closed-loop system is improved as
will be shown in section 6.2. This approach is essentially equivalent to the instantaneous
speed observer for servomotors [59] and the multirate estimation for hard disk drive [50, 51,
55, 89]. The advantages of the proposed intersample observer are 1) calculation resources
can be saved because the feedback gain (3.33) is obtained by off-line calculation, 2) the
proposed theory is generalized and not oriented to one application, and 3) it is applicable

to systems with time delay.

3.3.4 Extension to systems with time delay

In this section, the proposed multirate feedback control is extended to plants with time
delay in the same way as section 2.5.1. The continuous-time plant with time delay T} is
described by

x(t) = Acx(t)+ bou(t) (3.34)
y(t) = cox(t—1Ty), (3.35)

as shown in Fig. 3.4. Because the time delay is considered to be delay due to calculation,
it is assumed to be shorter than the frame period (7, < T') for simplification. However,

longer time delay can also be considered in the same way as [82].
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The discrete-time plant with multirate hold can be represented by

z[i+ 1] = Az[i] + Buli (3.36)
y[i] = Cz[i] (3.37)
- A O _ B ~ d
AL , B2 L ca| € , (3.38)
O O E o I,
@é{w],yé[y] (3.39)
Ty, Ty,
c 2 celenTs g & [ON—nut1s s g, (3.40)
T,
E2[0.1,)0,2 2 (3.41)
T
where g; is defined in (2.66), n, is a number of the of u[i—1] elements during 7y in Fig. 3.4,
and x, is a vector composed of these control inputs (x,[i] = [un—n,+1[i — 1], -+, un|i —
1.

In (3.37), the measurement variable g includes the past control input @, in order to
make the system observable?.
For the plant with time delay represented by (3.36) and (3.37), the discrete-time

observer at the sampling points is obtained from Gopinath’s method by

o[i +1] = Av[i] + Byli] + Juli] (3.42)

~

zli] = Coli|+ Dyli. (3.43)
Using the feedback gain designed in (3.26), let the control law be
uli] = Fzli], F 2 [F,O0]. (3.44)

By the parallel discussion with section 3.3.2, perfect disturbance rejection performance is
preserved by (3.44).

Substituting (3.44) for (3.42) and (3.43), the feedback type observer is obtained by
vli + 1]

uli]

| FC | FD
b. B ol
e (3.45)

dcl DcQ X
T, [i] i

2If x,, is not included in the measurement variable, the system becomes unobservable.

[ A+JFC|B+JFD ] {f:m]
yli]

A
L CC

o7



Using the definition of x,[i + 1] = Euli], state space representation of C5|z] is obtained
by

Bli + 1] A, By | ba oi]
x,)i+1) | =| EC, EDy|Ed, || z.]i |- (3.46)
uli C. Do | da yli]
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Figure 3.5: Feedforward repetitive control.

3.4 Periodic Disturbance Rejection Control

In this section, PDR is applied to periodic disturbance, and two multirate repetitive con-
trollers are proposed, they are 1) feedback approach based on the internal model principle

and 2) feedforward disturbance rejection approach based on open-loop estimation.

3.4.1 Feedback Repetitive Control

The disturbance with period Tj 2 or Jwo can be represented by the Fourier series as

d(t) = ao+ Y ai cos kwot + b sin kwot. (3.47)
=1

where wy is known and ay, b; are unknown parameters. Letting the disturbance model
(3.12) be (3.47), the repetitive feedback controller is obtained by (3.27), having the internal
model s? + (kwp)? in discrete-time domain. Repetitive disturbance is perfectly rejected

(xp[i + ] = 0) at M inter-sample points in the steady state.

3.4.2 Feedforward Repetitive Control

Repetitive feedback control based on the internal model principle has the disadvantages
that closed-loop characteristics worsen and it becomes difficult to assure stability robust-
ness [90]. Therefore, in this section, a novel repetitive controller based on open-loop
estimation with switching function and feedforward disturbance rejection is proposed, as
shown in Fig. 3.5

The repetitive disturbance is estimated by the open-loop disturbance observer. When

the estimation converges to the steady state, the switch turns on at ¢t = ty. After that,
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the switch turns off immediately. Repetitive disturbance is calculated by (3.48) from the

initial value &4[to] which contains the amplitude and phase information of the disturbance.
Zali + 1] = Agadeali], Agg = eeals (3.48)

Because the disturbance feedforward F'; is obtained by (3.26), perfect disturbance rejec-
tion is achieved at M inter-sample points. The advantage of this approach is that the
feedback controller C[z| is completely independent of the repetitive controller. Thus,
stability robustness is guaranteed by the feedback controller. With this scheme, it be-
comes possible to construct the repetitive controller without sacrifice of the feedback
characteristics.

Moreover, by introducing the initial value compensation of the feedback controller
Cs[z] at t = to, transient response can be improved after the switching action. If the
initial state of the observer v[to] is set by (3.49), the plant state x,[i] of (3.22) converges
to zero at the rate of the eigenvalues of ApM + BpMFp at the sampled points. Thus, if

the poles of the regulator are assigned appropriately, it is possible to prevent overshoot.

Colto] = x[to] — dylto] (3.49)
In (3.49), the plant state x[to] is obtained from the value estimated by the open-loop

observer &[ty].

3.4.3 Optimization of the Inter-sample Disturbance Rejection

Performance

In section 3.4.1 and section 3.4.2, the state multiplicity is defined as M = N/n in order to
reject the disturbance perfectly at M inter-sample points. In this section, M is selected
to be more than N/n in order to optimize the inter-sample performance. This approach
is referred to as the fast sampling technique in the advanced sampled-data control theory
(27, 39, 40].

When M is selected to be more than N/n, it is impossible to satisfy (3.24) because
the number of rows of Bp is larger than that of columns. Therefore, the inter-sample
performance can be optimized by minimizing Bp forall k(= 1,---, M). Thus, the problem

is formulated by
%M&ﬁﬁﬁﬂ&tﬁmﬁﬁwﬂza (3.50)
d

The above constraint is the condition that the controller includes the disturbance model,

which assures the convergence of @, [i] at the sampling points (k = M).
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From Lagrange’s undetermined multiplier method, the solution of (3.50) is obtained
by

F,=ZY'(vzY")'vZzX" - X" -Y'(YZY") YA, (3.51)

where X 2 [B;, : -~BZ(M_1)]T,Y 2 By, Z 2 (X"X)7!, and the Frobenius norm is adopted

in (3.50). The proof is shown in Appendix C. M has to be selected more than N to assure

the non-singularity of Z.

3.5 Summary

In this chapter, digital control systems which have hardware restrictions of T}, < T} were
assumed. In section 3.3, the multirate feedback controller was proposed, which guarantees
perfect disturbance rejection at M intersample points in the steady state. Next, the
intersample observer was proposed, which increases the stability margin by estimation and
compensation of the intersample response. Moreover, the proposed method is extended
to systems with time delay.

In section 3.4, two multirate repetitive controllers were proposed, they are 1) feedback
approach based on internal model principle and 2) feedforward disturbance rejection ap-
proach based on the open-loop estimation and switching function. By using the latter
approach, it becomes possible to prevent the closed characteristics from worsening when

using the internal model.
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Chapter 4

Controller Discretization Based on
Perfect State Matching

4.1 Abstract

In this chapter, a novel discretization method for continuous-time controllers is proposed
based on perfect state matching (PSM) control. In the PSM, the states in the continuous-
time system are completely reserved in the obtained sampled-data system. The features
of the proposed method are 1) multirate input control is employed, and the [th plant
input is changed N, times during one sampling period, 2) the states of the discretized
sampled-data system completely match those of the original continuous-time closed-loop
system at every sampling period, and 3) the proposed method is applicable to static state-
feedback and/or dynamic controllers. Next, the continuous-time observer is discretized
using the multirate output control. Moreover, the proposed method is extended to the
systems with long sampling period relative to the control period.

The proposed perfect state matching control is applied to position control systems for

servomotors and vibration suppression control for hard disk drives in chapter 7.

4.2 Introduction

In digital control systems, the controlled plant is a continuous-time system while the
controller is a discrete-time system. Thus, the conversion from continuous-time system
to discrete-time system is required in either the modeling or controller design stage, as
shown in Fig. 4.1. Concerning the issue of when it should be discretized, it is possible to
classify the design of digital controller into three methods [26, 73].

First, the “controller discretization” considered in this chapter is a technique by which

62



<Continuous-time <Discrete-time

system> : system>
|
l Analog . Discrete-time Based
plant | Desian
Plant . |
modeling ! |
Analog Digital
* model . model
Controller Sampled-data Design
design ' |
Analog ™\ | Digita

controller controller

Controller Discretization
s-domain | z-domain

Figure 4.1: The procedure for the digital control system design

an ideal analog controller designed in continuous-time is converted to an equivalent digital
controller. This approach is also referred as digital redesign [73, 91] or continuous-based
synthesis [26]. In this approach, ideal closed-loop characteristics is preserved if the sam-
pling period is short enough. However, because conventional discretization methods are
based on approximations, they do not assure the ideal closed-loop characteristics and
stability if the sampling period cannot be set short enough.

Second, in discrete-time based design, the plant is modeled in discrete-time, and the
digital controller is designed based on discrete-time theory. This approach assures the
stability of the closed-loop system and the performance at the sampled points. However,
it does not consider the intersample response.

Third, in sampled-data design, the digital controller is obtained directly from the
continuous-time plant considering the intersample response, as mentioned in section 1.1.1.
However, in this approach, only the H, and H, problems have been resolved. The advan-
tage of this approach is that robust stability for the plant uncertainty can be assured. But,
sometimes the approach is overly conservative. This approach is not always applicable,
because Hy and H,, theory generally have many assumptions.

Moreover, the sampling period has to be determined before the controller design stage
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in the discrete-time based and the sampled-data approaches. In practice, however, the
sampling period sometimes cannot be determined in the design stage, and is changed
several times during the implementation to real systems.

Thus, in this chapter, a novel discretization method of controllers is developed consid-
ering the closed-loop system. The necessity and importance of controller discretization

are as follows [73].

1. An existing analogue controller can be replaced. Thus, the tuning knowledge of

conventional controllers such as PID controller is available.

2. The sampling period depends on the order of the controller and the capability of
the processor and interface. In practice, it cannot be determined prior to implemen-
tation. Thus, the continuous controller is designed based on the continuous-time
model, and it is replaced by the digital controller with the shortest sampling period.
Introducing controller discretization, it is possible to greatly lighten the engineers’

burden when the sampling period is changed.

3. Continuous-time theory has a longer history than discrete-time and sampled-data
theory. Moreover, in continuous-time design, the controller can be designed without

considering Nyquist frequency limitations.

Historically, one of the most popular discretization methods is the Tustin (or bilinear)
transformation, in which an s-domain analog controller is transformed into a z-domain
digital controller by

2(z -1
s = ﬁ (4.1)
This approach is straightforward, and the stable poles of the controller in s-domain are
mapped inside the unit circle in z-domain. However, the closed-loop stability is not
assured. Therefore, in this approach, the feedback system may become unstable if the
sampling time is set too long.

In [91, 92, 93], discretization methods based on closed-loop characteristics were devel-
oped. However, these attempts do not assure closed-loop stability, because approxima-
tions were made to obtain solutions of the discretization (see chapter 4.3.1). In [94], the
feedforward and feedback gains are altered at every sampling period, so that the states of
the two systems match at the end of N sampling periods. The method in [94] is similar
to the proposed method only in certain special cases. However, the number of times of
gain alternation, N, is redundant compared to the proposed method in this chapter.

The method of [91] was further investigated in [95], and a different approximation was

proposed for obtaining a solution of the discretization, in which the closed-loop stability
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was maintained. However, the transition matrices of the original and approximately
discretized systems are not same. Furthermore, the methods in [91, 92, 93, 94, 95] have a
limitation that the original continuous-time controller must be of the static state-feedback
type and that all of plant state variables must be directly detected.

The other discretization methods for dynamic controllers were developed in [96, 97, 40].
These methods tried to match closed-loop frequency response approximately. However,
because of using these approximations, closed-loop stability could not be assured [96, 97],
and the solution of the discretization could not be obtained in large sampling period [40].

Multirate digital controls have been proposed for applications in the pole/zero assign-
ment problem, strong stabilization, simultaneous stabilization, adaptive control, and so
on, as mentioned in chapter 1. However, this chapter makes the first attempt to apply
multirate digital control to the controller discretization problem.

The purpose of the proposed method is to develop a new digital controller from the
analog controller so that all of the states of the sampled-data closed-loop system com-
pletely match those of the original continuous-time closed-loop system at every sampling
instance. This dissertation refers to the technique as perfect state matching (PSM) con-
trol. Thus, the stability of the closed-loop system is retained, and the transition matrices
of the two systems become identical. In the proposed method, multirate-input digital
control is employed, and the [th plant input is changed N; times during one sampling pe-
riod. [24] and [83] called this method N-Delay control after [8]. The digital controller can
be automatically discretized by the following procedure. Moreover, discretization method
for an observer is also presented, in which multirate-output digital control is employed.
Therefore, the proposed method can deal with the system even if a part of the plant states
are not directly detected, and it is applicable both to static state-feedback controllers and

dynamic controllers.

4.3 Controller Discretization without Hardware Re-

striction

In this section, novel discretization methods of continuous-time controllers are proposed
for systems without hardware restrictions in the sampling mechanism. After the problems
of the conventional method are explained in section 4.3.1, a discretization method is
proposed for two-degree-of-freedom state-feedback controllers with dynamics based on
multirate input control in section 4.3.2. Next, the continuous-time observer is discretized

based on multirate output control in section 4.3.3.
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4.3.1 Problem of the Conventional Method

In this section, we consider the problem of matching the responses of an existing continuous-
time system as shown in Fig. 4.2, with those of the discrete-time system shown in Fig.
4.3 for the same initial conditions. Consider the linear continuous-time system described
by

(t) = Acx(t) + bou(t). (4.2)
Also, let the continuous-time state-feedback control law be

u(t) = f.x(t). (4.3)
The continuous-time closed-loop system becomes

2(t) = (A, + bof )a(l) (4.4)
and its sampled-data system with sampling period T' is

2((i +1)T) = e Aetbef T, (4.5)

Consider the discrete-time system utilizing conventional zero-order hold described by
x[i + 1] = Ax[i] + buli] (4.6)

where z[i] = z(iT), A 2 AT and b 2 I eArdrp,. Letting the discrete-time state-

feedback control law be u[i] = f(T")x[i], the discrete-time closed-loop system becomes
xz[i+ 1] = (A+bf(T))xi]. (4.7)

From (4.5) and (4.7), the discretization problem is to find the discrete-time gain f(7')

from the continuous-time gain f_ so that the equation
A+bf(T) = o(Actbe forr (4.8)

is satisfied. If the above condition is satisfied, perfect state matching (PSM) control is
achieved, in which the states of the digitally controlled system in (4.7) completely match
those of the continuous-time system in (4.5) at every sampling point. The existence of
f(T) in (4.8), however, is not always guaranteed because the dimension of the input is
generally less than that of the state. Therefore, in [91, 92|, (4.8) is approximately solved
for f(T'). But, because of the approximation, the stability of the obtained digital closed-
loop system is not always assured, and the time response is different from that of the

continuous-time feedback system.
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Figure 4.3: Discrete-time state-feedback control system.

4.3.2 Discretization of Controller by Multirate Input Control

In this section, a novel discretization method for continuous-time controllers is presented
based on multirate input control, in which the /th plant input is changed N; times during
one sampling period. The introduction of multirate input control increases the input
dimension, thus (4.8) can be solved without any approximation. Moreover, the proposed
method is applicable both to continuous-time dynamic controllers (u = K (s)y) and static
state-feedback controllers (u = fa). The proposed method succeeds in this generalization
by the introduction of 1) the closed-loop augmented system consisting of the plant and
the dynamic controller, and 2) multirate input control.

In this section, a two-degree-of-freedom controller with dynamics is considered as the
original analogue controller. The plant is a linear multi-input multi-output (MIMO) sys-
tem, and all of the plant states are assumed to be measurable. If a part of the plant states
can not be detected directly, the discretized observer should be employed, as presented in

section 4.3.3.
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Figure 4.4: Continuous-time control system.

Consider the continuous-time plant described by

Top(t) = AqpZep(t) + Beple(t) (4.9)
Yo(t) = Coze(l) (4.10)

where the plant state x.,, € R", the plant input u.,, € R™, and the plant output

Yo, € . As shown in Fig. 4.4, let the original continuous-time controller be

Tk (t) = A T (t) + Bckl’l‘(t) -+ Bckgach(t) (4.11)
U’Cp(t) = CCkak (t) + Dckl'f'(t) + Dckacp(t)a (412)

where the controller state ., € R" and the reference input » € R™". This representation
includes a wide class of controllers such as static state feedback controller (u(t) = f x(t)),
unity feedback controller with dynamics (u(t) = K(s)(r(t) — y(t))), and two-degree-of-
freedom controller (u(t) = C1(s)r(t) — Ca(s)y(t)).

From (4.9) ~ (4.12), the continuous-time closed-loop augmented system consisting of

the plant and the controller is represented by

z.(t) = Az (t) + B.r(t) (4.13)

where

2 AC BCDC BCCC 7~ BCDC — C
N p T Deplek2 p k},Bcé{ P kl}’mcé{w’)}, (4.14)

A,
BckQ Ack Bckl Lck

Assuming the reference input r is piecewise-constant, i.e. 7(t) = r(iT) for iT < t <

(¢ + 1)T, the sampled-data system for the sampling period 7" becomes

z((i+1)T) = Az.(iT) + Br(iT) (4.15)
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Figure 4.5: Multirate input control.

where
n, N m,
_ A A, A _ T A B
R e e T : :/ eArpar 2 " T, (4.16)
ne \ Aa1 A 0 ny \ Ba

Next, the discrete-time controller is obtained from the original continuous-time control
system (4.15) using multirate input control. In this scheme, the ith (I =1,2,---,m,) plant
input is changed /V; times during one sampling period as shown in Fig. 4.5. The selection

of the N; is made with reference to the following condition.
Nl 2 o] (417)

where (01,...,0m,,) is a set of generalized controllability indices of (A, B,) which are
defined in section 2.5.2.

The discrete-time plant using multirate input control is given by
Zapli + 1] = Az gpli] + Buli] (4.18)

where xq, € R"™ is the plant state, the coefficient matrices A and B are calculated by
(2.81), and uli] € RV (N 2N +Ny+...+ Ny, > n,) is the multirate input vector defined
by

wli] = [unli], - win [i], unli], - - 5w, [6]]7 (4.19)

where uy;[i] € R" is the Ith plant input for (i+p;_1))T <t < (i+u;)T (1=1,..,m,, j=
1,..,N;), as shown in Fig. 4.5.
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Figure 4.6: Discrete-time control system.
As shown in Fig. 4.6, let the discrete-time controller be
Tk [Z + 1] = Adka:dp[i] + Bdkl’l‘[i] + Bgioxax [Z] (4.20)
’U,[Z] = C’dka:dp[i] + del’l‘[i] + degwdk[i]. (4.21)

where the controller state g, € R™. From (4.18) ~ (4.21), the discrete-time closed-loop

augmented system is represented by

xgli + 1] = Agzy[i] + Byrli] (4.22)
where
_ A+ BD BC _ BD
A, 2 + dk2 dk B, Iy dk1 y A | Tdp ' (4.23)
B Ay, B i Tk

Comparing (4.15) and (4.22), if the following conditions are satisfied, the states of the
digitally controlled system (Z,) completely match the states of the continuous-time sys-
tem (Z.) at every sampling period for any arbitrary initial state and piecewise-constant

reference input.

Ay Ap ] _ A +BDg,; BCy (4.24)
Ay Ap | | Ba Ak

B | ' BD

B, | | Bar

Here, the necessary and sufficient condition for the solution of the linear matrix equation
(Ax = b) is

rankA = rank[A,D|. (4.26)
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Therefore, the necessary and sufficient conditions for the existence of C' gy, D g1, and D g0
in (4.24) and (4.25) are given by

rankB = rank[B,A; — A]
= rank|[B, Ays] = rank[B, B,). (4.27)

From theorem 2.3, the row rank of matrix B is full, thus, (4.27) is satisfied. As a
result, the existence of the solution of (4.24) and (4.25) is assured. Solving (4.24) and
(4.25), the parameters of the digital controller are given by

Ay = Ag, By = By, Byo = Ay, Cyp = B~ Ay,
Dy = BBy, Dgo= B~ (A1, — Agy), (4.28)

where B~ is the generalized inverse of matrix B [85].

Comments 1) if (A.,, B.,) is a controllable pair, the proposed method is always ap-
plicable. 2) If the original continuous-time system is stably designed, the stability of the
discretized system is assured because the two transition matrices (4.24) become identi-
cal. Moreover, (4.24) can guarantee the inter-sample stability [27]. 3) The states of the
obtained sampled-data system completely match those of the original continuous-time
closed-loop system at every sampling period, independent of sampling period. Therefore,
the proposed method is superior to conventional methods [91, 92, 93, 94, 95, 96, 97, 40].

4.3.3 Discretization of Observer by Multirate Output Control

Because the digital controller obtained in 4.3.2 makes use of state-feedback control as
shown in (4.20) and (4.21), all states need to be detected directly and instantaneously.
However, in the general case, not all states are always detected directly, and the calculation
time delay may not be negligible. Therefore, we should consider a discrete-time state
observer to feedback the estimated plant state @[] instead of the plant state x[i].

In this section, the discretization method for a state observer is proposed using multirate-
output control based on the duality of the discretization method for the controller. The
advantage of the proposed method is that the discrete-time estimation errors completely
match the continuous-time estimation errors at every frame period.

Consider the designed continuous-time observer of Fig. 4.7 for the continuous-time
plant (4.9) described by

Tep(t) = Acpiecy(t) + Bopticy(t) + K op(Y — Cenip(1)) (4.29)

where &, is the estimated plant state. The estimation error of the continuous-time state
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Figure 4.7: Continuous time observer.
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Figure 4.8: Multirate output control.

ecp(é Zp — Tep) becomes

€op(t) = Tep(t) — Zep(t) = (Acp — KepClp)en(t). (4.30)
The sampled-data system for the frame period 7% is represented by

ee((i + 1)Ty) = e AerKeapCop)Tre (iT)), (4.31)

In the proposed method, the multirate output control is employed, in which the ¢th plant
output is detected M, times during one frame period as shown in Fig. 4.8, and the discrete-
time estimation errors (egq,) completely match the continuous-time estimation errors (e,)
at every frame period. This control scheme is a duality mechanism of the multirate input

control. The selection of output multiplicities M, is made with reference to the following

72



condition.
M, > p, (4.32)

where (p1,...,pp,) is a set of generalized observability indices of (A, Ccp) which are

defined as follows.

Definition 4.1 Generalized observability indices of (Aep, C.p) are defined as follows for
A € R™"*™ and C., € R ™. If (Aep, Cop) is an observable pair, n, linearly indepen-

dent vectors can be selected from

np—1
{ea, .., oy CaaAcp, .., Cop, Acp, -, Cepy ALp }

where Cop, = [}y, .., ¢l |T. Letting ¢ be a set of these ny, vectors, p, are defined by
Pq = number{k|cchljp_1 €y} (4.33)
Pp
> pg = 1y (4.34)
q=1

The discrete-time plant using multirate input and multirate output control is given by
Tapli+1] = Awxgli| + Buli] (4.35)
yli] = Cx[i| + Dulil, (4.36)

where the coefficient matrices A, B,C, and D are calculated by (2.81), and y[i] €
RM(M = My + My + ...+ M,, > n,) is the multirate output vector defined by

y[l] = [yll[i]? Y1 [Z]a y21[i]? sy YpM, [i]]Ta (4'37)

where yg is the ¢th plant output at ¢t = (i + vg)Ty (¢ =1,2,---,pp,k =1,2,---, M,).
Using the output y[i], let the discrete-time observer be

Zapli + 1] = Adgyli] + Buli] + K (yli] — (Cz[i] + Duli])) (4.38)

where the state of the discrete-time observer &g, € R"™. The estimation error of the

discrete-time state edp(é X4y — &ap) 1s represented by

epli+1] = xgli+1] - i‘dp_[i +1] (4.39)
= (A—KC)egli.

Comparing (4.31) and (4.39), if the following condition is satisfied, the estimation errors
of the continuous-time states (e.,) completely match those of the discrete-time states

(eqp) at every frame period.

e(Acp_chCCp)Tf - A-KC (4.40)
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From (4.26), the necessary and sufficient condition for existence of K in (4.40) is given
by

C

rankC = rank A A KyCopry |- (4.41)

With regards to the matrix C, the next theorem is proved in [72], if p, is the generalized
observability controllability index. For the case of the observability index, it is also proved
in [10].

Theorem 4.1 Let (A, C.,) be an observable pair. If the output multiplicities satisfy
M, > py for (¢ =1,2,..,pp), for almost all vy(k =1, .., M,) and almost all T', the matriz

C has full column rank, i.e.
rankC = n,. (4.42)

Because of this theorem, the column rank C' in (4.41) is full, thus, (4.41) is satisfied.
As a result, the existence of K in (4.40) is assured. Solving (4.40), the parameters of the

digital observer are given by
K = (A - A KapCop)Tho- (4.43)

The discretization method presented in this section is for full order observers only. How-

ever, this result was extended to minimum order observers in [72].
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4.4 Controller Discretization with Sampling Restric-
tion

In this section, hardware restrictions where the sampling period is relatively long (7, < T})
are considered, because this assumption is very common in motion control system as
mentioned in section 1.1.2 and 3.2. For this system, a novel discretization method of
an analogue controller is proposed using perfect state matching based on multirate input
control. In the proposed scheme, the plant state of the digitally controlled system perfectly
matches that of the ideal continuous-time system at M intersample points during 7.

In the proposed methods of section 4.3, it was impossible to implement the internal
model of disturbance because they do not consider the open-loop characteristics of the
controller. On the other hand, in this section, the augmented system with disturbance
is introduced to estimate and reject disturbance. By this approach, the obtained digital
controller can have an internal model such as an integrator (z%l)

For simplification, the continuous-time system is assumed to be composed of a SISO
plant and a one-degree-of-freedom controller with disturbance observer. The proposed
methods, however, can be extended to more general cases in the same way as section
2.5.2 and 4.3.2.

For the restriction of T,, < T}, the frame period T is defined as Ty = T, [1] , and the
dynamics of the controller is described by 7.

4.4.1 Design of Continuous-time Controller

In this section, the continuous-time controller is designed based on the regulator and the
disturbance observer.

Consider the continuous-time plant model described by
ap(t) = Aepp(t) + bep(ult) — d(t)) (4.44)
y(t) = copy(t), (4.45)
where d(t) is the disturbance input. Let the disturbance model be
Tq(t) = Acazq(t) , d(t) = ccaxa(t). (4.46)

For example, the step type disturbance can be modeled by A,y = 0,c.q = 1. The

continuous-time augmented system consisting of (4.44) and (4.46) is represented by

z(t) = A.x(t)+ boul(t) (4.47)
y(t) = cex(t), (4.48)
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C. = [Cep, 0].

For the plant (4.47), the continuous-time observer is designed using Gopinath’s method

as

b(t) = AD(t) + by(t) + Jou(t) (4.49)

~

() = Co(t)+dy(t). (4.50)

In order to regulate the plant state and reject the disturbance, the continuous-time regu-

lator is designed by
u(t) = fo,2p(t) + ccaa(t) = f.2(1), (4.51)
o & [Fop cedl: (4.52)

Letting e, be the estimation errors of the observer (e, = v — v), the following equation

is obtained.
&(t) = z(t) + Cey(t). (4.53)

From the above equations, the closed-loop system is represented by

i, (1) Apy O by f.C. || z,(t)
djd(t) = (0 Ad (0 a:d(t) 5 (4-54)
é,(t) O O A, e,(t)

where Apg, 2 Ay + b f.,. The transition of (4.54) from t = iTy to t = (i + vy)T}y is
represented by

mpfitm) | [etrn 0w ] [l
zali+w) | = o Aml 0 zali] | . (4.55)
euli+ 1] O O AT || el

4.4.2 Discretization of the Controller by Multirate Input Con-

trol

In this section, the digital controller is obtained from the continuous-time controller de-

signed in section 4.4.1 using multirate input control.
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Figure 4.9: Multirate control with disturbance observer.

Discretizing (4.47) by multirate sampling control, the inter-sample plant state at t =

(i + vy)Ty can be calculated from the kth row of (3.7) by

xli+ v = Apzxli| + Bruli] (4.56)
Ak _ Apk %pdk ,Bk _ Bpk '
O Ay 0]

For the plant (4.47) discretized by (3.4), the discrete-time observer at the sampling
points is obtained by

~ ~

oli+1] = Av[i]+ by[i] + Juli] (4.57)
zli] = Cofi] + dyli). (4.58)

As shown in Fig. 4.9, let the feedback control law be
uli] = Fpx,[i| + Fqx4i] = Fali], (4.59)

where F 2 [F,, Fg]. From (4.56) ~ (4.59), the closed-loop system is represented by

a:p[i + I/k] Apk + Bkap Apdk,‘ + Bkad Bkaé a:p[i]
a:d[i + I/k] = (0 Adk (0 a:d[z] . (460)
el + 1] (0] (0] A e,li]

Comparing (4.55) and (4.60), if the following conditions are satisfied, the plant state (z,)
of the digitally controlled system completely matches that of the original continuous-time

system at M inter-sample points on ¢t = (i + vx)T}.

A+ ByF, = eAranT (4.61)
Apdk+Bkad = O, (462)
efi] = O. (4.63)
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The simultaneous equations of (4.61) and (4.62) for all k(= 1,---, M) become
A,+B,F,=E, A,+B,F,=0, (4.64)

where Ap, Apd, Bp and E are defined as

Apl Apdl Bpl eAFCpVITy

ApM Ade BpM eAFCPVMTy

Because non-singularity of the matrix B, is assured by theorem 2.3, F', and F, are
obtained by

~ —1 ~ ~ —1 ~
F,=B, (E-Ay,), Fi=-B, Ay (4.66)
In section 4.3.3, discretization of the observer was proposed based on multirate output
control, where the plant output was detected more frequently. However, in this section,
the discrete-time observer (4.57) is simply obtained, so that the eigenvalues of A become

identical to those of eA

(T, > T,).
Substituting (4.59) in (4.57), the feedback type controller is obtained by

ol | 4.67
{y[i]} 467

<Ts  because the plant is assumed to have a longer sampling period

A+JFC b+ JFd
FC Fd

v[i+ 1]

uli]

4.4.3 Initial Value Compensation

In this section, the initial value of the controller (4.67) is considered in order to eliminate
the estimation error of the observer and satisfy (4.63). From (4.58), if «[0] is known, the

initial value of controller should be set to
Cv|[0] = z[0] — dy[0]. (4.68)

By this compensation, it is possible to prevent the overshoot of the step (or initial value)
response because the plant state converges only affected by the mode of the regulator.
Therefore, f ., should be designed to assign the eigenvalues of Ap., to the small (or zero)

overshoot region.

4.5 Summary

In this chapter, novel discretization methods both for controllers and observers were

developed based on multirate input and multirate output control. One of the remarkable
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advantages was that perfect state matching (PSM) control could be assured independent
of the sampling period, in which the states of the sampled-data system became equal to
those of the continuous-time system. As a result, stability of the discretized system was
guaranteed.

Next, the proposed method was extended to systems with long sampling periods rela-
tive to the control input. This extension assured perfect state matching at M intersample
points. Moreover, by introducing the augmented system, the obtained digital controllers

have internal models of disturbance.
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Part 11

Applications
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Chapter 5

Applications of Perfect Tracking

Control

5.1 Abstract

In this chapter, the perfect tracking control proposed in chapter 2 is applied to several
motion control systems. First, the position control system of servomotors in robot ma-
nipulators is considered as an example without special hardware restrictions (73, = T).
Combining the proposed feedforward controller with a H., robust feedback controller,
perfect tracking performance is achieved with robustness. Second, the proposed method
is applied to the track-seeking control of hard disk drive as an example with time delay
and long sampling period relative to the control input (7, < T}). For this system, it is
shown that the proposed controller enables higher speed movement compared with the
conventional single-rate controller. Simulations and experiments both of servomotor and

hard disk drive are performed, and advantages of this approach are demonstrated.

5.2 High Performance Tracking Control for Servo-

motor of Robot Manipulator

In this section, the proposed perfect tracking control method is applied to the position

control system of the servomotor in a two-link direct-drive robot manipulator.

5.2.1 Experimental Setup of Robot Manipulator

The configuration of experimental setup is shown in Fig. 5.1, and photographs are shown
in Fig. 5.2. A personal computer (CPU: AMD-K6-2 300MHz) is used both for real-time
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Figure 5.1: Configuration of experimental setup.

ST

(a) Two-link direct drive robot. (b) Motor diver and control computer.

Figure 5.2: Photographs of experimental setup.

control of servomotors and development of software. In the PC, a D/A converter and a
counter board are implemented to output the reference current and to input the motor
angle. The servomotors are reluctance motors, where the current is controlled by the
motor driver. The encoders generate 38 400 pulses per revolution. In order to realize

real-time control, RTLinux is installed as the real-time operating system [98].

5.2.2 In Case without Hardware Restriction (Case 1: T, =T,,)

First, the simplest example without hardware restrictions (T, = T, case 1 in Fig. 2.9) is
considered. The servomotor with current control is described by

K

PC(S) = ﬁ

(5.1)
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Figure 5.3: Simulation results (7}, = T, = 15[ms])

The feedback controller Cy|z] is a 3rd-order strictly proper system obtained from the
continuous-time H,, mixed-sensitivity problem and Tustin transformation, which includes
an integrator [75]. Calculating (2.20) and realizing the obtained C[z] and C;|z] in
minimum order, the controller [C'1, C5] becomes a 5th-order system.

Simulated and experimental results are shown in Fig. 5.3 and Fig. 5.4. The desired

trajectory is a sinusoidal waveform represented by

04(¢T,) = A(l— cos(wres i1))

(5.2)
wa(iTy) = Awpersin(wyes i1}),

where wyey = 2m X 4[rad/s]. In this system, both the input and output periods are
T, =T, = 15[ms]'. Because this plant is a 2nd-order system, the sampling period of the

reference signal becomes 7, = 30[ms| (N = 2).

In the experimental results (Fig. 5.4), the output signals are sampled at much shorter than 15 [ms]
in order to display the intersample responses. The sampling period is set relatively long so as to make

the comparison clear.
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Figure 5.4: Experimental results (T, = T}, = 15[ms])

In the following simulations and experiments, the proposed method is compared with
the SPZC and ZPETC proposed in [68], with the same T}, and T,,. The reference sampling
period T, of the proposed method is set twice as long as those of SPZC and ZPETC,
because these methods are single-rate approaches and sampling periods are set to 1), =
T, = T, = 15[ms|. However, the proposed controller utilizes the desired trajectories of
both position and velocity, while SPZC and ZPETC use those of position only.

Fig. 5.3(a) and (b) show that the proposed method exhibits better performance than
either SPZC or ZPETC. While the responses of SPZC and ZPETC include large tracking
errors caused by the unstable zero, those of the proposed method have zero tracking
error. The simulated time response of the control input is shown in Fig. 5.3(c), which
indicates that the control input of the proposed method is smooth despite using multirate
input control. Thus, we find that the proposed multirate feedforward method is very
practical. Moreover, the experimental result also indicates that the proposed method has
high tracking performance, as shown in Fig. 5.4. Fig. 5.3 and Fig. 5.4 also show that the
intersample responses are very smooth, because not only position but also velocity follows
the desired trajectories at every sampling point 7T'..

The frequency responses from the desired trajectory y,[i] to the output y[i| are shown
in Fig. 5.5. Because the proposed method ensures perfect tracking control, the command
response becomes 1 for all frequencies. In comparison, the gain of ZPETC decreases at
high frequencies.

This example indicates that the proposed multirate feedforward controller has higher
tracking performance than the single-rate controller even in the usual servo system (7, =

T,) without special hardware restrictions.
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Figure 5.6: Simulation results (17}, = 15ms|, T}, = T,,/N, T, = 2T,,).

5.2.3 In Case with Sampling Restriction (Case 2: T, = T,/N)

Next, it is assumed that the output sampling period is restricted to T, = 15[ms] by the
hardware, and the control input can be changed more frequently (T, = T,/N). In this
case, perfect tracking control is guaranteed at L (= N/n = N/2) points during 7. The
single-rate feedback controller is designed with a 15[ms] period, and transformed by (2.38).

Fig. 5.6 shows the simulated tracking error of the proposed method for a 4 [Hz] sinu-
soidal desired trajectory. Compared with N = 2. the tracking performance is improved
very much for large input multiplicities of N = 4 and 8, because perfect tracking control
is ensured at L (= N/2) intersample points. This approach is applied to seeking control

of hard disk drives in section 5.3.

5.2.4 Consideration of the intersample tracking error

As the proposed method assures perfect tracking control at every sampling point, in this

section, the frequency response from the desired output to the tracking error is considered
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including the intersample behavior.
When a sinusoidal desired output with angular frequency ¢q is added to this sampled-
data tracking control system, the intersample tracking error is composed of infinitely many

sinusoidal components with angular frequencies

G = do + 1w (5.3)

where m = 0,4+1,£2,---, and w,; = 2% [38]. Therefore, the classical theories in both
continuous-time and discrete-time cannot be used to analyze the intersample behavior.

Analysis methods of the frequency response of sampled-data systems including inter-
sample behavior are presented in [38] and [37]. These approaches have obtained the gain
of the intersample response in infinite frequencies. However, in this section, the frequency
response from sinusoidal desired trajectory with single frequency to intersample tracking
error is considered because the frequency of the desired trajectory can be assumed to
be below the Nyquist frequency. In practice, this concept is important in sampled-data
control system [49].

Therefore, frequency responses of the error ratio of intersample tracking errors are

numerically calculated. The error ratio of the sampled-data system is simply defined as

A Joed(t)at

E2(jwyep) 2 20 0 5.4

where the tracking error e, (t) = ya(t) — y(t). Although the above definition (5.4) is
different from those given in [38] and [37], it is sometimes very useful in analyzing a
sampled-data system [49].

In this simulation, y(t), y4(t), and period h are the plant position, the desired position,
and the period of the desired trajectory 27 /wy.s, respectively. The integrals in (5.4) are
numerically calculated for the very small period At(< T, h).

Calculated results of the error ratio of (5.4) are shown in Fig. 5.7, which indicates
that the tracking error of the proposed method is 100 ~ 1000 times better than that of
ZPETC and SPZC [68]. In other words, the tracing performance including intersample

behavior is 100 ~ 1000 times superior.

5.2.5 Comparison with the zero assignment method by multi-

rate control
A significant feature of the proposed method is that the coefficient matrices of the state
equation are directly assigned by multirate control (see (2.16)). Owing to this advantage,

the proposed controller can be simply designed without considering the unstable zero

problem.
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Figure 5.7: Frequency responses of the intersample tracking error.

(The error ratio (5.4) vs. frequency of the desired trajectory wy.y)

On the other hand, [3, 7, 8] had presented zero assignment methods by the multirate
control. Historically, it was one of the most remarkable results of the multirate sampling
control [1], as mentioned in section 1.1.1.

In this section, the zero assignment method of [3, 7] is applied to perfect tracking
control, and compared with the proposed method. Next, the advantages of the proposed

multirate feedforward control are demonstrated through simulations.

Zero assignment method by multirate control

In this section, the zero assignment method by multirate sampling presented in [3, 7] is
reviewed.
For the discrete-time plant (2.7) discretized by multirate control, let the control law
be
uli] = go[i], g = g1, 9a)" (5.5)
Substituting (5.5) for (2.7), the new discrete-time system is described by

x[i + 1] = Ax[i| + Bgvli]. (5.6)

The transfer function from the new input v[i] to the output y[i] is given by

c.adj(zI — A)Bg
det(zI — A)

% =c.|2I — A 'Bg =

(5.7)

Because the numerator polynomial of (5.7) becomes (n — 1)th order for almost all 7', all
zeros of the new system (5.7) can be arbitrarily assigned by the parameter g € R".
Next, consider the perfect tracking controller utilizing this method. First, the parame-

ter g is chosen to match the system (5.7) with a model M |[z] which does not have unstable
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Figure 5.8: Perfect tracking system by the zero assignment method

zeros. Second, the feedback controller Cs[z] is designed to stabilize the closed-loop system
and to increase the robust performance. Third, let the feedforward controller C;[z] be

1 1+ M[]Cy[e]

Gl = 2Gylz]  24M][2]

(5.8)

where G[z] is the closed-loop system composed of both M|z] and Cs[z], and d is the
relative degree of G[z]. Letting the reference be d-step ahead of the desired output, i.e.
r[i] = yali + d], perfect tracking can be achieved. This control scheme is resented by Fig.
5.8.

Comparison by simulations

Consider the servomotor described by (5.1). The discrete-time plant discretized by the
zero-order hold is given by

T’°K z+1
Pl]="—t 272
S YRS

(5.9)

This discrete-time plant has an unstable zero at —1. Thus, utilizing multirate control

(5.5), let the transfer function (5.7) match the following model M|[z] with a stable zero.

T°K 2
Mlz] = — 5.10
=S ey (5-10)
From the above condition, the parameter g becomes
g=[1.5-0.5". (5.11)

The feedback controller Cs[z] is obtained from the H., mixed-sensitivity problem for
M]z], and the perfect tracking controller C'1[z] is designed by (5.8).

The simulation results for a sinusoidal desired trajectory are shown in Fig. 5.9. While
tracking error of the proposed method is almost zero, the zero assignment method has

large tracking error in the intersample response as shown in Fig. 5.9(a). Moreover, Fig.
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Figure 5.9: Simulation results of the zero assignment method. (7" = 1[ms] )

5.9(b) indicates that the zero assignment method is not practical because its control input
is highly oscillating. These problems of the zero assignment method have been indicated in
[24]. According to [24], the zero assignment methods sometimes have the disadvantages of
large overshoot and oscillation in the intersample points because the control input changes
back and forth very quickly.

As a result, it is found that the perfect tracking controller realized by the zero as-
signment method [3, 7] has poorer tracking performance than the proposed method with
regards to the intersample response. The reason is that the zero assignment method forces
the zero to be arbitrarily assigned, and due to this, some stress may occur in the control
loop, and the control input becomes oscillating.

On the other hand, the proposed method has no stress at any point of the control
loop because all states of the plant are controlled to track the desired trajectory of the
plant state. As a result, it can be said that the proposed multirate feedforward control is

a significant and practical methodology for designing the multirate control system.
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5.3 High Speed Seeking Control of Hard Disk Drive

5.3.1 Head-positioning System of Hard Disk Drive

In the head-positioning control of hard disk drives, the control strategy is divided into
three modes: seeking mode, settling mode, and following mode. In the seeking mode, the
head is moved to the desired track as fast as possible. Next, the head is settled to the
track without overshoot in the settling mode. After that, the head needs to be positioned
on the desired track while the information is read or written. In the following mode, the
head is positioned precisely on the desired track under the vibrations generated by disk
rotation and other disturbances.

In long-span seeking, where the seeking distance is comparatively long, high speed
seeking is achieved by the mode-switching controller [99]. In the short-span seeking,
however, single mode controllers based on two-degree-of-freedom control have advantages,
because the mode-switching controller sometimes generates undesirable transient response
[53, 54, 100, 101].

As shown in Fig. 5.10, in head-positioning control by the voice coil motor (VCM), the
head position is detected by the servo signals embedded in the disks discretely. Therefore,
the output sampling period 7}, is decided by the number of these signals and the rotation
frequency of the spindle motor. However, it is possible to set the control period T, shorter
than T, because of the recent developments of computer technology. Thus, the controller
can be regarded as a multirate control system having the hardware restriction of T, < T,.

In section 2.4, digital control systems having the hardware restriction of 7T, < T},
were assumed, which is defined as case 2 in Fig. 2.9(b), and a novel design method
of the multirate feedforward controller was proposed. The proposed method achieved
perfect tracking control (PTC) which has zero tracking error at M intersample points of
T,. Moreover, the proposed method was extended to systems with time delay in section
2.5.1. In HDD, multirate controllers have also demonstrated higher performance in both
feedforward [54, 53] and feedback [50, 51, 55] characteristics. In this section, the proposed
perfect tracking controller is applied to the track-seeking mode of HDD.

5.3.2 Modeling of the plant

The experimental setup is a 3.5-inch hard disk drive. Let the nominal model of this plant

be
KfKa e—STd .

PA) =35 (5.12)
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Figure 5.10: Hard disk drive.

Table 5.1: Parameters of 3.5-inch hard disk drive

Amplifier gain K, 1.996 | A/V
Force constant Ky 2.95 N/A
Mass M, 6.983 | g
Track pitch T, 3.608 | pum/trk
Sampling time T 138.54 | usec

Calculation delay | T,.u. | 38 jsec

Equivalent delay | Tequiv | 38.7 jsec

Input multiplicity | N 4

The parameters of this plant are shown in Table 5.1. While servo signals are being
detected at a constant period of about 138 [us], the control input can be changed 4 times.
Therefore, the proposed approach is applicable to this plant. In (5.12), the time delay Ty =
Teaic + Tequiv is considered, where T¢q. is the calculation delay of the processor, and Tequiv
is the equivalent delay of the current control and the notch filter for the second mechanical
resonance mode. As shown in Fig. 5.11, the actual plant has the first mechanical resonance
mode at around 2.7 [kHz] and the Nyquist frequency is at 3.6 [kHz]. In spite of these, the
target seeking-time is set to 3 sampling periods (2.4 [kHz]) for one track seeking in the
experiments.

Although only the rigid mode is included in the nominal model in this section, higher

order models will be considered with the mechanical resonance mode in section 7.3.
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Figure 5.11: Frequency responses of plant.

5.3.3 Applications of perfect tracking controller to seeking mode

The perfect tracking controller is designed for input multiplicity N = 4. Because the plant
is a second order system (n = 2), perfect tracking is assured N/n = 2 times during every
sampling period. In the following simulations and experiments, the proposed method is
compared with ZPETC proposed in [68]. The ZPETC is one of the most well-known
and important feedforward controllers for control of mechanical systems. [53] and [100]
applied it to hard disk drive control.

The control period T, of ZPETC becomes four times as long as that of the proposed
method because ZPETC is a single-rate controller? and the two methods are compared for
the same sampling period T}. The feedback controllers of the two methods are the same
single-rate PI-Lead filter. Moreover, the desired trajectory (5.13) is selected, such that

jerk (differential acceleration) is smooth in order not to excite the mechanical resonance

mode.
A
vy . 5.13
y'(s) s(1rs + 1)4e ( )
* AT —s
S Fver 514

The parameters of these desired trajectories are shown in Table 5.2. In these experiments,
the multirate feedforward input wg[i] in Fig. 2.6 and Fig. 2.11 is obtained by off-line
calculation in order to save processor resources. Therefore, the order of the feedforward

controller and the desired trajectory are not related to the calculation time delay.

2[53, 102] attempted to extend ZPETC to multirate controllers.
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Table 5.2: Parameters of the trajectories.

A, ftrk] | fr(=1/277,.) [kHz]

Condition A 1 2.8
Condition B 6 1.7
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Figure 5.12: Simulation results A (1trk).

Simulation results

Simulation results are shown in Fig. 5.12 and Fig. 5.13. The figures (a) and (b) show
that the proposed method gives better performance than ZPETC. While the response
of ZPETC has large tracking errors caused by the unstable zero, that of the proposed
method has almost zero tracking error. Fig. (c) also indicates that the proposed multirate
input is very smooth.

The frequency responses from the desired trajectory ya[i] to the output y[i| are shown

in Fig. 5.14. Because the proposed method (PTC) assures perfect tracking, the command
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Figure 5.13: Simulation results B (6trk).
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Figure 5.14: Frequency responses (y[z]/y*[z]).

response becomes 1 at all frequencies. However, the gain of ZPETC decreases at high
frequencies. The frequency of the short-span seeking is about 2 [kHz|, therefore, the

proposed method has advantages in high speed seeking control.

In the above simulations, the time delay was assumed to be zero (7 = 0). Next,

94



-3 Tracking Error

. —— without Td
2 : A : ---- with Td )

e fum]

h i i i i i i
[0} 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
t [msec]

Figure 5.15: Simulation results with time delay (Condition A).

Fig. 5.15 shows the tracking errors including time delay T; = 76.7[us], indicating that
the tracking error becomes zero at 2(= M) intersample points without any loss of the

tracking performance in spite of the existence of the time delay.

Experimental results

Experimental results are shown in Fig. 5.16 and Fig. 5.17. In figure (a), about 1,000
experimental data are overlaid. The figures (b) and (c) are the averages of the data,
showing that the proposed method has high tracking performance. Although the actual
plant has a mechanical resonance mode at around 2.7 [kHz], this mode is not suppressed
by the notch filter in order to preserve the phase margin. In spite of that, the experiment
under condition A (1 [trk]) adopts the wide bandwidth desired trajectory (f, = 2.8 [kHz])
for high speed seeking. Therefore, Fig. 5.16(a)(b) have a overshoot of maximum height
0.4 [pm]. However, this overshoot is within the permissible range because the overshoot
is small for HDD, compared to the track pitch of 3.6 [um].

Because the position signal is detectable only at the sampling points, the difference be-
tween the proposed method and ZPETC is not clear in Fig. 5.16 and Fig. 5.17. Therefore,
the proposed method is compared by using the average of the seeking-times measured in
2000 experiments. The seeking-time is defined as the time from the start of seeking to
the point where the distance remaining falls under 0.4 [um] and the overshoot is smaller
than 0.4 [pm].

Table 5.3 shows the average seeking-times obtained in the experiments. The seeking-
time of the proposed method (PTC) is much smaller than that of ZPETC and the con-
ventional settling control [99]. In short-span seeking (1 [trk]), the seeking-time of the
proposed method is 19 and 31 [%] shorter than that of ZPETC and the conventional
method, respectively. In middle-span seeking (6 [trk]), the proposed method is 1 and 6
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Figure 5.16: Experimental results A (1trk).

Table 5.3: Experimental seeking-time.

PTC [ms| | ZPETC [ms| | Conventional [ms]
A 0.4394 0.5226 0.5738
Ltk | (3.17T%) | (3.77T0) (4.14T,)
B 1.200 1.325 1.933
Gtrk | (8.66T%) | (9.57Ty) (14.0T3)

sampling periods faster respectively.
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Figure 5.17: Experimental results B (6trk).

5.4 Summary

In this chapter, the perfect tracking control developed in chapter 2 was applied to the
motion control systems.

In section 5.2, two examples of position control using the servomotor of a robot ma-
nipulator were examined, and the advantages of the proposed method were demonstrated
through simulations and experiments. The first example demonstrated that the proposed
multirate controller had higher performance than the conventional single-rate controller,
even in normal systems (7, = T,,) without special hardware restrictions. The second ex-
ample also indicated that the intersample response was improved by multirate feedforward
control for systems with a long sampling period (T}, > T,,).

Next, in section 5.3, the proposed method was applied to the track-seeking mode of
hard disk drives. The simulations and experiments demonstrated that the perfect track-

ing controller succeeded in achieving very fast seeking compared with the conventional
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(b) DK32CJ-36/18
(a) DK31CJ-72

Figure 5.18: Products with perfect tracking controller.

methods. These experiments were performed in cooperation with Hitachi. After the ex-
periments, Hitachi engineers have improved and implemented the proposed method in the
latest drives shown in Fig. 5.18. According to the specifications of these products [103],
the seeking time has improved very much compared with the products of other manu-
factures. The proposed method has partly contributed to the high data rate in these

products.
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Chapter 6

Applications of Perfect Disturbance

Rejection

6.1 Abstract

In this chapter, the perfect disturbance rejection (PDR) control developed in chapter 3 is
applied to motion control systems in which the sampling period of the sensor is shorter
than the control period of the actuator. As examples, we look at the track-following mode
of hard disk drives (HDD) and the visual servo system of robot manipulators. First, the
perfect disturbance rejection controller is applied to the first-order disturbance mode of
repeatable runout in HDD based on multirate feedback control. Second, the problem
of the feedback approach is explained for higher disturbance modes, and the open-loop
observer with switching function is implemented in order to overcome the problem. The
intersample observer also compensates for the large delay generated by the hold and
improves the stability margin of the closed-loop system. Finally, the proposed method is
applied to visual servo systems by introducing the workspace controller and perspective

transformation.

6.2 High Precision Following Control of HDD by PDR

with Intersample Observer

6.2.1 Track Following Mode of Hard Disk Drive

In this section, the perfect disturbance rejection (PDR) control system proposed in chapter
3 is applied to the track-following mode of hard disk drives. The block diagram of the

following mode is shown in Fig. 6.1. The disturbance d,(t) represents vibration of the
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Figure 6.1: Following mode.

track generated by disk rotation, which is called track runout. The objective of this mode
is to position the head on the desired track while information is being read or written and
keeping the position error pe(t) zero. n(t) and d,(t) represent measurement noise and
acceleration disturbance, respectively.

In the following mode, two kinds of disturbance should be considered: repeatable and
non-repeatable runout. Repeatable runout (RRO) is synchronous with the disk rotation,
and non-repeatable runout (NRRO) is asynchronous. There exist three approaches to
reject RRO; (1) repetitive control, (2) feedback control based on the internal model prin-
ciple, and (3) identification and feedforward control. In this section, the RRO is modeled
by a sinusoidal disturbance, and it is perfectly rejected at M intersample points in the

steady state. Therefore, the proposed approach of this section belongs to category (2).

6.2.2 Effects of perfect disturbance rejection and intersample

observer

The controlled plant is the 3.5-inch hard disk drive used in section 5.3.2. The nominal
plant is modeled by

KK
P.(s) = —L—2e*1a, 6.1
()= Y (61)
The parameters of this plant are shown in Table 5.1 of the previous chapter.
The disturbance models are considered as follows.

! (B) : d(s) = - (6.2)

(A) 1 d(s) = M7 5

The model (A) makes the sensitivity function S(s) small at low frequencies and the

rotation frequency of the disk wgr(= 27120). The model (B) is introduced for comparison

100



S[z], T[z] Position Error

— (A) Multirate: N=4

----  (A) Multirate: N=2

--- (A) Single-rate
(B) Single-rate

= E
= 4 & .|
‘© I .
o |
1
|
—60 8 — (A S[z] |} |
-70 T (A TIT
g - (B)SI[z] |, i
—80+ 4
80 (B) Tlz] |
— ; : i _3 i i i ; ;
905 102 10° 0 5 10 15 20 25
Frequency [Hz] t [msec]
(a) S[z],T[z] : N =1 (b) Position error
x 10> Position Error
6 T T T T
5F Ts —— (A) Multirate: N=4 | 1
----  (A) Multirate: N=2
ar --- (A) Single—-rate
3r r/\\ ’”\ "\ it " Y N
I I [ I [ f \ I
25 ’l ‘\ i ‘\ TR 7oA [ p .
= - o \ \ I \ 1 Y
= 1*\/\ LT ,’ Lt T O T O R UL AR W i
= Yrov g \ \ \ N 1 v AN
> AN v,’ \! \;/ N Y b ! P i 0 y
N N U Ve NS e N N N e e N e T
(o] B [ /r\ iy /y\ el '! 0 iy //\ \\\ I N /r
—1H ! \,\ | \,\ i \\/’\ : \\H I ‘\,\ ! \/’\ Ny
3 ‘v < \\ ’ N \\ . . ! o , | ’A o
—2F . I Vo vl L [ |
v L i [ v v Vi
—3F o o ¥ ¥ N 1
—a . . | i
29 29.2 29.4 29.6 29.8 30
t [msec]

(c) Position error in steady state

Figure 6.2: Simulated results on the following mode.

with conventional Pl-lead filters, because the controller consisting of state-feedback and
disturbance observer for (B) becomes 2nd order with an integrator. In this section, only
first order repeatable runout is considered as the disturbance model (A). However, high
order runout is considered in section 6.3.

The perfect disturbance rejection controllers are designed with N = 2, 4. The proposed
method is compared with the single-rate disturbance observer, in which the disturbance
is modeled by d[z] = Z[d(s)].

All poles of the regulator and observer are assigned to exp(—2mf,Ts) as shown in
Table 6.1. These poles are selected to set the open-loop 0 dB cross-over to about 500[Hz].
Fig. 6.2(a) shows the sensitivity and complimentary sensitivity functions (S[z] and T'[z])
for model (A) and (B).
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Effects of Perfect Disturbance Rejection Control

Fig. 6.2 shows the simulated results for a 120[Hz| sinusoidal runout added from ¢ = 0, with
amplitude 1 [trk] = 3.6[um]. Although the transient position errors are large, the steady
state position errors of the controller (A) become zero at the sampling points, because the
feedback controller has the internal model of the RRO. However, Fig. 6.2(c) shows that
the intersample responses have tracking error even in the steady state. It is shown that
errors of the plant position and velocity become zero at every Ts/M (= 2T,/N) for the
proposed controllers. Moreover, the intersample position errors of the proposed multirate
methods are much smaller than that of the single-rate controller. Fig. 5.6 and Fig. 6.2(c)
have very similar results indicating that the performance improves with increase of the

input multiplicity both in the feedforward and the feedback characteristics.

Consideration of Time Delay in Perfect Disturbance Rejection Control

In the above simulations, the time delay is assumed to be zero (T; = 0) for simplification.
Next, the extended PDR with time delay is introduced, which was proposed in section
3.3.4. Fig. 6.3(a) shows the frequency response of the sensitivity and complementary
sensitivity functions with time-delay!. Compared with the case of T; = 0, the sensitivity
worsens due to the time delay although the poles of both closed-loop systems are set to be
identical. Thus, the convergence of the transient response for Ty = 75 [us] becomes slower
than that for 7; = 0, as shown Fig. 6.3(b). However, Fig. 6.3(c) shows that disturbance
rejection performance in the steady state is maintained by the extended controller, and

perfect disturbance rejection is achieved at M (= N/2) intersample points.

Effects of Intersample Observer

The open loop characteristics are shown in Table 6.1 and Fig. 6.4. It is shown that
the gain and phase margin are increased by the multirate feedback using the proposed
intersample observer, in the same way as [50, 89]. However, this is the first attempt to
reject RRO by multirate feedback control, thus, these results are significant in showing
that the stability margin is recovered by multirate control for model (A). Moreover, in the
proposed intersample observer, calculation resources can be saved because the feedback
gain (3.33) is obtained by off-line calculation. The proposed scheme is applicable to

various plants and types of disturbance because the proposed theory is very general.

'Some parameters such as T, of Fig. 6.3 are set to be different from those of Fig. 6.2 in order to make
Fig. 6.3(c) clear.
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Figure 6.3: Simulated results of PDR with time delay (7', = 200[us], Ty = 75[us])

Table 6.1: The open loop characteristics.

Disturbance Model A A B B
Input multiplicity N 1 4 1 4
Closed-loop poles f; | 240 | 240 | 390 | 390

Gain margin [dB] -6.93 | -6.95 | 11.9 | 12.5
180 deg cross-over [Hz| | 249 | 249 | 1573 | 1635

Phase margin [deg] 29.5 | 29.6 | 35.8 | 36.2

0 dB cross-over [Hz] 507 | 510 | 505 | 506
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6.3 High-order Periodic Disturbance Rejection Con-
trol for HDD

6.3.1 Feedforward and Feedback Repetitive Control

In this section, the multirate repetitive controllers proposed in section 3.4 are applied to
the track-following mode of hard disk drives.
The nominal plant is modeled by

KK, 1
Fe(s) = 7](4 = (6.3)
p

where the parameters of the plant are shown in Table 5.1. High order repeatable runout
is considered at 1st, 10th, and 20th order?, and modeled by

d(t) = Z ay, cos kwot + by, sin kwyt, (6.4)
k=1,10,20

where wy = 27120[rad/sec].

Fig. 6.5 shows the closed-loop characteristics both of the feedback (Fig. 3.2) and
feedforward (Fig. 3.5) repetitive control systems. Fig. 6.5(a) indicates the disadvantages
of the feedback repetitive controller, where the closed-loop characteristics worsens and
it becomes difficult to assure stability robustness. On the other hand, in the proposed
feedforward repetitive control (Fig. 3.5), the closed-loop characteristics depend only on
C[z] which does not need to have the internal model of (6.4). Therefore, the feedback
characteristics are better than those of the feedback approach as shown in Fig. 6.5(b).

2In practice, several large modes should be selected through experimental analysis.
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(20th order corresponds to 2.4 [kHz].)

Fig. 6.6 shows the simulated results of the proposed repetitive feedforward control
10[ms]. As

shown in Fig. 6.6(a), the position error converges quickly after the switching action.

under the 20th order sinusoidal runout. The switch turns on only at t, =
Moreover, it is shown that the proposed initial value compensation (IVC) can prevent
the large overshoot. Fig. 6.6(b) shows that the intersample response of the conventional
single-rate controller has large errors in the steady state. On the other hand, the errors of
the plant position and velocity become zero at every T, /2 with the proposed controllers®.
Moreover, the intersample position error of the proposed multirate method is much smaller
than that of the single-rate controller.

Fig. 6.7 shows analyzed results of the error ratio Er(k) for the disturbance order k.

3In the proposed method, perfect disturbance rejection is assured M (= N/n, = 4/2 = 2) times during
T,.
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Considering the intersample response, the error ratio is calculated by
T
2 A tt:+k O pe?(t)dt
ER(k) = ‘ts+kTO d2 Adt ) (65)
fts y( )

where d,(t) = T}, sin kwot, Ty = 27 /wy, and t, is selected as 20]s| in order to evaluate the
steady state. In the high frequency region close to the Nyquist frequency (3.6[kHz]), the
disturbance rejection performance is much improved by the proposed multirate control,
compared with the single-rate controller. Therefore, it is shown that the proposed method

demonstrates effective performance for high-order disturbance.

6.3.2 Optimization of the Intersample Performance

In the above simulations (Fig. 6.5 ~ 6.7), the state multiplicity is selected as M = N/n(=
2) to reject the disturbance perfectly at M intersample points. In Fig. 6.8, however, the
intersample performance is optimized by (3.51).

As shown in Fig. 6.8(a), the optimized intersample response of M = 10 is not much
improved compared with the case without optimization of M = 2. Therefore, it can
be said that the selection of M = N/n proposed in section 3.4.1 is reasonable in the
engineering sense because F'; of (3.26) is simpler than that of (3.51) and PDR is intuitively
understandable. However, the optimization approach is valuable because it is applicable to
the case where N/n is non-integer. As shown in Fig. 6.8(b), the intersample performance

is improved with higher input multiplicity N.
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Figure 6.10: Photographs of robot with camera.

6.4 Visual Servoing of Robot Manipulator by Repet-

itive Disturbance Rejection Control

6.4.1 Sampling Restriction in Visual Servo System

In this section, the visual servo problem is considered [104, 105], in which the camera
mounted on the robot manipulator tracks a moving object as shown in Fig. 6.9 and
Fig. 6.10. Although the sampling period of the vision sensor such as a CCD camera is
comparatively slow (over 33 [ms]), the control period of joint servo is fast (less than 1
[ms]). Therefore, multirate controllers have been developed and implemented in the visual
servo system [56, 57, 58]. In this section, it is assumed that the motion of the object is
periodic, and repetitive disturbance rejection control is applied based on the multirate
feedback and feedforward approaches developed in section 3.4.

In order to focus on the dynamical problems of the multirate system, the kinematical

problems of the visual servo system are assumed to be simple: the object movement is in
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two-dimensional plane, and the depth information between the camera and the object z

is known.

6.4.2 Modeling of Visual Servo System

First, the work space position controller is designed in order to control the camera po-
sition as shown in Fig. 6.11 [106]. Because this controller employs the robust distur-
bance observer (DOB) in the joint space, each joint axis is decoupled. Therefore, if the
non-singularity of Jacobian J,., is assured, the transfer function from the work space
acceleration command &7 to the work space position z.(= [X,,Y.]T) can be regarded
as a double integrator system for the frequency region below the cut-off frequency [106].
Letting "¢/ be the control input w of the outer visual servo system, the plant is modeled
by the analog system (6.6) because the sampling period of the interloop is very short (1
[ms| in this experiment).

K

P 1 6.6
s2 + Kgs + Kp 2 ( )

1>

Zo(s) = Po(s)u(s), P.(s)

In Fig. 6.11, the parameters of the position controller are set to K, = diag{100, 100} and
K, = diag{20,20}.

Next, the perspective model of the camera is derived [107]. In Fig. 6.11, the object
position (z,y) on the camera coordinate system is determined only by the relative position
between the camera position . and object position x,. Therefore, the following model
is obtained because (x,y) is mapped to the feature point € on the image plane, as shown
in Fig. 6.12 [56].

f[x}:f[ cosf  sinf

XO_XC
£="=
Yy

Yo —Y.

- (6.7)

z

—sinf cos®

Here f is the focus distance, z is the distance between the object and camera in the Z-axis

direction, and 8 2 g1 + go. Equation (6.7) is described by & = (0)(x, — x.) = 1(0)x..
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Fig. 6.13 shows the proposed control system. In this experiment, the desired feature
€7 is set to zero because the camera is controlled to be positioned just below the object.
The movement of the object can be modeled as the output disturbance x,. Therefore, the
proposed method can achieve high tracking performance because the periodic motion can
be rejected by the proposed PDR. Moreover, the control system of Fig. 6.13 is linearized
and diagonalized by the inverse transformation +~*(6) of (6.7)*. Thus, the controllers can
be designed independently in the x and y axes. The sampling period of the image and the
control period of the position command @’¢/ are set to T, = 100 [ms] and T, = 25 [ms],
respectively. Because the input multiplicity is N = 4 and the order of plant (6.6) is n = 2,
perfect disturbance rejection is assured at 2(= N/n) intersample points. T} represents the
time delay caused by image processing. Because this delay generates difficulty in control
system, [108, 109, 110] have developed compensation methods for this delay, however, in

this section, the time delay is assumed to be zero (T; = 0) for simplification because the

4In case of the setup of Fig. 6.13, 1 ~1(0) is easily obtained from the inverse matrix of (6.7). In general

case, it can be calculated from the inverse Jacobian [105].
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proposed perfect disturbance rejection control is applicable to systems with time delay,

as demonstrated in section 6.2.2.

6.4.3 Simulation and experimental results

For the visual servo system, results parallel to those of the HDD in section 6.3 are obtained.
In the experiments, the two-link direct drive robot mentioned in section 5.2 is utilized,
and a personal computer is used both for joint servo control and image processing. The
repetitive disturbance is modeled for k = 1st, 3rd, and 5th order. The period of the
object’s movement is T = 0.5[s].

Fig. 6.14 shows the sensitivity and complementary sensitivity functions S[z] and T[z]

both of the feedback (Fig. 3.2) and the feedforward (Fig. 3.5) control systems. Fig. 6.14(a)
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indicates the disadvantages of the feedback repetitive controller, where the closed-loop
characteristics worsen and it becomes difficult to assure stability robustness. On the
other hand, in the proposed feedforward repetitive control (Fig. 3.5), the closed-loop
characteristics depends only on Cs[z] which does not need to have the internal model of
repetitive disturbance. Therefore, the feedback characteristics are better than those of
the feedback approach for the visual servo system, just as they are for the HDD.

Fig. 6.15 shows the simulated results of position error X, — X, for circular movement
of the object. As shown in Fig. 6.15(a), the position error of the feedforward controller
converges quickly after the switching action at ¢y = 1.0[s], while that of the feedback
controller has large transient errors. In the steady state, the errors of the plant position
and velocity become zero at every T),/2 with the proposed controllers as shown in Fig.
6.15(b). The intersample position error of the proposed multirate method is much smaller
than that of the single-rate controller.

The experimental results are shown in Fig. 6.16. In this experiments, the image is
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detected at every 100 [ms]. In order to display the intersample response, the sampling
period is set to T, = 400 [ms] in the controller. Fig. 6.16(a) shows that the tracking error
of the proposed multirate controller is much smaller than that of the single-rate controller.
Moreover, as shown in Fig. 6.16(b) and (c), the camera position is very smooth because the
multirate controller generates the intersample reference signal based on the disturbance
model. Note that the amplitude and phase of the target movement are assumed to be
unknown, and the information is estimated by the observer.

Fig. 6.17 shows analyzed results of the error ratio Er(k) for the disturbance order k.
Considering the intersample response, the error ratio is calculated by

E2 (k) é tt()0+kTO (XO(t) - Xc(t))th
& St X2 (t)di

0

(6.8)

where X,(t) = sin kwot,wy = 27w /T, and ¢, is selected as 4 [s] in order to evaluate the
steady state. In the high frequency region close to the Nyquist frequency, disturbance
rejection performance is much improved by the proposed multirate control, compared with
the single-rate controller. Therefore, it is shown that the proposed method demonstrates

effective performance for high-order disturbance, just as for the case of HDD.

6.5 Summary

In this chapter, the perfect disturbance rejection (PDR) control developed in chapter
3 was applied to the track-following mode of hard disk drives (HDD) and visual servo
systems of robot manipulators, having restrictions in the sampling mechanisms.

In section 6.2, the first order repeatable runout (RRO) of HDD was considered as a
disturbance model, and it was perfectly rejected at M intersample points. Next, it was

shown that in the steady-state performance is preserved even if the plant contains time
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delay. Finally, the intersample observer was implemented, and analysis of the frequency
response proved the recovery of the stability margin.

Second, in section 6.3, high order RRO was taken into account, and feedback and
feedforward multirate control were compared. The advantage of the feedforward approach
is demonstrated by the frequency response of the closed-loop system. Moreover, by the
use of the optimization of intersample response, it was shown that the proposed PDR
gave practical and reasonable results.

Third, in section 6.4, the proposed method is applied to the visual servo system of robot
manipulators. By using the workspace controller with the robust joint servo system and
the inverse transformation of nonlinear perspective transformation, the system becomes

a linear system and applicable to the proposed theory.
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Chapter 7

Applications of Perfect State
Matching

7.1 Abstract

In this chapter, the perfect state matching (PSM) control developed in chapter 4 is applied
to motion control systems based on multirate sampling control. First, the position control
system for a dc servomotor with disturbance observer is utilized as an example without
hardware restriction in the sampling scheme. Simulations and experiments are performed,
and the advantages of this approach are demonstrated. Because the proposed method
assures the response matching independent of sampling period, it enables to bring out the
maximum performance of a control system.

Second, vibration suppression control is proposed based on multirate input control for
a system in which the Nyquist frequency is relatively closed to the mechanical resonance
mode and the sampling period is longer than the control period. For a two-mass system
model of hard disk drive, simulations demonstrate the possibility of controlling the critical

resonance mode.

7.2 Discretization of a Position Controller for Servo-

motor with Disturbance Observer

7.2.1 Discretization of Controller

In this section, the proposed discretization method is applied to the position control
system for a dc servomotor with disturbance observer as shown in Fig. 7.1 based on the

perfect state matching control.

115



d

u - w 0
T o K+ Kgs |+ Hig. 1 1
p+ fRas N " Js+B s

1
K AT

d we

S+we

Figure 7.1: The position control with the disturbance observer.

In the experiments, DSP(NEC: pPD77230, 32-b floating point) is used, and the 1/100
gear ratio dc servomotor is driven by a 10-kHz switching frequency MOSFET chopper.
The pulse counter generates 1 000 pulses per revolution on the motor shaft (it becomes
100 000 pulse/revolution on the geared shaft), and the speed is detected by a tachometer
through a 12-b A/D converter [111].

In the design of the continuous-time controller, assuming that the disturbance torque

d is a step function, the plant is represented by

Tep(l) = Aepep(t) + bepuicy(?) (7.1)
0 1 0 0 0

Acp: 0 _g _% 7bcp: % y Lep = w
0 O 0 0 d

where 6 is angular position, w is angular velocity, and u, is the dc voltage of the motor
terminal. Assuming the command input r to be a step function, the continuous-time

control law is given by

Uy = Kp(r—0) — Kqw+ K%la?

7.2
= fcpi(:p + ng/r ( )

where f., = [—Kp,—Kd,K%l],gcp = K, & = [0,w,d)”. As shown in Fig. 7.1, the
continuous-time disturbance observer is also given by
Ue(t) = Acto(t) + Baw(t) + Joue(t) (73)
d(t) = b.(t) + 1. w(t) '

~

where AC = —we, B = —Buw, + Juw?, jc = K,w,, and w, is the cut-off frequency of the

low pass filter.
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The nominal values of the plant constants are J, = 0.0730 [kgm? , B, = 3.26
kg:m?/s|, K, = 0.388 [N-m/V]. The continuous-time control parameters are K, =
8.91, Ky = —4.99,w, = 300 [rad/s].

First, the control law (7.2) is discretized. Although (A,, Be,) in (7.1) is not control-
lable, the conditions in (4.27) are satisfied for input multiplicity N1 = 2. From (4.28), the

discretized control laws for T' = 0.4[ms], 111 = 0.5 are obtained, as follows.

07
w1 [1] —33.4 3.38 257 [_] 33.4 |
= wli] | + r(i]
wysi] —33.6 3.34 257 . 33.6
i
Second, the disturbance observer in (7.3) is redesigned in the same way as in section
4.3.3 [72]. For T = 0.4 [ms], u11 = 0.5, the discrete-time observer is obtained by

ﬁd[i -+ 1] = Ad’f}d[Z] + Bdw[i] + jnun[i] + jlgulg[i]

7.4
dli] = ali] + la w[i] (74)

where I; = —20.8, A; = 0.887, B, = 1.99, J1; = 2.12 x 1072, J15 = 2.21 x 1072.

7.2.2 Simulations and Experiments

Because the proposed method utilizes the multirate input control with N = 2, the output
sampling period T is twice as long as the input sampling period T),. In the following
simulations and experiments, the proposed method is compared with the Tustin (bilinear)
transformation with the same input sampling period in order to make the calculation costs
of two systems equal for fair comparison. Therefore, the output sampling period of the
proposed method is twice as long as that of the Tustin transformation.

Simulated and experimental results are shown in Fig. 7.2 and Fig. 7.3. For the very
short sampling period (0.2 [ms]), we find that the Tustin transformation and the proposed
transformation have almost the same time response. However, for the long sampling pe-
riod (8 [ms]), as shown in Fig. 7.2 and Fig. 7.3(b), the proposed method gives better
performance than the Tustin transformation. While the responses of Tustin transfor-
mation are unstable, those of the proposed method are stable, and exactly match the
continuous-time responses.

The simulated time responses of the control input are shown in Fig. 7.2(c), which
indicates that the control input of the proposed method is smooth despite using multirate

control.
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Figure 7.4: Frequency responses.

7.2.3 Frequency Responses of the Closed-loop Systems

The frequency responses from the command input (r) to the plant state (#) are shown in
Fig. 7.4(a). In the wide frequency band below the Nyquist frequency, the discrete-time
response obtained by the proposed method (Gy,[z]) matches the continuous-time response
(Gyr(s)). That is guaranteed by (4.15), (4.22), (4.24) and (4.25).

The frequency responses from the disturbance torque (d) to the plant state () are
also shown in Fig. 7.4(b), which indicates that the longer the sampling period is, the
poorer the disturbance rejection performance is. Therefore, Fig. 7.4(b) shows the practical

limitations of the sampling period for the proposed method.

7.2.4 Disturbance Responses

The simulation results of the time responses for step function type disturbances (5 [N - m],
t > 1 [s]) are shown in Fig. 7.5. For the short sampling period (0.4 [ms]), the discretized
system has almost the same performance as the continuous-time system. However, as
mentioned above (Fig. 7.4(b)), the disturbance rejection performance becomes poor for
the large sampling period (16 [ms]).

The time responses of the disturbance estimation errors are shown in Fig. 7.5(b). The
estimation error of the discrete-time observer obtained by the proposed method completely
matches that of the continuous-time observer at every sampling period. Fig. 7.5(b) also

assures that there is no offset between the command input (r) and the plant state (6).
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Figure 7.5: Responses under step type disturbance(simulation).

120



7.3 Vibration Suppression Control in Semi-Nyquist
Frequency Region for HDD

7.3.1 Vibration Suppression Control with Sampling Restriction

Vibration suppression control is an important problem in motion control systems of steel
rolling mill, flexible arm, large-scale space structure, hard disk drive, etc. Thus, a lot of
controllers have been developed for two or multi-mass systems [112, 113, 114, 115].

However, if the resonance mode is relatively closed to the Nyquist frequency, it is
very difficult to suppress this mode because conventional single-rate controllers do not
have enough performance in the semi-Nyquist frequency region. In this section, a novel
vibration suppression controller is proposed for this critical mode by introducing multirate
input control. The proposed methods are further applied to the head-positioning system
of hard disk drives.

Vibration suppression controllers have been proposed with various different approaches
in the continuous-time system [112]. To implement them in digital control systems, the
designed analog controllers are discretized by the Tustin transformation or other methods.
Because these transformations are based only on the open-loop characteristics of the
controller, the closed-loop has poor performance or becomes unstable when the resonance
mode is close to the Nyquist frequency.

On the other hand, in section 4.3, a novel discretization method of controllers was pro-
posed based on the perfect state matching (PSM) control with multirate sampling control,
in which the closed-loop characteristics were taken into account. Moreover, in section 4.4,
it was extended to systems with relatively long sampling periods. In this section, the pro-
posed method is applied to the vibration suppression control system where the resonance
mode is in the semi-Nyquist frequency region. The advantages of the proposed method
are that 1) the controller is discretized based on the closed-loop characteristics, and 2)
the plant state of the digitally controlled system completely matches that of the original

continuous-time system at M inter-sample points during 7.

7.3.2 Modeling of the plant with mechanical resonance mode

In this section, the proposed vibration suppression controllers are applied to the settling
and following modes of the 3.5-inch hard disk drive used in section 5.3.2. Taking account
of the mechanical resonance mode, let the nominal model of this plant be
_ KjK, 1 wi

M, s2 52 4+ 2C1pwins + w%n'

P.(s) (7.5)
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Table 7.1:

Parameters of the 3.5-inch hard disk drive including mechanical resonance

mode.
Amplifier gain K, | 1.996 AV
Force constant Ky | 295 N/A
Mass M, | 6.983 g
Track pitch T, | 3.608 pm/trk
Sampling time Ts 138.54 usec
Input multiplicity N 4
Mechanical resonance | wi, | 27 x 2.7 x 103 rad/sec
Damping Cin | 0.1
Plant
—40 \\\\
IS
-60 R
~
= -80f ~
§ -100 ; \
—r200) — Pn(s) \
-~ k/s
-140t Nyquist
10" 10° 10° 10*

f [Hz]

Figure 7.6: Frequency responses of plant.

The parameters of this plant are shown in Table 7.1. This model is obtained from the
frequency response of Fig. 5.11 in the experimental analysis. As shown in Fig. 7.6, the
actual plant has the first mechanical resonance mode at around 2.7 [kHz], and its variation
range is + 500 [Hz]. The Nyquist frequency (3.6 [kHz]) is close to this resonance mode.
Therefore, it is very difficult to suppress the vibration with the conventional single-rate

controller.

7.3.3 Vibration Suppression Control Based on Multirate Input
Control

The continuous-time controller is designed by the regulator and disturbance observer, in
which the disturbance is modeled by the step type function d(s) = 1/s, the poles of the
regulator are set to (s +w.)?, and those of the observer are set to (s +w.)?(s* + 2(wins +
w? ). As shown in Fig. 7.7, this controller has notch characteristics at the resonance

frequency. The parameter w,. is tuned such that the bandwidth of the closed-loop system
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Figure 7.8: Step and disturbance responses (w; = wy,).

is set as high as possible, and the + 1 [kHz] resonance variation is stabilized. Fig. 7.7 also
shows that the Tustin transformation has large approximation error because the resonance
mode is close to the Nyquist frequency.

Simulated results are shown in Fig. 7.8, which indicate that the proposed method
has better performance than the Tustin transformations. In Fig. 7.8(b), the “Multirate
Tustin” method consists of the digital controller discretized by Tustin transformation with
T,/N and the interpolator which has an up-sampler and a zero-order-hold [116]. While
the responses of the Tustin transformations are oscillating, those of the proposed method
have no vibration and show a step response identical to the ideal continuous-time system.

Fig. 7.9 shows the sensitivity and complementary sensitivity functions (S[z] and T[z])

of the closed loop systems. As shown in Fig. 7.9(b), the proposed method retains the
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Figure 7.9: Frequency responses (S[z] and T[z]).

ideal characteristics of the original continuous-time controller (Fig. 7.9(a)) because the
proposed method is based on the closed-loop system. On the other hand, in conventional
Tustin transformations (Fig. 7.9 (¢) and (d)), the closed-systems are quite different from

the original analog system, because those controllers are discretized based only on the

open-loop characteristics.

Fig. 7.10 shows the responses for the case where the frequency of the mechanical reso-
nance mode fluctuates 500 [Hz], indicating that the proposed method has high robustness.
Because the frequency response of the closed-loop system is well preserved as shown in

Fig. 7.9, the high robustness of the original analogue system is maintained in the obtained

discrete-time system.
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7.4 Summary

In this chapter, the novel discretization method of continuous-time controllers developed
in chapter 4 was applied to motion control systems based on the perfect state matching
(PSM) control with multirate sampling control.

In section 7.2, position control using a dc servomotor was selected as an example,
and simulations and experiments were performed. The results indicated that the pro-
posed method had better performance than the Tustin transformed digital controller.
The disturbance rejection performances were considered in both the time and frequency
domains.

Next, in section 7.3, a novel vibration suppression controller was developed for the
2-mass system of hard disk drives, in which the mechanical resonance mode is relatively
close to the Nyquist frequency. Simulation results show the possibility of controlling this
critical mode by multirate input control.

In order to obtain a high performance control system, the control bandwidth has
to be set as wide as possible. However, in conventional methods such as the Tustin
transformation, it is impossible to broaden the bandwidth too much, because the closed-
loop system becomes unstable. On the other hand, the proposed method allows us to try
the limits of the given hardware.

In this dissertation, perfect state matching is proposed for the controller discretization
problem. However, it is applicable not only to the discretization but also to the model
matching problem. By using PSM, the plant state can be controlled to match desirable
continuous-time systems in both the feedforward and feedback characteristics. Thus, it

can be said that the PSM is one of the fundamental schemes for multirate sampling control
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together with PTC and PDR.
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Chapter 8
Conclusion

In this dissertation, a general framework of multirate sampling control was constructed,
and was developed into practical methodology by applying it to various motion control
systems. In the first part, three fundamental control schemes were developed theoreti-
cally. They were 1) perfect tracking control (PTC) by multirate feedforward control, 2)
perfect disturbance rejection (PDR) control by multirate feedback control, and 3) perfect
state matching (PSM) control by multirate sampling control. In the second part, the pro-
posed schemes were applied to practical motion control systems such as servomotors of
robot manipulators, hard disk drives, two-mass systems, and visual servo systems. These
applications demonstrated that the proposed methods were very effective in the practical
motion control systems even when there were severe specifications.

This work can be classified by the hardware restrictions in the sampling scheme and
according to the feedforward and feedback approaches, as shown in Table 8.1. While
previous theoretical research dealt mainly with the case without sampling restrictions
(T, = T,) as mentioned in chapter 1, this dissertation considered the cases with and
without the restrictions in both feedforward and feedback schemes. Particularly, systems
with relatively long sampling period were given emphasis because many motion control
systems are in this category.

The details of this framework are summarized in Table 8.1.

For the multirate feedforward approach, a novel perfect tracking control (PTC) method
was proposed in chapter 5. First, this theory was constructed for the case without hard-
ware restrictions (7, = T) in section 2.3. Second, it was extended to the cases with
unequal sampling periods (7, < T, and T, > T,) in section 2.4. Third, time delay
and multivariable systems were handled in section 2.5. Moreover, it was shown that the
structure of the proposed perfect tracking controller was very simple and clear.

The perfect tracking control was applied to motion control systems in chapter 5. As
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an example without hardware restrictions (7}, = Tj,), position control system using the
servomotor of a robot manipulator was examined in section 5.2, and the advantages of
the proposed method were demonstrated through simulations and experiments. Next,
in section 5.3, the proposed method was applied to the track-seeking mode of hard disk
drives, as an example with time delay and long sampling period relative to the control
period (T, < T}).

In the multirate feedback approach, systems with long sampling period were dealt
with in chapter 3, because the feedback characteristics such as disturbance rejection per-
formance and stability robustness are never improved by multirate control for the case
without hardware restrictions [12, 23]. For these systems, perfect disturbance rejection
(PDR) control was developed in section 3.3, which cancels the effects of disturbance of the
plant state at M intersample points in the steady state. Next, the intersample observer
was proposed, which increased the stability margin by estimation and compensation of
the intersample response. The proposed method was further extended to systems with
time delay. In section 3.4, two multirate repetitive controllers were proposed, which were
1) feedback approach based on internal model principle and 2) feedforward disturbance
rejection approach based on the open-loop estimation and switching function. By using
the latter approach, it became possible to reject high-order periodic disturbance without
sacrifice of the closed-loop characteristics.

The perfect disturbance rejection (PDR) controller was applied to the track-following
mode of hard disk drives (HDD) and the visual servo systems of robot manipulators in
chapter 6. In section 6.2, the first order repeatable runout (RRO) of HDD was rejected by
PDR. The intersample observer was implemented, and analysis of the frequency response
proved the recovery of the stability margin. In section 6.3, high-order RRO was taken
into account, and it was rejected by both feedback and feedforward multirate control.
The advantage of the feedforward approach was demonstrated by the frequency response
of the closed-loop system. Next, in section 6.4, simulations and experiments showed that
PDR had high performance in the visual servo system of robot manipulators.

In section 4.3, novel discretization methods for both controller and observer were
developed based on perfect state matching (PSM) control. This method was applicable
to both feedforward and feedback controllers. In section 4.4, PSM was extended to the
system with relatively long sampling period (T, < T}). The remarkable advantages of
the PSM were 1) the proposed method was based on the closed-loop system and 2) the
transient responses were preserved independent of the sampling period. As a result, the
stability of the discretized system was assured.

Perfect state matching (PSM) control was applied to motion control systems in chapter
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7. In section 7.2, position control using a dc servomotor was selected as an example, and
simulations and experiments were performed, the results of which indicated that the
proposed method had better performance than the Tustin transformed digital controller.
Next, in section 7.3, a novel vibration suppression controller was developed for hard
disk drives, in which the mechanical resonance mode was relatively close to the Nyquist
frequency.

In the application part of this dissertation, the proposed methods were not applied
to systems with hardware restriction of short sampling period (7, > T;). There may be
no appropriate applications at the laboratory level, however, this category includes large
scale systems such as chemical plants and steel mills. For these systems, it is possible to
improve plant state estimation by using multirate output control, which can be extended
from the results of section 4.3.3.

As a conclusion, this dissertation succeeded in constructing a general and integrated
framework of multirate sampling control. While the theoretical novelty is important, the
engineering significance is immeasurable, since the proposed methods proved to be prac-
tical methods which make full use of computer performance. In the application examples,
the performance of the proposed method was superior to that of the conventional method.
Moreover, the proposed method has already been implemented in commercial products.
These facts show that this dissertation is a major breakthrough in control engineering

and has broken down the wall which conventional technology could not overcome.
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Restriction case 1 (T}, > Ty) case 2 (T, =T,) case 3 (T, < T,)
Applications | Large scale system | Usual system, Ser- | HDD, Visual servo system
vomotor
Feedforward
e Perfect track- e Controller e Inter-sample perfect
ing  control discretiza- tracking control (section
(section 2.4) tion (section 2.4,5.3)
4.3,7.2) o
e Feedforward repetitive
e Perfect track- disturbance rejection
ing  control (section 3.4, 6.3)
(section 2.3,
5.2)
Feedback

Improvement
of Estimation
(Extension of
section 4.3.3)

e Controller
and observer
discretiza-
tion (section
4.3,7.2)

e Perfect disturbance re-

jection (section 3.3, 6.2)

e Intersample observer

(section 3.3, 6.2)

e Feedback repetitive dis-
turbance rejection (sec-
tion 3.4, 6.3)

e Controller discretization
(section 4.4)

e Vibration suppression in
semi-Nyquist frequency

region (section 7.3)

Table 8.1: General framework of multirate sampling control for digital motion control
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Appendix A

Proof of (2.14)

In this section, it is shown that (2.14) equals (2.13). It has already been proved for the
case of one-degree-of-freedom [76]. It is now extended to two-degree-of-freedom.

Let the right and left coprime factorizations of P[z] be
Plz]=NM"'=M'N. (A1)

All internally stabilizing controllers C'; and Cy can be parameterized as in [74]

C, = (X-QN)'K, (A.2)
C, = (X-QN) (Y -QM)
= (Y -MQ)(X -NQ)™", (A.3)

where XY, X , Y € RH., satisfy the following Bezout identity.
X -Y||MY
. =1 (A.4)
-N M N X
Here, the following theorem is proved in [76].
Theorem A.1 Suppose P[z] = C(2I — A)"'B + D where (A, B) is stabilizable and

(C, A) is detectable. Select F' and K such that Ap 24 + BF and Ay 24 + HC are
stable. The parameters satisfying (A.1) and (A.4) are represented by

Ay | B Ap \B
M = N[ =
F I C+DF\D

P Ay | -B-HD ¥ | A -H
A= F| 1 T T F o

] - e
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Ap ‘—H]’Y[Z]:[AF H]
C+DF| I _Flo

From the above parameterization, it is shown that (2.14) equals (2.13). In Fig. 2.5,

X[z] =

consider the state observer described by

#li+1] = Apali]— Hyli| + (B + HD)uli]
g = Cili| + Duli, (A.5)

where & is the estimated plant state. Equation (A.5) can be represented by the following

transfer functions.

& = —(2I —Ap) 'Hy+ (2I — Ay)"'(B + HD)u,
gy = —C(z:I-Ay) 'Hy
+{C(2:I — Ag) " (B+ HD) + D}u
— (I -M)y+ Nu (A.6)

The error of the estimated output is obtained as
ey:@—y:—My—i-Nu. (A.7)
From the above equations, (2.14) is transformed into (2.13) as follows.

u = Fr+Qe,+ Kr
= —F(zI -Ap) 'Hy+ F(zI - Ay)"'(B+ HD)u

+Qe, + Kr
= Yy+ (I - X)u+Q(-My+ Nu) + Kr (A.8)
(X —QN)u=(Y -QM)y+ Kr (A.9)

u = (X -QN)'(Y-QM)y
+(X -QN)'Kr (A.10)
= Cir+Chy (A.11)
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Appendix B

Derivation of (2.20)

From (A.2), the derivation of (2.20) is as follows [74].

C, = (X-QN)'K

= (X-QN){(X -QN)M — (Y - QM)N}K
Since the following equations are satisfied from the Bezout identity (A.4),
XM-YN=I, MN-=NM
(B.1) is rewritten as

C: = {M—(X-QN)'(Y-QM)N}K
= (M -C3;N)K.
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Appendix C

Proof of (3.51)

In this section, the optimum solution of (3.50) is obtained by the Lagrange’s undetermined

multiplier method.

~ A
Defining A, = [ X } , the problem of (3.50) can be rewritten as

Y

SR

If the Frobenius norm is adopted, this problem can be formulated by

s.t. Ay +YF,=0.

min
d

I_I#HHEHF, E:Ax+XFd, s. t. Ay+YFd:0
d

Decomposing each row as Ax = [@g1, ", Qan, ], Ay = [@y1, -, @y, |, B = €1,

and Fg=[fq, -+, f,,], (C.2) is rewritten as

d

because || E||% = Y17 | eill3.

(C.1)

(C.2)

7enp]7

(C.3)

The problem of (C.3) can be solved by the Lagrange’s undetermined multiplier method.

The Lagrange function is defined by

g = ejei+ XN (a;+YFf)
= (@wi + X ) (@wi + X f)+ X (ay + Y f,)
= alau+al,Xfi+ i X awu+ I X" Xfi+ X a,; + XY f,
The solution of (C.3) is obtained from (C.5) and (C.6).

)
% = (aTX)T + XTa, +2XTXf, + AY)T
= 2X7Ta, +2X'Xf, +Y'A=0,
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g—i =a, +Yf,=0

(C.5) is rewritten as
fi=—-ZX"a, —ZY"\/2,

where Z = (X7 X)~!. Substituting (C.6) for (C.7), it becomes
a, —~YZX"a,, —~YZY"X\/2=0.

Thus, the undetermined multiplier A is obtained by
A=2YZY")Y Ya, — YZX"a.).

Substituting (C.7) for (C.9), the solution of (C.3) is given by

fi = “ZX"a,—-2Y"(YZY") Ya, -~ YZX"a,)
= (zY"(vzYy")''vzX" - ZXNa, - ZY"(YZY") 'a,.

Finally, (3.51) is proved by considering all i(=1,---,n,) as

F, = (ZY'(YzY")'YZX" - ZX"Ax - ZY"(YZY ") 'Ay

= ZIY'(vzY") 'y zX" - X", -YT(YZYT) A,
14
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