精密位置決めステージにおける高次ピッチングモード を考慮した位置決め制御

関優志*,藤本博志(東京大学),西野秀昭,佐伯和明(ニコン)

Precise Positioning Control of High-order Pitching Mode for High-Precision Stage Yushi Seki^{*}, Hiroshi Fujimoto (The University of Tokyo), Hideaki Nishino, Kazuaki Saiki (Nikon)

Abstract

Precision stages are demanded to grow in size for increased production efficiency. But stages are getting larger, its rigidity are decreasing. Then, the pitching of stage causes a problem on the control. Conventional method is using the feedback control of the pitching angle θ_2 between carriage part and table part. But, the pitching angle θ_1 is caused between guide and carriage part. Then, The feedback control using the pitching angle $\theta_1 + \theta_2$ of the entire stage is proposed. Finally, simulations and experiments are performed to show the advantages of the proposed method.

キーワード:超精密位置決めステージ,多入力多出力系,フィードバック制御,ピッチング,位置決め誤差 (High-precision stage, MIMO, Feedback Control, Pitching, Tracking Error)

1. はじめに

超精密位置決めステージは半導体や液晶パネル等の製造, 微細加工を行うために不可欠な産業機械である。従来はス テージ全体を一つの剛体として捉えることがステージ設計 の常識とされており,リニアモータの並進方向駆動点とス テージ全体の重心を一致させるように取り付けられている。 しかし,大型化による重量の増加によって剛性が低下し,ス テージ全体が一つの剛体として成り立たなくなっている。 そのため複数の共振が周波数特性として生じる。数十 Hz に 現れる主な共振は並進移動の大きな加減速で生じるピッチ ングが原因であり,位置決め制御の問題点となっている⁽¹⁾。

精密スキャンステージではピッチングやローリングを制 御するためのアクティプ除振装置の研究⁽²⁾が行われてい る。しかし,大型の超精密位置決めステージでは十分な加 工精度が得られないために Voice Coil Motor(VCM)を用 いたテーブル部のレベリング制御が行われている。著者ら の研究グループでも並進方向だけでなく,テーブル部の高 さやピッチング,ローリングをオートフォーカス/レベリン グ(AF/LV)センサによるマルチレート制御⁽³⁾や4自由度 の実験用精密位置決めステージ2号機(実験用ナノステー ジ2)の作成を行い検証している⁽⁴⁾。

ー般的にテーブル部のレベリングを行う場合には,制御 対象となるテーブル部のピッチングを抑えるためにキャリッ ジとテーブル間のピッチング角 θ_2 のフィードバックを用い る⁽⁴⁾。しかし実際には図1のように,ガイドとキャリッジ 間のピッチング角 θ_1 が生じるため,全体のピッチング角 に位置決め誤差が生じてしまう。そこで本稿では高次ピッ チング角 θ_1 を考慮し,ガイドとキャリッジ間のピッチング 角 θ_1 とキャリッジとテーブル間のピッチング角 θ_2 を足し 合わせたステージ全体のピッチング角 $\theta_1 + \theta_2$ に着目した

図 1 2 質点 4 自由度モデル Fig. 1. Two-mass Four-degree Model.

フィードバック制御系を提案する。シミュレーションと実 験によって軌道追従制御の位置決め誤差に対する提案法の 有効性について検証する。

2. モデル設計

従来のステージ設計では並進方向 (x 軸方向) 駆動点とス テージ全体を1慣性系とみなしたときのステージ重心を一 致するように設計されている。しかし,実際のステージで は設計誤差や接地環境などの様々な要因によって,並進方 向駆動点とステージ重心の差 L_f が生じる。本稿では図1に おいて,下側の質量 M_1 にあたる部分をキャリッジ部,上側 の質量 M_2 にあたる部分をテーブル部,テーブル部とキャ リッジ部の接合点を O とする。また,静止時において x 軸

Mass of pole part	m	0.14	kg
Mass of table part	M	22	kg
Thrust viscous constant	c_x	$2.0{ imes}10^2$	N·s/m
Twist dumping constant of joint	$\mu_{ heta}$	1.0	$kN \cdot m \cdot s$
Spring constant	k	4.5×10^2	$MN/\mu m$
Viscous constant	c	30	${\rm kN}{\cdot}{\rm s}/{\mu}{ m m}$
Twist spring constant of joint	k_{θ}	9.0	$kN \cdot m/rad$
Inertia of pole part	I_m	89	$kg \cdot m^2$
Inertia of table part	I_M	2.4×10^{3}	$kg \cdot m^2$
Distance from C_M to joint	L_1	0.030	m
Distance from C_m to joint	L_2	0.050	m
Distance from C_M to X_2	L_{x2}	0.16	m
Distance from C_M to F	L_f	0.0	m
Distance between air pads	L_p	0.15	m
Gravity acceleration	g	9.8	m/s^2

表 1 ステージモデルパラメータ Table 1. Stage model parameters.

と直交する方向を y 軸, 垂直な方向を z 軸と定義する。

リニアモータによる並進方向駆動力を F, VCM による y 軸回転トルクを T としている。x 方向の並進運動により θ_y 方向の回転運動が質点ごとに生じるため,キャリッジ部 の重心 $C_1 \ge z$ 軸の角度を θ_1 , テーブル部の重心 $C_2 \ge \theta_1$ 軸との角度を $\theta_2 \ge t$ する。ステージの上部に設置してある並 進センサによって,並進方向の位置を $X_2 \ge t$ して観測して いる。まずは図 1 のモデルから伝達関数の導出を行う。

2・1 運動方程式 図 1 のモデルから, $\cos \theta_i \approx 1$, $\sin \theta_i \approx \theta_i, \theta_i^2 = 0$ (i = 1, 2) として線形化を行うと, x に 関する運動方程式は (1) 式となる。同様に θ_1 , θ_2 に関する 運動方程式は (2) 式, (3) 式となる。

$$F = (M+m)\ddot{x} + c_x\dot{x} + m(L_1 + L_2)\ddot{\theta}_1 + mL_2\ddot{\theta}_2 \quad (1)$$

 $F(L_1 + L_2 + L_f) + T = \{I_M + I_m + m(L_1 + L_2)^2\}\ddot{\theta}_1$ $+ (I_m + mL_2^2 + mL_1L_2)\ddot{\theta}_2 + m(L_1 + L_2)\ddot{x} + \{2kl^2$ $- mg(L_1 + L_2)\}\theta_1 - mgL_2\theta_2 + 2cl^2\dot{\theta}_1(2)$

$$F(L_2 + L_f) + T = (I_m + mL_2^2 + mL_1L_2)\ddot{\theta}_1 + (I_m + mL_2^2)\ddot{\theta}_2 + \mu_{\theta}\dot{\theta}_2 - mgL_2\theta_1 + (k_{\theta} - mgL_2)\theta_2(3)$$

2・2 伝達関数 運動方程式をラプラス変換し,(7) 式の係数に置き換えると(4)式~(6)式となる。

$$F(s) = (a_1s^2 + b_1s)X(s) + a_2s^2\theta_1(s) + a_3s^2\theta_2(s)(4)$$

 $F(s)(L_2 + L_f) + T = a_3 s^2 X(s) + (a_5 s^2 + c_2)\theta_1(s)$ $+ (a_6 s^2 + b_2 s + c_3)\theta_2(s) \cdots (6)$

$$\begin{cases} a_{1} = M + m \\ a_{2} = m(L_{1} + L_{2}) \\ a_{3} = mL_{2} \\ a_{4} = I_{M} + I_{m} + m(L_{1}^{2} + L_{2}^{2} + 2L_{1}L_{2}) \\ a_{5} = I_{m} + mL_{2}^{2} + mL_{1}L_{2} \\ a_{6} = I_{m} + mL_{2}^{2} \end{cases}$$

$$\begin{cases} b_{1} = c_{x} \\ b_{2} = \mu_{\theta} \\ b_{3} = 2cl^{2}, \end{cases} \begin{cases} c_{1} = 2kl^{2} - mg(L_{1} + L_{2}) \\ c_{2} = -mgL_{2} \\ c_{3} = k_{\theta} - mgL_{2} \end{cases} \cdots (7)$$

(4) 式 ~(6) 式を連立して解き, (8) 式を用いることで(12) 式~(14) 式の伝達関数が得られる。

 $D_{e}(s) = \{(a_{1}a_{4} - a_{2}^{2})a_{6} + (a_{2}a_{5} - a_{3}a_{4})a_{3} - a_{1}a_{5}^{2} + a_{2} \\ a_{3}a_{5}\}s^{6} + \{(a_{1}a_{6} - a_{3}^{2})b_{3} + (a_{1}a_{4} - a_{2}^{2})b_{2} + (a_{4}a_{6} - a_{5}^{2}) \\ b_{1}\}s^{5} + \{(a_{1}a_{4} - a_{2}^{2})c_{3} + (a_{2}a_{3} - 2a_{1}a_{5} + a_{2}a_{3})c_{2} + (a_{1}a_{6} - a_{3}^{2})c_{1} + (a_{1}b_{2} + a_{6}b_{1})b_{3} + a_{4}b_{1}b_{2}\}s^{4} + \{(a_{1}b_{3} + a_{4}b_{1})c_{3} \\ -2a_{5}b_{1}c_{2} + (a_{1}b_{2} + a_{6}b_{1})c_{1} + b_{1}b_{2}b_{3}\}s^{3} + \{(a_{1}c_{1} + b_{1}b_{3}) \\ c_{3} - a_{1}c_{2}^{2} + b_{1}b_{2}c_{1}\}s^{2} + (b_{1}c_{1}c_{3} - b_{1}c_{2}^{2})s \dots (8)$

 $\frac{X(s)}{F(s)} = -[\{(a_2a_6 - a_3a_5)L_f - a_4a_6 + a_5^2\}s^4 + (a_2b_2L_f - a_6b_3 - a_4b_2)s^3 + \{(a_2c_3 - a_3c_2)L_f - a_4c_3 + 2a_5c_2 - a_6c_1 - b_2b_3\}s^2 - (b_3c_3 + b_2c_1)s + (c_2^2 - c_1c_3)]/D_e(s) = F_X(9)$

 $\frac{\theta_1(s)}{F(s)} = [\{(a_1a_6 - a_3^2)L_f - a_2a_6 + a_3a_5\}s^3 + \{(a_1b_2 + a_6b_1)L_f - a_2b_2\}s^2 + \{(a_1c_3 + b_1b_2)L_f - a_2c_3 + a_3c_2\}s + b_1c_3L_f]/D_e(s) = F_{\theta_1} \cdots \cdots (10)$

 $\frac{\theta_2(s)}{F(s)} = [\{(a_2a_3 - a_1a_5)L_f - a_3a_4 + a_2a_5\}s^3 - (a_5b_1L_f + a_3b_3)s^2 - (a_1c_2L_f - a_2c_2 + a_3c_1)s - b_1c_2L_f]/D_e(s) = F_{\theta_2}(11)$

 $\frac{X(s)}{T(s)} = -[\{(a_2a_6 - a_3a_5)L_f - a_4a_6 + a_5^2\}s^4 + (a_2b_2L_f - a_6b_3 - a_4b_2)s^3 + \{(a_2c_3 - a_3c_2)L_f - a_4c_3 + 2a_5c_2 - a_6c_1 - b_2b_3\}s^2 - (b_3c_3 + b_2c_1)s + (c_2^2 - c_1c_3)]/D_e(s) = T_X(12)$

$$\frac{\theta_1(s)}{T(s)} = [\{(a_1a_6 - a_3^2)L_f - a_2a_6 + a_3a_5\}s^3 + \{(a_1b_2 + a_6b_1)L_f - a_2b_2\}s^2 + \{(a_1c_3 + b_1b_2)L_f - a_2c_3 + a_3c_2\}s + b_1c_3L_f]/D_e(s) = T_{\theta_1} \cdots \cdots (13)$$

$$\frac{\theta_2(s)}{T(s)} = [\{(a_2a_3 - a_1a_5)L_f - a_3a_4 + a_2a_5\}s^3 - (a_5b_1L_f + a_3b_3)s^2 - (a_1c_2L_f - a_2c_2 + a_3c_1)s - b_1c_2L_f]/D_e(s) = T_{\theta_2}(14)$$

以上をまとめると, 伝達関数は(15)式のようになる。

$$\begin{bmatrix} X(s) \\ \theta_1(s) \\ \theta_2(s) \end{bmatrix} = \begin{bmatrix} F_X & T_X \\ F_{\theta_1} & T_{\theta_1} \\ F_{\theta_2} & T_{\theta_2} \end{bmatrix} \cdot \begin{bmatrix} F(s) \\ T(s) \end{bmatrix} \dots \dots (15)$$

(15) 式から制御対象の伝達関数を導出する。上部センサ から重心 C_2 までの距離 L_{x2} と各重心からジョイント間まで の距離 L_1, L_2 をかけることで,並進方向の伝達関数 (16) 式 を得る。図 2 のように実測値とプラントモデル P_X をフィッ ティングさせたパラメータを表 1 に示した。

$$P_X = \{F_X + T_X + F_{\theta_1} \cdot (L_1 + L_2 + L_{x2}) + F_{\theta_2} \cdot (L_2 + L_{x2})\} \cdots \cdots (16)$$

3. 制御器設計

3・1 提案制御器設計 本稿で用いる制御系は,リ ニアモータによる並進方向駆動力 F と VCM による回転 トルク T を入力とした 2 入力である。従来法は x 方向の ステージ位置とテーブル部のピッチング角 θ_2 をフィード バック出力とした 2 入力 2 出力系を用いる。提案法は x 方 向のステージ位置とステージ全体のピッチング角 $\theta_1+\theta_2$ を フィードバック出力とした 2 入力 2 出力系である。どちら も FF には PTC, FB には極配置設計を用いた制御器を用 いる。図 3(a) に従来法の制御系,図 3(b) に提案法の制御系 を示す。

3・2 フィードバック制御器設計 図 4 に示すよう に, ノミナルプラントはプラントモデルにフィッティング させることで (17) 式と (18) 式として設計した。(17) 式は 並進駆動力 F から並進位置 X まで,(18) 式は回転トルク T から回転角度 θ までの伝達関数である。それぞれの制御 器を 4 重根の極配置設計により PID 制御器 $C_x(s)$, PD 制御 器 $C_y(s)$ を (19) 式,(20) 式として設計する。従来法と提案 法ともに $C_x(s)$ の閉ループ極 ω_p は 10 Hz, $C_y(s)$ の閉ルー プ極 ω_p は 8 Hz とする。設計した制御器はサンプリング時 間 0.3 ms の双 1 次変換により離散化して用いる。

Fig. 3. Precise positioning control system.

$$C_y(s) = \frac{b_{y1}s}{s+c_2} + b_{y2} \cdots \cdots \cdots \cdots \cdots \cdots \cdots (20)$$

$$\begin{cases} a_{x1} = 21.9 \\ a_{x2} = 2.0 \times 10^2 \\ b_{x1} = 6\omega_p^2 a_{x1} c_1 \\ b_{x2} = 4\omega_p^3 a_{x1} c_1 \\ c_1 = \frac{a_{x1}}{4\omega_p a_{x1} - a_{x2}} \end{cases} \begin{cases} a_{y1} = 2.5 \times 10^{-2} \\ a_{y2} = 1.0 \\ a_{y3} = 4.0 \times 10^2 \\ b_{y1} = \omega_p^3 a_{y1} (4c_1 - \omega_p) \\ b_{y2} = 6\omega_p^2 a_{y1} c_1 - b_{y1} \\ c_2 = \frac{a_{y1}}{4\omega_p a_{y1} - a_{y2}} \end{cases}$$

3・3 完全追従制御器設計 (PTC) 図 5 に示すフ ィードフォワード制御器として用いる PTC⁽⁵⁾ は制御対象 の安定な逆システムを用いた 2 自由度制御系であり, n_p サ ンプル先の可制御正準系の全状態変数 x[k + n_p] を目標軌 道とする。本稿では,剛体モードを制御対象モデルとした フィードフォワード制御器を用いる。

4. シミュレーション

従来法は VCM によってテーブル部上面のピッチング角 θ_2 を制御している。しかし,実際には θ_1 の角度が生じるた めに全体のピッチング角 $\theta_1+\theta_2$ に誤差を持ってしまう。そ のため,提案法ではピッチング角 θ_1 とピッチング角 θ_2 を相 殺させる制御を行い,ステージ全体のピッチング角 $\theta_1+\theta_2$ を用いた検証を行う。また,シミュレーションでは検証の 明確化のために復路のみの結果を示し,後章の実験では往

復の結果を示している。

図 6 に示す加減速の目標軌道に対して追従させ,並進 方向の位置決め誤差 ΔX とステージ全体のピッチング角 $\Delta(\theta_1+\theta_2)$ の誤差による比較を行う。図 7(a) に示すように, 従来法では ΔX は ± 0.57 nm 程であり,図 7(b) に示すよ うに $\Delta(\theta_1+\theta_2)$ は ± 0.55 µrad 程である。 $\Delta \theta_2$ は非常に小 さな値となるが, $\Delta \theta_1$ が生じてしまうために全体のピッチ ング角 $\Delta(\theta_1+\theta_2)$ は誤差を持ってしまう。

図 8(a) に示すように,提案法では ΔX は ± 0.62 nm 以内 であり,図 8(b) に示すように $\Delta(\theta_1+\theta_2)$ は $\pm 0.050 \mu$ rad 程 である。 $\Delta \theta_2$ は従来法よりも大きな値を持っているが, $\Delta \theta_1$ と符号が逆の値を持つため全体のピッチング角 $\Delta(\theta_1+\theta_2)$ が非常に小さな値になることがわかる。

表2に示すように,提案法は従来法に対して x 方向の位

図 6 目標軌道

Fig. 6. Target trajectories.

表 2 追従誤差 (シミュレーション)

Table 2. Tracking error (Simulations).

	Conv.	Prop.
Tracking error ΔX	$\pm~0.57~\mathrm{nm}$	$\pm~0.62~\mathrm{nm}$
Tracking error $\Delta(\theta_1 + \theta_2)$	\pm 0.55 $\mu {\rm rad}$	$\pm 0.050 \mu$ rad

置決め精度を 0.05 nm 程悪くなるが, ステージ全体のピッチ ング角 $\theta_1+\theta_2$ の精度を 10 倍近く向上させることができる。 以上より, ステージ全体のピッチング角 $\theta_1+\theta_2$ をフィード バックに用いる提案法の有効性をシミュレーションにより 示すことが出来た。

5. 実 験

5・1 実験機 シミュレーションによる結果を踏ま え,図9(a)に示す本研究室で所有する実験用ナノステージ 2を用いて検証を行なう。実験用ナノステージ2はx並進 方向を測定するための分解能1nmのリニアエンコーダを 搭載しており,テープル部上面の位置を測定している。ま た,図9(b)に示すVCMに沿うように搭載した4本のz軸 VCM センサにより θ_2 を測定し,AF/LV センサによりス テージ全体のピッチング角 $\theta_1+\theta_2$ を測定している⁽⁴⁾。その ため,VCM センサ値とAF/LV センサ値を用いることで θ_1 を算出している。

5・2 制御器設計 シミュレーションと同様の設計 方法で制御器を用いる。ただし,回転角度の測定は従来法 は VCM センサ,提案法は AF/LV センサを用いる。その ため,図 10 に示すようにノミナルプラントをトルク T か ら回転角度 θ までの実測値の周波数特性にフィッティング させることで (21) 式,(22) 式として再設計する。 $C_x(s)$ は シミュレーションと同じ制御器を用いる。それぞれの制御 器を 4 重根の極配置設計により (23) 式,(24) 式として設計 する。 $C_x(s)$ の閉ループ極 ω_p はどちらも 10 Hz,従来法制 御器 $C_{yc}(s)$ と提案法制御器 $C_{yp}(s)$ の閉ループ極 ω_{ye} は 8 Hz とする。

5・3 軌道追従制御 目標軌道は図 6 に示す加減速 の往復を用いて検証を行う。制御器はシミュレーションで 設計した制御器を用いている。図 11(b) に示すように,従 来法は提案法に比べ $\Delta \theta_2$ が小さいことが分かる。しかし, $\Delta \theta_1$ が同じ符号で値を持つため,ステージ全体の角度誤差 として大きな値を持ってしまう。提案法は $\Delta \theta_1$ と $\Delta \theta_2$ と もに従来法よりも大きな値を持つが,互いに逆符号の値を 持っていることが分かる。そのため,シミュレーションと 同様に $\Delta \theta_1$ と $\Delta \theta_2$ が相殺し合うように制御されているこ とが確認できる。

表 3 に示すように,従来法では ΔX は ± 422 μ m 以内, $\Delta(\theta_1+\theta_2)$ は ±390 μ rad 程である。提案法では ΔX は ±103 μ m 以内となり, $\Delta(\theta_1+\theta_2)$ は ±201 μ rad 程である。従っ て,提案法は従来法よりも x 方向の位置決め誤差を 76%, θ_y 方向の角度誤差を 48%減少させることが出来ている。

以上より, FB制御にステージ全体のピッチング角 $heta_1+ heta_2$

Fig. 10. Nominal plant fitting (Experiments).

表 3 追従誤差 (実験) Table 3. Tracking error (Experiments).

	Conv.	Prop.
Tracking error ΔX	\pm 422 $\mu {\rm m}$	\pm 103 $\mu {\rm m}$
Tracking error $\Delta(\theta_1 + \theta_2)$	\pm 390 $\mu {\rm rad}$	\pm 201 $\mu {\rm rad}$

を用いることで,互いの角度を相殺させる制御を実際に行うことができた。その結果,制御対象であるテーブル部上 面の位置決め精度が向上し,提案法の有効性について実証 できた。

6. まとめ

従来法のテーブル部ピッチング角 θ_2 を用いた FB 制御に 対して,提案法としてピッチング角同士の相殺制御により 全体のピッチング角を減少させることを提案した。シミュ レーションと実験において提案法による位置決め精度向上 の大幅な改善を示し,提案する FB 制御系の有効性につい て検証した。今後は提案法を発展させ高次ピッチングモー ドだけでなくローリング等の運動を相殺させることで,更 なる制御性能向上が期待できる。

7. 謝辞

最後に,本研究の一部は文部科学省科学研究費補助金(課 題番号,206860280)によって行われたことを付記する。

Fig. 11. Experimental results.

参考文献

- (1) Y. Seki, H. Fujimoto, A. Hara, T. Yamanaka, and K. Saiki, "Basic examination of simultaneous optimization of mechanical and control design for gantry-type precision stage modeled as two-mass 4-DOF system," in *Proc. The 36rd Annual Conference of the IEEE Industrial Electronics Society*, pp. 1872-1877 (2010).
- (2) S. Wakui, "Roles of an Active Anti-Vibration Apparatus in Precision Positioning" J. JSPE, vol. 73, no. 4, pp. 405-409, (2007).
- (3) K. Sakata, H. Fujimoto, T. Ohtomo, and K. Saiki, "Experimental verification on auto focus and leveling control of scan-stage using driving force and surface shape of the stage" in Proc. IEE of Japan Technical Meeting Record, IIC-08-44, (2008).
- (4) K. Sakata, H. Fujimoto, A. Hara, T. Ohtomo, and K. Saiki, "Design Fabrication and Control of 4-DOF High-Precision Stage", The 11th IEEE International Workshop on Advanced Motion Control, pp. 21-24, (2010).
- (5) H. Fujimoto, Y. Hori, and A. Kawamura, "Perfect tracking control based on multirate feedforward control with generalized sampling periods," *IEEE Trans. Industrial Electronics*, vol. 48, no. 3, pp. 636-644 (2001).