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Abstract: In recent years there has been increasing interest in manipulators presenting animal musculo-
skeletal characteristics such as bi-articular actuators. Manipulators driven by bi-articular actuators
usually have more actuators than joints, resulting in actuator redundancy.
In this paper, our approach based on infinity norm to resolve actuators redundancy is implemented on
Biwi, Bi-articularly actuated and Wire driven robot arm, and compared with the Phase Different Control
(PDC) approach, which is based on human muscle activation level patterns.
It is shown that the infinity norm approach produces no error in calculation of output force, while
the PDC approach produces non-zero error. Such error is not significant when the angle between
the manipulator links is about 120 degrees, but increases as the manipulator moves towards singular
configurations. The experimental results agrees with the calculation.
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1. INTRODUCTION

Robot manipulators presenting animal musculo-skeletal char-
acteristics such as bi-articular actuators have been proposed
for more than two decades (Hogan (1985)). In recent years
there has been increasing attention on such animal inspired
robot arms, both in hardware and control design aspects (Tsuji
(2010), Umemura et al. (2010), Kimura et al. (2010), Fukusho
et al. (2010), Oh and Hori (2009)).

Manipulators driven by bi-articular actuators usually have more
actuators than joints, presenting therefore actuator redundancy.
In order to resolve this torque load sharing problem many
approaches have been proposed.

There are researches such as (Yoshida et al. (2009)) in which
pseudo-inverse matrices are used to resolve the actuator re-
dundancy. This type of approach have been also widely used
for resolution of kinematics redundant manipulators. Moore-
Penrose is the most simple pseudo-inverse, and correspond to
the minimization of the 2− norm (euclidean norm) (Klein and
Huang (1983)).

A nature inspired approach widely used to resolve actuator
redundancy in robot applications (Fukusho et al. (2010), Tsuji
(2010), Umemura et al. (2010)) is the Phase Different Control
(PDC) that is based on human muscle activation level patterns
(Oshima et al. (2000)). According to this approach, the rela-
tionship between the output force at the end effector and the

⋆ This work is supported by Inamori Foundation

actuator joint torques can be determined using a linear model
based on muscle activation level patterns, which have been de-
rived from observation of electromyography activity of human
muscles.

In (Salvucci et al. (2011b)) our new approach to resolve actua-
tor redundancy based on infinity norm is described. The charac-
teristics and advantages of this approach can be summarized as
follows. The ∞−norm approach maximizes the force at the end
effector given the maximum actuator joint torques. Therefore,
it can be used as an approach to optimize actuator design for
manipulators driven by bi-articular actuators. Moreover, the
∞−norm approach is based only on a piecewise linear function
to resolve actuator redundancy. In comparison with the Moore-
Penrose pseudo-inverse approach (2 − norm), the ∞ − norm
approach allows to obtain a greater output force at the end
effector, for the same joint torque limitations (Salvucci et al.
(2011b)).

In this paper, it is shown that the infinity norm approach pro-
duces no error in calculation of output force, while the PDC
approach produces non-zero error. Such error is not significant
when the angle between the manipulator links is about 120 de-
grees, but increases as the manipulator moves towards singular
configurations. Experimental results are obtained using Biwi,
Bi-articularly actuated and Wire driven robot arm, and confirm
the calculation.

In Section 2, characteristics and modeling of robot arm with bi-
articular actuators are described. In Section 3, two approaches
for actuator redundancy resolution — PDC and ∞−norm —
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Fig. 1. Scheme a two-link arm with 4 mono- and 2 bi-articular
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Fig. 2. Statics of a two-link arm with mono- and bi-articular
actuators

are introduced. In Section 4, Biwi is described together with
the feedforward control strategy used in the experiment. In
Section 5, the ∞−norm and PDC approaches are compared by
both calculation and experimental results. Finally, in Section 6,
the advantages of the ∞−norm approach are summarized.

2. CHARACTERISTICS AND MODELING OF ROBOT
ARM WITH BI-ARTICULAR ACTUATORS

In conventional manipulators each joint is driven by one actua-
tor. On the contrary, animal limbs present a complex musculo-
skeletal structure based on two types of muscles:

(1) Mono-articular muscles, which produce a torque on one
joint.

(2) Multi-articular muscles, which produce torque on two (or
more) consecutive joints at the same time. Gastrocnemius
is an example of bi-articular muscle in the human leg.

A simplified model of the complex animal musculo-skeletal
system is shown in Fig. 1. This model is based on 6 contractile
actuators — extensors (e1, e2, and e3) and flexors ( f1, f2, and
f3) — coupled in three antagonistic pairs.

• e1– f1 and e2– f2: pairs of mono-articular actuators which
produce torques about joints 1 and 2, respectively.

• e3– f3: pair of bi-articular actuators which produce torque
about joints 1 and 2 contemporaneously.

The statics of a bi-articularly actuated manipulator as the one in
Fig. 1 is shown in Fig. 2 where:

• T1 and T2 are total torques at joint 1 and 2, respectively.
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Fig. 3. Maximum output force at the end effector for conven-
tional and arm driven by bi-articular actuators

• τ1 and τ2 are torques produced by mono-articular actua-
tors at joints 1 and 2 respectively, calculated as:

τ1 = ( f1 − e1)r (1)

τ2 = ( f2 − e2)r (2)

where r is the distance between the joint axis and the point
where the force is applied.

• τ3 is the bi-articular torque produced at both joints:

τ3 = ( f3 − e3)r (3)

• F is a general force at the end effector.

The statics of this system are therefore expressed by:
{

T1 = τ1 + τ3

T2 = τ2 + τ3
(4)

Manipulator equipped with bi-articular actuators have numer-
ous advantages: dramatical increase in range of end effector
impedance which can be achieved without feedback (Hogan
(1985)), and improvement of balance control for jumping
robots that do not use force sensors (Oh et al. (2010)). More-
over, multi-joints actuators such as tri-articular actuators in-
crease the efficiency in output force production (Tsuji (2010)).

Another advantage of arm equipped with bi-articular actuators
is the ability to produce a maximum output force at the end
effector in a more homogeneously distributed way (Fujikawa
et al. (1999)). In Fig. 3 the maximum output force at the end ef-
fector for a two-link traditional manipulator and a arm equipped
with bi-articular actuators is shown for comparison. In the case
of traditional manipulator, 2 actuators with maximum joint
torque T1 = T2 = 10 Nm are considered. On the other hand,
for the bi-articularly actuated robot arm three actuators with
maximum joint torque τ1 = τ2 = τ3 = 6.66 Nm are taken into
account. Therefore the total maximum torque in the two cases
is the same — 20 Nm. The conventional quadrilateral shape
becomes an hexagon for arms driven by bi-articular actuators,
which therefore produces a maximum force at the end effector
with a more homogeneous distribution in respect to output
force direction. This aspect is peculiar for application which
interact with humans such as rehabilitation robots, as well as
for jumping and waking robots (Oh et al. (2010), Iida et al.
(2008)).

3. METHODS FOR ACTUATOR REDUNDANCY
RESOLUTION

A two-link manipulator with the statics in Fig. 2 has at least
three actuators, resulting in actuator redundancy. Given τ1,
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τ2 and τ3, it is possible to determine T = [T1,T2]
T , and so

F = [Fx,Fy]
T by using the transpose Jacobian:

[

T1

T2

]

= JT

[

Fx

Fy

]

(5)

where

J =

[

−l1sin(θ1)− l2sin(θ1 +θ2) −l2sin(θ1 +θ2)
l1cos(θ1)+ l2cos(θ1 +θ2) l2cos(θ1 +θ2)

]

(6)

Fx and Fy are the orthogonal projection of F on the x-axis and
y-axis, respectively. On the other hand, given F, and therefore
T, it is generally not possible to determine uniquely τ1, τ2 and
τ3 (see (4)).

In the following two approaches to resolve actuator redundancy
— PDC and ∞−norm — are described.

3.1 Phase different control approach

Fig. 4 shows the output force at the end effector of a manipula-
tor driven by bi-articular actuators. There are 6 force vectors,
one for each contractile actuator — e1, e2, e3, f1, f2, f3 —
which therefore form an hexagon (Oshima et al. (2000)).

Fig. 5 shows six muscle activation level patterns in respect to
the output force direction θ f which is expressed in respect to
points A-F of Fig. 4. These patterns are the linearization of
the patterns observed by electromyography of human muscle
activations under static conditions (Oshima et al. (2000)).

Given a desired force at the end effector with magnitude |Fdes|
and angle θ

des
f :

(1) Calculate the values in degrees of points A-F of Fig. 5 on
the basis of the actual configuration of the manipulator.

(2) Calculate the activation level of each muscle — e1, e2, e3,
f1, f2, f3 — using the activation level patterns by setting
θ

des
f = θ f .

(3) The desired actuator joint torques are:


















τ1 = ( f1 − e1)r
|Fdes|

|Fmax|

τ2 = ( f2 − e2)r
|Fdes|

|Fmax|

τ3 = (e3 − f3)r
|Fdes|

|Fmax|

(7)

where |Fmax| is the magnitude of the maximum force

that can be produced in the direction θ
des
f in the actual

configuration of the manipulator.

In order to realize force control, if |Fdes| < |Fmax|, a precise
value of |Fmax| is required, and therefore the manipulator Jaco-
bian is necessary. On the other hand, if just the application of
maximum output force is required, the manipulator Jacobian is

not necessary, as in this condition
|Fdes|
|Fmax| = 1.

3.2 ∞−norm approach

Given the desired joint torques T1, three actuators joint torques
τ1, τ2, and τ3 can be calculated using ∞−norm by resolving
the following problem (it is assumed that τ

max
1 = τ

max
2 = τ

max
3 ,

where τ
max
i (i= 1,2,3) is the maximum joint torque the actuator

i can produce):

minimize max{|τ1|, |τ2|, |τ1|} (8)

subject to

{

T1 = τ1 + τ3

T2 = τ2 + τ3
(9)

Fig. 4. Force hexagon at end effector of a manipulator equipped
with bi-articular actuators (Oshima et al. (2000))
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Fig. 5. Muscle activation level patterns deducted from EMG
(Oshima et al. (2000))

A closed form solution of the problem can be determined on
the basis of the values of T1 and T2 as follows:

• if T1T2 ≤ 0






τ1 =
T1−T2

2

τ2 =
T2−T1

2

τ3 =
T1+T2

2

(10)

• if T1T2 > 0 and |T1| ≤ |T2|






τ1 = T1 −
T2
2

τ2 =
T2
2

τ3 =
T2
2

(11)

• if T1T2 > 0 and |T1|> |T2|






τ1 =
T1
2

τ2 = T2 −
T1
2

τ3 =
T1
2

(12)

The proof of (10), (11), and (12) is in (Salvucci et al. (2011b)).

Given a generic force at the end effector F, the actuators inputs
τ1, τ2, and τ3 can be calculated in the following way.

(1) Calculate the joint torques using the Jacobian (6)
(2) According to calculated T1 and T2, the desired actuators

inputs can be directly determined using linear equations:
• if T1T2 ≤ 0 use (10)
• if T1T2 > 0 and |T1| ≤ |T2| use (11)
• if T1T2 > 0 and |T1|> |T2| use (12)

Therefore the proposed ∞ − norm approach is based on the
Jacobian to determine the required joint torques, and uses only
linear functions to resolve actuator redundancy.
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Fig. 6. Biwi, Bi-articularly actuated and Wire driven robot arm

Table 1. Manipulator characteristics

Parameter value

Link 1 = Link 2 112 [mm]

Pulleys diameter (all) 44 [mm]

Thrust wires 30 [mm]

Table 2. Actuator and sensor system

Motors Sanyo T404-012E59

Gear head G6-12 (ratio 12.5)

Servo system TS1A02AA

Force sensor Nitta IFS-67M25A15-I40

4. EXPERIMENTAL SET-UP

BiWi, Bi-articularly actuated and Wire driven robot arm, is
shown in Fig. 6. Biwi, is a two-link planar manipulator actuated
by 6 motors, each representing one of the muscles in Fig. 1.
The power is transmitted to the joints through pulleys and
polyethylene wires as shown in Fig. 7:

• A pair of antagonistic mono-articular motors (e1– f1) are
connected to 2 pulleys fixed on joint 1.

• A pair of antagonistic mono-articular motors (e2– f2) are
connected by thrust wires to 2 pulleys fixed on joint 2.

• A pair of antagonistic bi-articular motors (e3– f3) are con-
nected to pulleys fixed on joint 2, and to free pulleys about
joint 1.

Basic characteristics of BiWi and of the actuator and sensor
systems are shown in Tab. 1 and Tab. 2, respectively. Further
characteristics of BiWi are in (Salvucci et al. (2011a)).

The feedforward control block diagram used in the experiment
is shown in Fig. 8. F∗

x and F∗
y are the desired force at the end

τ1
*

2τ*

τ3
*

6

motor

torque

ref

calc

PT=J  F
T

Redundancy 

resolution:

PDC

∞-norm

YF
*

XF
*

1e*

T1
*

2
*T

YF

XF
2e*

3e*

1f*

2f*

3f*

Fig. 8. Feedforward control block diagram

effector. J is the manipulator Jacobian. τ
∗
1 , τ

∗
2 , and τ

∗
3 are the

desired actuator joint torques as in Fig. 2, which are calculated
using the PDC or the ∞ − norm approach from the desired
joint torques T ∗

1 and T ∗
2 . e∗1, e∗2, e∗3, f ∗1 , f ∗2 , f ∗3 are the 6 motor

reference torques that correspond to the 6 muscles of Fig. 1.
They are calculated as:

e∗1 =

{

τ
∗
1 if τ

∗
1 < 0

0 otherwise
(13)

f ∗1 =

{

τ
∗
1 if τ

∗
1 > 0

0 otherwise
(14)

e∗2 =

{

Ktlτ
∗
2 if τ

∗
2 < 0

0 otherwise
(15)

f ∗2 =

{

Ktlτ
∗
2 if τ

∗
2 > 0

0 otherwise
(16)

e∗3 =

{

τ
∗
3 if τ

∗
3 < 0

0 otherwise
(17)

f ∗3 =

{

τ
∗
3 if τ

∗
3 > 0

0 otherwise
(18)

Ktl = 1.33 is a coefficient used to to compensate for the in-
evitable transmission loss in the thrust wires which connect the
motors e∗2 and f ∗2 to joint 2. A force sensor is used to mea-

sure the end effector output force F = [Fx,Fy]
T , and its steady

state value is considered. Maximum joint actuator torques are
τ

max
1 = τ

max
3 = 1.84 Nm and τ

max
2 = 1.38 Nm.

5. RESULTS

The PDC and the ∞−norm approach are compared in two
manipulator configurations:

• Configuration I: θ1 =−60◦ and θ2 = 120◦

• Configuration II: θ1 =−25◦ and θ2 = 50◦

The calculated maximum output force at the end effector of
BiWi is shown in Fig. 9. The desired output force direction at
the end effector (θ des

f ) varies from 0 to 360◦ every 5◦. The two
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Fig. 9. Calculated maximum output force

approaches produce a force at the end effector with the same
hexagonal shape. For the ∞− norm approach there is no error
in output force. For the PDC approach the error in output force
direction and magnitude ratio is small in configuration I, but is
significant in configuration II. The experimental results shown
in Fig. 10 confirm the calculation. The relative error of output
force magnitude defined as:

Ferr =
|Fmeasured |− |Fdesired |

|Fdesired |
(19)

is shown in respect to θ f in Fig. 11.

In configuration I, the two methods produce the same relative
error of output force magnitude, about 0.04. This error is due
to sensor noise and inevitable modelling errors. However, in
configuration II, the relative error of output force magnitude
obtained using PDC method has peaks of about 0.3. The output
error in the PDC depends on three factors — the desired force
direction (θ f ), the angle between the links (θ2), and on the
link length ratio — and can increase exponentially when the
manipulator moves towards singular configurations (Salvucci
et al. (2010)).

The joint actuator torque patterns used in the both calculation
and experiment are shown in Fig. 12. They are almost identical
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Fig. 10. Measured maximum output force

in configuration I, but different in configuration II. In both the
approaches the input torque patterns are continuous in respect
to the output force angle (θ f in Fig. 2). Therefore, the 3
switching conditions in the ∞− norm approach do not cause
torque reference discontinuities, which could cause instability
to the system.

6. CONCLUSIONS

In this paper, a new approach based on ∞− norm to resolve
actuators redundancy is implemented on BiWi, Bi-articularly
actuated and Wire driven robot arm, and compared with the
Phase Different Control (PDC) approach, which is based on
human muscle activation level patterns.

It is shown by calculation that the proposed ∞−norm approach
produces no error in calculation of output force, while the PDC
approach produces non-zero error. The experimental results
confirm that the relative error of output force magnitude (Ferr)
has no significant difference when the angle between link 1
and 2 (θ2) is about 120◦. However, Ferr in both calculation
and experimental measurement increases when the arm moves
towards singular configurations. For θ2 = 25◦, Ferr has peaks
of about 0.3 for the PDC approach.
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