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Abstract— In this paper, new real-time methods for the lateral
vehicle velocity and roll angle estimation are presented. Lateral
tire forces, obtained from a multi-sensing hub (MSHub) unit,
are used to estimate lateral vehicle velocity and a roll angle.
In order to estimate lateral vehicle velocity, the recursive least
square (RLS) algorithm is utilized based on a linear vehicle
model and sensor measurements. In the roll angle estimation,
the Kalman filter is designed for real-time estimation. The
proposed estimation methods, RLS-based estimator and the
Kalman filter, were verified by field tests on an experimental
electric vehicle. Test results show that the proposed estimation
methods provide better estimation performances and these
methods are robust to road conditions.

I. INTRODUCTION

Due to the increasing concerns about advanced motion

control of electric vehicles with in-wheel motors, a great

deal of researches on dynamics control for electric vehicles

have been carried out [1]–[3]. Advanced motion control

systems for electric vehicles, prevent from skidding, spinning

out, and severe rolling motion, are referred to as a yaw

stability control system and a roll stability control system,

respectively. Compare with internal combustion engine vehi-

cles, the electric vehicles with in-wheel motors have several

advantages in the viewpoint of motion control [1], [2]. Based

on these advantages of electric vehicles, a novel yaw moment

control method based on the yaw moment observer (YMO)

was proposed in [3] and roll stability control for safety and

driver’s ride quality was proposed and verified from experi-

mental results [4]. In these stability control systems, vehicle

states, e.g., yaw rate, lateral vehicle velocity, side slip angle

and roll angle. etc., are required to be measured or estimated.

The yaw rate can be easily measured by a cheap gyro sensor.

However, in case of the lateral vehicle velocity, side slip

angle, and roll angle, it is practically impossible to measure

the values due to sensor cost problems. For this reason, a

variety of researches on these states estimation have been

carried out [6]–[10]. In [6], lateral vehicle velocity estimation

algorithm was proposed using vehicle model, RLS algorithm,

and Extended Kalman filter. In conventional methods (e.g.,

vehicle model-based method and sensor kinematics-based

method), there are challenging issues such as how to compen-

sate vehicle model uncertainties and remove numerical errors
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by direct integration [8]. Over the last few years, several

estimation methods were proposed to estimate roll states

based on vehicle dynamics model without using additional

sensors (e.g., roll rate sensor) [9], [10]. In [11], several

methods for roll angle estimation were discussed based on

advantages and drawbacks of each method. Moreover, an

approach using closed loop adaptive observer for roll angle

and roll rate estimation was proposed and evaluated. In [9], a

road-disturbance decoupled roll state estimator was designed,

by combining the lateral model-based estimation method and

vertical model-based estimation method, and evaluated by

computer simulations. In other approaches [12], the Global

Positioning System (GPS), which has two laterally placed

GPS antennas, was used to estimate a roll angle. GPS-

based estimation approaches requires satellite visibility from

any location. However, the satellite visibility may be lost

periodically in urban and forested driving environments and

it causes inaccurate estimation. Even though the GPS devices

provide a relatively accurate roll angle, it has a difficulty in

vehicle applications due to the additional sensor cost.

In this paper, novel estimation methods based on lateral

tire forces, measured by a multi-sensing hub (MSHub) unit

[18], are proposed to provide accurate estimates of lateral

vehicle velocity and roll angle. The recursive least square

(RLS) algorithm with a forgetting factor, which has been

extensively utilized in the time-varying system identification

[13], was used to estimate the lateral vehicle velocity. For

estimating roll angle, the Kalman filter [14] was designed

by using available sensor measurements and lateral vehicle

velocity estimated from a RLS algorithm. The Kalman filter

applications in vehicle state estimation have been widely

discussed in the literature [15] and [16].

II. VEHICLE MODEL FOR ESTIMATOR DESIGN

In this section, a three degree-of-freedom (3–DOF) yaw

plane model is introduced to describe the lateral motion of

electric vehicles. The yaw plane representation with inde-

pendent motor torque control is shown in Fig. 1.

The governing equations for longitudinal and lateral mo-

tions are given by

max =
2∑

i=1

(F x
i cos δf − F y

i sin δf ) +
4∑

i=3

(F x
i ) (1)

may =
2∑

i=1

(F x
i sin δf + F y

i cos δf ) +
4∑

i=3

(F y
i ) (2)

The yaw moment balance equation with respect to point
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Fig. 1. 3–DOF yaw plane vehicle model

center of gravity (CG) is

Iz γ̇ =
2∑

i=1

lf (F x
i sin δf + F y

i cos δf ) −
4∑

i=3

lr(F
y
i ) + Mz (3)

where F x
i , F y

i are the longitudinal and lateral tire forces at

ith tire, δf is the steering angle, lf and lr are the distances

between vehicle CG to front axle and rear axle, respectively,

vx, vy are the longitudinal velocity and lateral velocity, γ is

the yaw rate, Iz , m are the yaw moment of inertia and vehicle

mass. And, Mz is the direct yaw moment, which is induced

by the independent torque control of in-wheel motors, and it

can be calculated as follows:

Mz =
d

2
(F x

rr − F x
rl) +

d

2
(F x

fr − F x
fl) cos δf (4)

Here, longitudinal tire forces can be obtained from a driving

force observer which is designed based on wheel dynamics

[17].
The tire slip angles are calculated based on geometric

derivation using wheel velocity vectors. If the velocities at

wheel ground contact points are known, the tire slip angles

can be easily derived geometrically and front tire slip angles

are given by [5]

αfl = −δf + tan−1

(
vy + γlf

vx − γd/2

)
(5)

αfr = −δf + tan−1

(
vy + γlf

vx + γd/2

)
(6)

In usual, for the sake of design simplicity, a bicycle model

is used in estimator design. Thus, the lateral and yaw rate

dynamics are simplified as

mvx(β̇ + γ) = F y
f + F y

r (7)

Iz γ̇ = lfF y
f − lrF

y
r + Mz (8)

where β is the vehicle side slip angle, F y
f , F y

r are the front

and rear lateral tire forces. For small tire slip angles, the

lateral tire forces can be linearly approximated as follows:

F y
f = −2Cfαf ≈− 2Cf

(
β +

γlf
vx

− δf

)
(9)

F y
r = −2Crαr ≈− 2Cr

(
β − γlr

vx

)
(10)

where Cf , Cr are the front and rear tire cornering stiffnesses.

III. ROBUST ESTIMATION OF LATERAL VEHICLE

VELOCITY

In this section, a novel method to estimate lateral vehicle

velocity is introduced. The proposed method uses the lateral

tire forces which are measured by a MSHub unit. The RLS

algorithm was used to estimate lateral vehicle velocity in

real-time. In order to design a lateral velocity estimator, the

nonlinear lateral tire force equations are simplified by using

following assumptions.

• The lateral tire forces are assumed to be proportional to

the tire slip angles.

• It is assumed that the tire cornering stiffnesses of left

and right wheels are same (i.e., Cfl = Cfr). In general,

tire cornering stiffness is affected by weight transfer

of vehicles. In contrast to engine vehicles, in-wheel-

motored electric vehicles, having battery packs under

the floor and driving motors attached in wheels, can

lower a CG of the vehicle. This provides a less weight

transfer and thereby improves the driving stability. From

these features, variations in front left and right tire cor-

nering stiffnesses due to weight transfer are neglected.

From above assumptions, the front lateral tire forces can be

expressed as

F y
fl = −Cflαfl ≈− Cf

(
vy + γlf

vx − γd/2
− δf

)
(11)

F y
fr = −Cfrαfr ≈− Cf

(
vy + γlf

vx + γd/2
− δf

)
(12)

By dividing (11) by (12), the lateral velocity vy is derived

as

vy = γlf − δf (F y
fl − F y

fr)

F y
fl

vx + γd/2
− F y

fr

vx − γd/2

(13)

where the estimated lateral vehicle velocity is defined as a

pseudo-measurement and is expressed as ṽy . In section IV,

this pseudo-measurement is used as a sensor measurement

in roll angle estimator using a Kalman filter.

Considering that all output data and input data are deter-

mined at sample instant, vy described in (13) can thus be

formulated by the RLS algorithm.

y(t) = ϕT (t)θ(t) (14)

where a measured output y(t), an estimated parameter θ(t),
and an input regression ϕT (t) can, respectively, be given as

θ(t) = ṽy

ϕT (t) =

(
F y

fl

vx + γd/2
− F y

fr

vx − γd/2

)

y(t) = γlf

(
F y

fl

vx + γd/2
− F y

fr

vx − γd/2

)
− δf (F y

fl − F y
fr)

4854



The ultimate goal of the RLS algorithm is to find out

parameters that minimizes the following weighted least-

squares criterion [13]:

θ̂(t) = arg min
θ

{
t∑

k=1

Γ(t, k)·ρ(ε)

}
(15)

Here, Γ(t, k) is the weight on the prediction errors at time k,

and ρ(ε) is the cost function which is defined as ρ(ε) =
1
2
ε2.

If the prediction errors can be assumed to be Gaussian with

zero mean values, the defined cost function is reasonable.

The recursive process of the RLS algorithm is described as

θ̂(t) = θ̂(t − 1) + K(t)
[
y(t) − ϕT (t)θ̂(t − 1)

]
K(t) = P (t − 1)ϕ(t)[λI + ϕT (t)P (t − 1)ϕ(t)]−1

P (t) =
1
λ

[I − K(t)ϕT (t)]P (t − 1) (16)

where I is the identity matrix, ε(t) is the prediction error,

and K(t) and P (t) are correction gain matrices. In order

to cope with time-varying properties in a vehicle system, λ,

called a forgetting factor, is used. The smaller λ is, the less

weight is assigned to the older data; that is, the past data are

forgotten faster. In this paper, λ around 0.995 was selected to

make reasonable trade-off between tracking ability and noise

sensitivity.

The main advantages of a proposed estimation method are

summarized in three points. First, it is robust against vari-

ations in vehicle parameters and tire-road conditions. This

is certified that (13) does not involve varying parameters.

Second, a proposed method can be easily realized without

much additional cost: MSHub units (see [18]), including

rolling bearings used to support wheels of the vehicle, can

measure the loads applied to the rolling bearing. In many

conventional vehicles, wheel hub units with built-in active

ABS sensors (i.e., wheel velocity sensor) were equipped.

Comparing MSHub units with wheel hub units which are

currently used in vehicles, MSHub units have almost the

same mechanical structure except for rolling elements in

a pair of rows and is capable of being constructed at a

low cost. Therefore, accurate lateral tire force measurements

using MSHub units can be realized without much additional

cost. Finally, a proposed recursive algorithm is very simple

and can be easily implemented in real-time. Moreover, the

estimated lateral vehicle velocity can be used to identify

cornering stiffness in (9) and (10).

IV. ROLL ANGLE ESTIMATION FOR ROLL

STABILITY CONTROL

The vehicle roll motion generally occurs as a result of

lateral motion by steering maneuver and road disturbances.

In contrast to conventional engine vehicles, electric vehicles

with in-wheel motors show a low ratio of sprung mass over

unsprung mass due to in-wheel motors installed in each

wheel. This implies that ride quality can be deteriorated. In

order to avoid deterioration in ride quality, the suspension

stiffness was selected as a smaller value. It indicates that

the roll motion easily occurs. Thus, the roll stability control

system is required and accurate roll angle estimation has

to be carried out before control design. In this section, a

roll angle estimation method, which uses sensor kinematic

relationships and a linear roll model, is introduced.

A. Roll Dynamics and Sensor Kinematics

This section introduces roll dynamics for estimator design.

Fig. 2 shows the two-dimensional roll dynamics for electric

vehicles with in-wheel motors. In order to model the roll

dynamics, the following assumptions are made:

• The location of the roll axis is assumed constant in a

height of roll center (RC) parallel to the ground and

the lateral and vertical movements of RC due to the

asymmetric suspension geometry are not considered.

• The pitching and bouncing motion of sprung mass are

neglected.

• A small roll angle is assumed such that sinφ ≈ φ and

cosφ ≈ 1.

• The effect of road bank angle is not considered in this

study.

SCG

RC

y

leftF y

rightF

s ym a

φ

sm g rollh

yma

M
o
to
r

M
o
to
r

Fig. 2. Two-dimensional roll dynamics for an electric vehicle

The two-dimensional roll dynamic equation and the kine-

matic relationships of the lateral acceleration of CG, ay , and

a sensor measurement, aym, are expressed as

Ixφ̈ + Crollφ̇ + Krollφ = ms(aym)hroll (17)

aym = v̇y + γvx + gφ (18)

ay = v̇y + γvx (19)

where Ix is the roll moment of inertia, Croll, Kroll are the

roll damping coefficient and roll spring coefficient, ms is

the sprung mass, hroll is the height of the center of sprung

mass above roll center (RC), (18) is the sensor kinematics

of a lateral acceleration sensor including roll angle effect.

In (17), the roll moment acting on sprung mass, caused by

lateral motion, can be explained by lateral inertial force and

gravity force of sprung mass.
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B. Kalman Filter Design for Roll Angle Estimation

In this section, a roll angle estimation method, based on

sensor measurements and roll dynamics, is proposed. The

Kalman filter was applied to estimate a roll angle and to

remove sensor measurement noises. The process of roll angle

estimation is divided into two steps. First, the lateral vehicle

velocity estimation is conducted described in section III.

Second, this estimated lateral vehicle velocity is used to

estimate roll angle in a Kalman filter. The estimated vy from

(16) is considered as a pseudo-measurement ṽy, and thereby

(18) can be rewritten as follows:

˙̃vy = aym − γvx − gφ (20)

From yaw dynamics model, lateral acceleration sensor

kinematics, and roll dynamics model, the state space equa-

tions for Kalman filter design are obtained as

ẋ = Ax + Bu + w
y = Cx + v

(21)

where

x = [ ṽy γ φ φ̇ F y
f F y

r ]T , u = [ aym Mz ]T ,

y = [ ṽy γ F y
f F y

r ]T

A =

⎡
⎢⎢⎢⎢⎢⎣

0 −vx −g 0 0 0

0 0 0 0
lf
Iz

−lr
Iz

0 0 0 1 0 0

0 0 −Kroll
Ix

−Croll
Ix

0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ ,

B =

⎡
⎢⎢⎢⎢⎣

1 0
0 1

Iz

0 0
mshroll

Ix
0

0 0
0 0

⎤
⎥⎥⎥⎥⎦ , C =

⎡
⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎦

It is noted that the system described by (21) could be

completely observable by using ṽy in (20) as a sensor

measurement.

For implementation on an experimental electric vehicle,

(21) is discretized as follows:

x[k + 1] = G[k]x[k] + H[k]u[k] + w[k]
y[k] = C[k]x[k] + v[k] (22)

where

G[k] = eATs , H[k] =
∫ Ts

0

eAτBdτ

C[k] = C, Ts : Sampling time

where w[k] and v[k] are the process noise and measurement

noise, k is the time step. It is assumed that the process and

measurement noise are zero-mean Gaussian processes, and

the covariance matrices are given as follows:

Qw = E(w[k]w[k]T ) > 0, Rv = E(v[k]v[k]T ) � 0 (23)

The extent of Kalman filter bandwidth and its suscepti-

bility to sensor measurement noises totally depend on its

covariance matrix of process noise Qw, which represents the

level of confidence placed in the accuracy of the observer

model, and the covariance matrix of measurement noise

Rv , which represents the level of confidence placed in the

accuracy of the sensor measurements. These values are used

to tune the filter characteristics including an accuracy and

a response, and it was experimentally determined by using

sensor measurements. In this paper, the covariance matrices

of process noise and measurement noise are selected as

follows:

Qw = diag[Qṽy , Qγ , Qφ, Qφ̇, QF y
f
, QF y

r
] (24)

Rv = diag[Rṽy , Rγ , RF y
f
, RF y

r
] (25)

In principle, the covariance matrices are not necessarily

diagonal. However, treating the noise covariance matrix as

a diagonal matrix (i.e., individual noise components are not

cross-correlated) is advantageous since it reduces computa-

tion time. In selection of covariance matrices, it should be

noted that the less noise in sensor measurements compared to

the uncertainty in dynamics model, the more the states will

be adapted to follow sensor measurements. Since the new

measurements for lateral tire forces is much more accurate

than the prior estimates, we put the high uncertainty on states

(i.e., lateral tire forces). The states (e.g., roll angle and roll

rate) are modeled using reliable vehicle roll dynamics. There-

fore, the process noises are relatively small. The suitable

process noise variances for other states (e.g., lateral vehicle

velocity and yaw rate) are selected based on comparison to

the corresponding measurement noise variances. The noise

variances of three sensor measurements are determined from

statistical data analysis using Matlab software.

V. EXPERIMENTAL VERIFICATION

A. Experimental Electric Vehicle

The experimental electric vehicle named “FPEV-II

Kanon”, shown in Fig. 3(a), was used for field tests. The

“FPEV-II Kanon” has following special features.

1) In-wheel motors are mounted in each wheel. It means

that we can control each wheel’s torque completely

and independently.

2) A MSHub unit for measuring the lateral tire forces is

installed in each wheel. Fig. 3(b) shows the MSHub

unit which was invented by NSK LTD. [18]

(b)(a)

Fig. 5. Experimental electric vehicle: (a) FPEV-II Kanon, (b) MSHub unit
(NSK LTD.)
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Fig. 3. Results of a field test on dry asphalt (i.e., μ�0.9): (a) Measured lateral tire forces. (b) Lateral vehicle velocity. (c) Roll angle. (d) Roll rate.
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Fig. 4. Results of a field test on a slippery road (i.e., μ�0.3): (a) Measured lateral tire forces. (b) Lateral vehicle velocity. (c) Roll angle. (d) Roll rate.

B. Experimental Result

The proposed estimation method was implemented in an

experimental electric vehicle shown in Fig. 3(a). In order to

evaluate estimation results of proposed estimators, a non-

contact optical sensor, Correvit (Corrsys–Datron), is used

for accurate measurements of lateral vehicle velocity and

longitudinal vehicle velocity. Moreover, the vertical poten-

tiometers and a roll rate sensor were used to accurately
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measure the roll angle and roll rate, respectively. The random

steering test on dry asphalt was conducted and a field test on

a slippery road was also carried out to verify the robustness

to road conditions.

Fig. 4 shows experimental results for the random steering

test at a vehicle speed of 50 km/h on dry asphalt. Fig. 4(a)–

(d) present the measured lateral tire forces and estimates of

the lateral vehicle velocity, a roll angle, and a roll rate as

well as sensor measurements ,respectively. As shown in Fig.

4(b), estimated lateral vehicle velocity from RLS algorithm

well follows the trend of measured lateral vehicle velocity.

It can be also seen that the estimated roll angle and roll rate

correctly follow the actual values with small errors. Similarly,

the result, shown in Fig. 5 , obtained from a field test on a

slippery road shows the small estimation errors. This implies

that the proposed estimation methods provide robustness to

road conditions.

VI. CONCLUSIONS AND FUTURE WORKS

A novel estimation method is proposed to accurately

estimate the lateral vehicle velocity and roll angle. The

RLS algorithm with a forgetting factor and a Kalman filter

were used in estimator design. Estimation performances

and robustness of proposed estimators were discussed and

evaluated by field tests on dry asphalt and a slippery road.

It was shown that the estimation method utilizing lateral

tire forces could provide improved estimation of the vehicle

lateral vehicle velocity and roll angle. From experimental

results of proposed estimators, it is anticipated that lateral

tire forces, can be accurately measured by a MSHub unit,

will provide practical solutions to challenging issues in

vehicle state estimation. Future studies will aim to design

advanced motion control systems for electric vehicles based

on proposed estimation methods and to apply the cost-

effective MSHub units to vehicle stability control system.

VII. ACKNOWLEDGMENTS

This work was supported in part by the Industrial Tech-

nology Research Grant Program from New Energy and

Industrial Technology Development Organization (NEDO) of

Japan and in part by the Ministry of Education, Culture,

Sports, Science and Technology grant number 22246057.

The authors would like to thank NSK LTD. for providing

a MSHub unit.

REFERENCES

[1] Y. Hori, “Future vehicle driven by electricity and control-research
on four-wheel-motored “UOT Electric March II”,” IEEE Trans. Ind.
Electron., vol. 51, no. 5, pp. 654–962, Oct. 2004.

[2] S. Sakai, H. Sado, and Y. Hori, “Motion control in an electric vehicle
with four independently driven in-wheel motors,” IEEE/ASME Trans.
Mechatron., vol. 4, no. 1, pp. 9–16, Mar. 1999.

[3] H. Fujimoto, A. Tsumasaka, and T. Noguchi, ‘‘Direct yaw-moment
control of electric vehicle based on cornering stiffness estimation,” in
Proc. of IEEE IECON, Nov. 2005.

[4] K. Kawashima, T. Uchida, and Y. Hori, ‘‘Rolling stability control of
in-wheel electric vehicle based on two-degree-of-freedom control,” in
Proc. of IEEE Advanced Motion Control, Mar. 2008, pp. 751–756.

[5] R. Rajamani, V ehicle Dynamics and Control. New York:
Springer-Verlag, 2005.

[6] L. Chu, Y. Zhang, Y. Shi, M. Xu, and Y. Ou, ‘‘Vehicle lateral and
longitudinal estimation using coupled EKF and RLS methods,” Applied
Mechanics and Materials, vols. 29-32, pp. 851–856, Aug. 2010.

[7] D. Fukada, “Slip-angle estimation for vehicle stability control,” Veh.
Syst. Dyn., vol. 32, no. 4, pp. 375–388, Mar. 1999.

[8] D. Piyabongkarn, R. Rajamani, J. Grogg, and J. Lew, ‘‘Development
and experimental evaluation of a slip angle estimator for vehicle
stability control,” IEEE Trans. Control Syst. Technol., vol. 17, no. 1,
pp. 78–88, Jan. 2009.

[9] J. Park , J. Yoon , D. Kim, and K. Yi, ‘‘Roll state estimator for rollover
mitigation control,” Proc. Inst. Mech. Eng., Part D: J. Automobile Eng.,,
vol. 222, no. 2, pp. 1289–1311, 2008.

[10] J. Ryu, N. K. Moshchuk, and S. K. Chen, ‘‘Vehicle state estimation
for roll control system,” in Proc. American Control Conf., New York,
NY, Jul. 2007, pp. 1618–1623.

[11] A. Hac, T. Brown, and J. Martens, “Detection of vehicle rollover,”
SAE., Int., Warrendale, PA, 2004-01-1757, 2004.

[12] R. Daily and D. M. Bevly, ‘‘The use of GPS for vehicle stability
control systems,” IEEE Trans. Ind. Electron., vol. 51, no. 2, pp. 270–
277, Apr. 2004.

[13] L. Ljung, System Identification: Theory for the User. Englewood
Cliffs, NJ: Prentice-Hall, 1987.

[14] A. Gleb, Ed, Applied Optimal Estimation. Cambridge, MA: MIT
Press, 1974.

[15] P. J. T, Venhovens and K. Nabb, “Vehicle dynamics estimation using
kalman filters ,” Veh. Syst. Dyn., vol. 32, no. 2, pp. 171–184, Aug. 1999.

[16] G. Baffet, A. Charara, and G. Dherbomez, “An observer of tire road
forces and friction for active security vehicle systems,” IEEE/ASME
Trans. Mechatron., vol. 12, no. 6, pp. 651–661, Dec. 2007.

[17] H. Sado, S. Sakai, and Y. Hori, ‘‘Road condition estimation for traction
control in electric vehicle,” in Proc. IEEE Int. Symp. Ind. Electron.(ISIE
99) , Jul. 1999, pp. 973–978.

[18] T. Takizawa, T. Yanagisawa, K. Ono, and I. Sakatani, “Load measuring
device for rolling bearing unit and load measuring rolling bearing unit,”
U.S. Patent 7 320 257, Jan. 22, 2008.

4858


