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Abstract—Robust estimation of vehicle states (e.g., vehicle
sideslip angle and roll angle) is essential for vehicle stability
control applications such as yaw stability control and roll sta-
bility control. This paper proposes novel methods for estimating
sideslip angle and roll angle using real-time lateral tire force
measurements, obtained from the multi-sensing hub (MSHub)
units, for practical applications to vehicle control systems of in-
wheel-motor-driven electric vehicles. In vehicle sideslip estima-
tion, a recursive least squares (RLS) algorithm with a forgetting
factor is utilized based on a linear vehicle model and sensor
measurements. In roll angle estimation, the Kalman filter is
designed by integrating available sensor measurements and roll
dynamics. The proposed estimation methods, RLS-based sideslip
angle estimator and the Kalman filter are evaluated through
field tests on an experimental electric vehicle. The experimental
results show that the proposed estimator can accurately estimate
the vehicle sideslip angle and roll angle. It is experimentally
confirmed that the estimation accuracy is improved by more than
50% comparing to conventional method’s one (see RMS error
shown in Fig. 4). Moreover, the feasibility of practical applications
of the lateral tire force sensors to vehicle state estimation is
verified through various test results.

Index Terms—Electric vehicles, Kalman filter, multi-sensing
hub (MSHub) unit, recursive least squares (RLS), roll angle,
sideslip angle.

I. INTRODUCTION

DUE to the increasing concerns about advanced motion
control of electric vehicles with in-wheel motors, a great

deal of research on dynamics control for electric vehicles has
been carried out [1]–[6]. Advanced motion control systems
for electric vehicles, slip prevention, spinout prevention, and
excessive roll prevention, are referred to as yaw stability
control and roll stability control, respectively. Compared with
internal combustion engine vehicles, electric vehicles with in-
wheel motors have several advantages in the viewpoint of
motion control [1], [3].
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1) The torque generation of driving motors is very fast and
accurate.

2) The driving torque can be easily measured from motor
current.

3) Each wheel with an in-wheel motor can be indepen-
dently controlled.

Based on these advantages, a novel yaw moment control
method based on the yaw moment observer (YMO) was
proposed in [7] and roll stability control for safety and driver’s
ride quality was proposed and verified with experimental
results [8]. In most vehicle stability control systems, only a
direct yaw rate feedback is used for improving the stability
performances. However, on slippery road surfaces, controlling
the vehicle sideslip angle to prevent it from becoming too large
is also beneficial [9], [33].

Since the goal of aforementioned stability control systems
is to control yaw rate, vehicle sideslip angle and roll angle,
sensor measurements of yaw rate, vehicle sideslip angle,
and roll angle are required. Yaw rate is easily measured
by a cheap gyro sensor. However, since sensors for vehicle
sideslip angle and roll angle are expensive, these must be
estimated from available measurements and vehicle models.
For this reason, a variety of estimation methods for estimating
vehicle sideslip angle have been studied extensively [10]–
[14]. Estimation methods based on state observers and Kalman
filter design using a linear vehicle model were proposed
and experimentally validated [15], [16]. Since linear vehicle
model-based methods use constant vehicle and tire parameters,
this method is not robust against parameter variations by
changes in tire road conditions and driving conditions. In
[17], the body slip angle fuzzy observer was proposed to
deal with the nonlinearities in a vehicle model by representing
the nonlinear models as Takagi-Sugeno (T–S) fuzzy models.
In [18] and [19], nonlinear techniques for estimating lateral
tire forces and sideslip angle, using extended and unscented
Kalman filters, were proposed and evaluated by field tests.
In [18], especially, the estimation method using nonlinear
models shows the practical potential as a low-cost solution for
calculating lateral tire forces and sideslip angle in real-time.
In [20], [21], an adaptive sideslip angle observer considering
tire-road friction adaptation (e.g., adaptation algorithm was
designed using lateral vehicle dynamics) was proposed. A
new methodology of combining a vehicle model-based method
and a kinematics-based method was proposed and evaluated
by experiments [11], [15]. Moreover, several researchers have
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proposed new estimation methods using Global Positioning
System (GPS) and inertial measurements to estimate vehicle
sideslip angle without knowing the vehicle model [22], [28].

Over the last few years, several estimation methods were
proposed to estimate roll states based on vehicle dynamics
models without using additional sensors (e.g., roll rate sensor)
[23]–[25]. In [25], several methods for roll angle estimation
were discussed based on advantages and drawbacks of each
method. Moreover, an approach using closed loop adaptive
observer for roll angle and roll rate estimation was proposed
and evaluated. In [23], a road-disturbance decoupled roll state
estimator was designed, by combining the lateral model-
based estimation method and vertical model-based estimation
method, and evaluated by computer simulations. In other
approaches [26]–[28], GPS with two laterally placed GPS an-
tennas was used to estimate roll angle. GPS-based estimation
approaches require satellite visibility from any location. How-
ever, the satellite visibility may be lost periodically in urban
and forested driving environments and it causes inaccurate
estimation. Even though GPS provides relatively accurate roll
angle estimates under limited driving environments, it has a
difficulty in vehicle applications due to the additional sensor
cost.

In this paper, novel estimation methods based on lateral
tire forces, measured by multi-sensing hub (MSHub) units
[36], are proposed to provide accurate estimates of vehicle
sideslip angle and roll angle. The recursive least squares (RLS)
algorithm with a forgetting factor, which has been extensively
utilized in the time-varying system identification [29], [34],
was used to estimate lateral vehicle velocity for calculating
sideslip angle. For estimating roll angle, the Kalman filter
[35] was designed by using available sensor measurements
and lateral vehicle velocity estimated from RLS. Kalman filter
applications in vehicle state estimations have been widely
discussed in the literature [14], [18], [30], and [31]. In order
to make the best use of the advantages of in-wheel-motor-
driven electric vehicles, it is necessarily required to accurately
estimate the unmeasurable states using cost-effective sensors.
At this point, this study presents the practical potential of
MSHub units as a cost-effective solution for estimating vehicle
states, which can improve the performance of vehicle control
systems for in-wheel-motor-driven electric vehicles.

This paper is organized as follows. The vehicle model for
estimator design is introduced in Section II. The conventional
methods for estimating the vehicle sideslip angle are reviewed
and a novel estimation method using MSHub units is proposed
and evaluated by experiments in Section III. In Section IV, a
Kalman filter for roll state estimation is designed and response
characteristics of a lateral acceleration sensor and MSHub
units are discussed. In Section V, the experimental electric ve-
hicle is introduced. In addition, the estimation results obtained
from field tests are illustrated to validate and evaluate the
estimation performance of a proposed Kalman filter. Finally,
summary and conclusion are given in Section VI.

II. VEHICLE DYNAMICS FOR ESTIMATOR DESIGN

In this section, a three degree-of-freedom (3–DOF) yaw
plane model is introduced to describe the lateral motion of
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Fig. 1. 3–DOF yaw plane vehicle model.

electric vehicles. The yaw plane representation is shown in
Fig. 1.

The governing equations for longitudinal and lateral motions
are given by

max = F x
r + F x

f cosδf − F y
f sinδf (1)

may = F y
r + F x

f sinδf + F y
f cosδf (2)

where the steering angles of front left and right wheels are
assumed to be the same (i.e., = δf ), front longitudinal tire
force F x

f is the sum of the front left and right longitudinal
tire forces (i.e., F x

f = F x
fl + F x

fr), rear longitudinal tire force
F x
r is the sum of the rear left and right longitudinal tire forces

(i.e., F x
r = F x

rl+F x
rr), front lateral tire force F y

f is the sum of
the front left and right lateral tire forces (i.e., F y

f = F y
fl+F y

fr),
and rear lateral tire force F y

r is the sum of the rear left and
right lateral tire forces (i.e., F y

r = F y
rl + F y

rr).
The yaw moment balance equation with respect to point CG

is

Iz γ̇ = lfF
x
f sinδf + lfF

y
f cosδf − lrF

y
r +Mz (3)

where the yaw moment, Mz , indicates a direct yaw moment
control input, which is generated by the independent torque
control of in-wheel motors. During yaw motion control, Mz is
the control law to stabilize the vehicle motion and play a role
as an additional input to the vehicle. Therefore, Mz is included
in yaw moment balance equation and can be calculated as
follows:

Mz =
d

2
(F x

rr − F x
rl) +

d

2
(F x

fr − F x
fl)cosδf . (4)

Here, longitudinal tire forces can be obtained from a driving
force observer which is designed based on wheel dynamics
[32].

The tire slip angles are calculated based on geometric
derivation using wheel velocity vectors. If the velocities at
wheel ground contact points are known, the tire slip angles
can be easily derived geometrically and are given by [33]

αfl = −δf + tan−1

(
vy + γlf
vx − γd/2

)
(5)

αfr = −δf + tan−1

(
vy + γlf
vx + γd/2

)
(6)

αrl = tan−1

(
vy − γlr
vx − γd/2

)
(7)

αrr = tan−1

(
vy − γlr
vx + γd/2

)
. (8)
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For design simplicity, the single track vehicle model (also
called the bicycle model) is usually used in estimator design.
By assuming that δf is relatively small, the lateral and yaw rate
dynamics including a yaw moment control input are obtained
as follows [17]:

may = mvx(β̇ + γ) = F y
f + F y

r (9)

Iz γ̇ = lfF
y
f − lrF

y
r +Mz. (10)

For small tire slip angles, the lateral tire forces can be
linearly approximated as follows:

F y
f = −2Cfαf = −2Cf

(
β +

γlf
vx

− δf

)
(11)

F y
r = −2Crαr = −2Cr

(
β − γlr

vx

)
. (12)

III. DESIGN OF ROBUST SIDESLIP ANGLE ESTIMATOR

The vehicle sideslip angle is defined as the angle between
the longitudinal axis of the vehicle and the orientation of
vehicle velocity vector [33]. The vehicle sideslip angle, shown
in Fig. 2, is obtained as

β = tan−1

(
vy
vx

)
. (13)
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Fig. 2. Vehicle coordinates and tire slip angle: (a) Body fixed to global
coordinates. (b) Tire slip angle.

A. Review on Conventional Sideslip Angle Estimation Meth-
ods

The conventional estimation methods of sideslip angle were
proposed based on model-based observer design and direct
sensor integration [11]. The model-based estimation method
has the advantages of high accuracy in linear tire region
and robustness against sensor bias. However, the estimation
accuracy is dominantly dependent on vehicle parameters, tire
parameters, and driving conditions. Since it is difficult to
correctly identify the vehicle parameters (e.g., mass) and tire
parameters (e.g., tire cornering stiffness) in real-time, a model-
based estimation method can not provide reliable estimation
over all driving conditions.

In the model-based estimation method, a linear bicycle
model is used for estimator design. Based on a linear bicycle
model and a linear tire model, state observers and Kalman
filter were mainly used for sideslip angle estimation [15], [16].

Based on state space equations obtained from (9)–(12), a state
observer is designed as follows:

˙̂x = Abx̂+Bbu+ L(y − ŷ)
ŷ = Cbx̂

(14)

where x̂ = [β̂mod γ̂]T , u = [δf Mz]
T , and y = γ

Ab =

 −2(Cf + Cr)
mvx

−2(lfCf − lrCr)

mv2x
− 1

−2(lfCf − lrCr)
Iz

−2(l2fCf + l2rCr)
Izvx



Bb =

 2Cf

mvx
0

2lfCf

Iz

1
Iz

 , Cb = [ 0 1 ] .

From the above state observer, the model-based sideslip
angle estimate, β̂mod, is obtained. The critical aspect of this
approach is that estimation performance dominantly relies on
the tire model and variations in vehicle parameters. In order to
minimize the effects of model mismatch, several researchers
have proposed estimation methods for cornering stiffness,
which is dependent on tire-road friction coefficients. In [17],
a novel linear observer that uses a lateral acceleration sensor
and yaw rate sensor as sensor measurements was proposed,
and a fuzzy rule-based observer was also designed in order to
cope with nonlinearities in vehicle models.

The sensor kinematics-based estimation method is based on
the kinematic relationship among sensor measurements [11].
The equation of sensor kinematics is expressed as

˙̂
βkin =

aym − gϕ

vx
− γ. (15)

In order to obtain sideslip angle from (15), a direct numerical
integration of (15) is required, but this causes a signal drift
problem due to sensor bias. Moreover, since the lateral accel-
eration measurement contains a gravity effect caused by roll
motion, the gravity effect should be compensated for accurate
estimation (e.g., over-estimation is avoided by compensating
the gravity effect). In practice, the numerical integration with
a suitable forgetting factor is carried out to avoid severe signal
drift.

In [11] and [13], the combined method of model-based
estimation and kinematics-based estimation was proposed to
make use of advantages of the two estimation methods. The
model-based estimate is used at low frequencies (i.e., with
low pass filter) while the kinematics-based estimate is used at
higher frequencies (i.e., with high pass filter). The estimated
sideslip angle from the combined estimation method was
expressed as [11]

β̂com =
1

1 + τs
β̂mod +

τ

1 + τs
˙̂
βkin

=
1

1 + τs
β̂mod +

τs

1 + τs
β̂kin. (16)

Here, the parameter, τ , is utilized for the filter setting.
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B. Proposed Sideslip Angle Estimation Method

A novel method to estimate vehicle sideslip angle is
proposed based on lateral vehicle velocity estimation. The
proposed method uses the lateral tire forces which can be
measured from MSHub units. Note that if the vehicle longi-
tudinal and lateral velocities are obtained, the vehicle sideslip
angle can be easily calculated. The lateral vehicle velocity is
estimated using a RLS algorithm and its estimate is used to
finally calculate the vehicle sideslip angle. In order to design a
lateral vehicle velocity estimator, a simplified lateral tire force
model (i.e., neglecting longitudinal tire force effects, see [33])
is used.

F y
i = −Citan(αi). (17)

The above simplified lateral tire force model is applied to
front left and right tires, respectively. For purposes of lateral
vehicle velocity estimation, lateral tire force models for front
tires are utilized based on following assumptions.

1) The left and right tires have pure tire slip conditions
with negligible longitudinal slip and the peak lateral
tire force occurs at the same tire slip angle. Tire slip
angles, where the peak lateral tire forces occur at, are
affected by weight transfer of vehicles. In contrast to
engine vehicles, in-wheel-motor-driven electric vehicles,
having battery packs under the floor and driving motors
attached in wheels, can lower a CG of the vehicle. This
provides the less weight transfer and thereby improves
the driving stability. From these features, variations in
front left and right tire forces due to weight transfer are
not considered.

2) Front left and right tire cornering stiffnesses are the same
(i.e., Cfl=Cfr≈Cf ). Considering that front tires are on
the same road surface and effects of weight transfer are
not critical, effects of weight transfer in tire cornering
stiffnesses of left and right tires are not considered.

3) From small angle approximations, tan(αi) ≈ αi.
From the above assumptions, front lateral tire forces can be
expressed as

F y
fl = −Cflαfl ≈ −Cf

(
vy + γlf
vx − γd/2

− δf

)
(18)

F y
fr = −Cfrαfr ≈ −Cf

(
vy + γlf
vx + γd/2

− δf

)
. (19)

By dividing (18) by (19), the lateral vehicle velocity vy is
derived as

vy = γlf −
δf (F

y
fl − F y

fr)

F y
fl

vx + γd/2
−

F y
fr

vx − γd/2

(20)

where the estimated lateral vehicle velocity is defined as a
pseudo-measurement and expressed as ṽy . As described in
(20), the proposed estimation method makes use of the ratio of
front left and right lateral tire forces and is based on linearized
tire models of front left and right tires by above assumptions.
Even though we use linearized tire models in estimator design,
the proposed estimator shows better estimation results with
relatively small errors compared with results of conventionally

used methods, even when lateral tire forces reach a peak value
(e.g., up to 5m/s2 of lateral acceleration, see Fig. 3(b)). We
can confirm that a proposed estimator is robust against road
conditions without using complicated nonlinear tire models
only if front tires are on the same road surface. In section IV,
this pseudo-measurement ṽy is used as a sensor measurement
in the roll angle estimator using a Kalman filter.

Considering that all output data and input data are deter-
mined at sample instant, vy described in (20) can thus be
formulated by the RLS algorithm.

y(t) = φT (t)θ(t) (21)

where the estimated parameter θ(t), input regression φT (t),
and measured output y(t) are given as

θ(t) = ṽy

φT (t) =

(
F y
fl

vx + γd/2
−

F y
fr

vx − γd/2

)

y(t) = γlf

(
F y
fl

vx + γd/2
−

F y
fr

vx − γd/2

)
− δf (F

y
fl − F y

fr).

The ultimate goal of the RLS algorithm is to provide
parameter estimates that minimize the following weighted least
squares criterion [34]:

θ̂(t) = argmin
θ

{
t∑

k=1

Γ(t, k)·ρ[ε(k|θ)]

}
. (22)

Here, Γ(t, k) is the weight on the prediction errors at time k,

and ρ(ε) is the cost function which is defined as ρ(ε) =
1

2
ε2.

If the prediction errors can be assumed to be Gaussian with
zero mean values, the defined cost function is reasonable.

The recursive process of the RLS algorithm, in a Kalman
filter interpretation, is described as

θ̂(t) = θ̂(t− 1) +K(t)·ε
(
t|θ̂(t− 1)

)
ε
(
t|θ̂(t− 1)

)
= y(t)− ŷ

(
t|θ̂(t− 1)

)
= y(t)− φT (t)·θ̂(t− 1)

K(t) = P (t− 1)φ(t)[λI + φT (t)P (t− 1)φ(t)]−1

P (t) =
1

λ
[I −K(t)φT (t)]P (t− 1) (23)

where I is the identity matrix, ε(t) is the prediction error, and
K(t) and P (t) are the Kalman gain and covariance matrices.

In order to cope with time-varying properties in a vehicle
system, the weighted least squares criterion (22) is handled
by putting less weight on older measurements. Therefore, the
weighting function is set to [34]

Γ(t, k) = λt−k (24)

where the forgetting factor, λ, is always chosen to be a positive
constant slightly smaller than 1. The smaller λ is, the less
weight is assigned to the older data; that is, the past data are
forgotten faster. In this paper, λ around 0.995 was selected to
make reasonable trade-off between tracking ability and noise
sensitivity. From the RLS algorithm (23), the lateral vehicle
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velocity is estimated and used to calculate the vehicle sideslip
angle. The sideslip angle is easily calculated by (13) with
vehicle velocity and pseudo-measurement ṽy . The average
value of the non-driven wheel velocities is used as a vehicle
velocity. Considering that an electric vehicle used in field tests
was a rear-wheel drive vehicle, it is reasonable to use non-
driven wheel’s velocity as a vehicle velocity. In case that the
wheel slip occurs in non-driven wheels due to sudden braking,
we can not use non-driven wheel’s velocity for calculating the
vehicle velocity. However, rear-wheel drive electric vehicles
have Anti-lock Braking System (ABS), which contributes to
keeping a vehicle steerable and stable during heavy braking
moments by preventing wheel lock, for efficient braking of
non-driven wheels and thereby severe wheel slip in non-driven
wheels can be avoided.

Compared with the aforementioned conventional estimation
methods, the main advantages of the proposed estimation
method, utilizing lateral tire force sensors, are summarized in
three points. First, it is robust against variations in vehicle
parameters and tire-road conditions. Second, the proposed
method can be easily realized without using additional sensors.
Finally, the proposed recursive algorithm is very simple and
can be easily implemented in real-time. Moreover, the esti-
mated sideslip angle can be used to identify cornering stiffness
in (18) and (19). The real-time information on cornering
stiffness will contribute to improving the control performance
of advanced motion control systems.

C. Experimental Results

The proposed estimation method was implemented on the
experimental electric vehicle shown in Fig. 9. Moreover,
to verify the effectiveness of the proposed method through
comparison study, conventional estimation methods were also
implemented and those results are evaluated by comparing the
results of a proposed method. The specification and explana-
tion for the experimental electric vehicle are introduced in
section V.

In this study, a variety of field tests were performed with
following driving conditions: 1) constant vehicle speed; 2)
various steering commands, e.g., pulse steering, sine steering,
and random steering; 3) without activation of vehicle motion
controllers such as anti-slip control or yaw stability control
(this means that the same current commands are applied to
rear left and right in-wheel motors, i.e., control input Mz in
(3) is equal to zero); 4) rear-wheel driving mode.

Experimental results obtained from a random steering test
at vx=40 km/h are shown in Fig. 3(a). Even though estimated
sideslip angles obtained from model-based estimation method
and combined method follow the measured sideslip angle,
there still exist estimation errors due to model uncertainties
in the observer model and numerical integration errors. On
the other hand, the proposed estimation method shows more
accurate estimation. In this result, the sensor measurement
(i.e., thick gray line) is the actual value which is directly
measured from the non-contact optical sensor. Fig. 3(b) and
(c) show the results obtained from a pulse steering test and
slalom test at vx=50 km/h on wet asphalt, respectively. The
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Fig. 3. Experimental results for the sideslip angle estimation: (a) Random
steering test on dry asphalt (i.e., µ≃0.9); maximum lateral acceleration 5
m/s2. (b) Pulse steering test on wet asphalt (i.e., µ=0.7); maximum lateral
acceleration 6 m/s2. (c) Slalom test on wet asphalt (i.e., µ≃0.7); maximum
lateral acceleration 4 m/s2. (d) Slalom test on a slippery road (i.e., µ≃0.3);
maximum lateral acceleration 2 m/s2 .



Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs−permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

6
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Fig. 4. Calculated RMS errors for estimation.

estimation results for two conventional methods contain errors
with phase lag. The proposed estimation method provides very
accurate estimation without any noticeable phase lag. To verify
the robustness of the proposed estimation method, field tests
on a slippery road (i.e., µ≃0.3) were also carried out and its
result is shown in Fig. 3(d). Even though the results show
larger estimation errors compared with the results on dry and
wet asphalt, the estimation error was significantly decreased
by applying the proposed method.

For quantitative evaluation of the proposed estimation
method, the RMS values of estimation errors for different field
tests were compared.

RMS error =

√√√√ 1

N

N∑
j=1

(β̂j − βsensor,j)2 (25)

where N is the number of samples. β̂j and βsensor,j represent
the estimated and measured sideslip angles at the jth sample.
(a),(b),(c), and (d), seen in Fig. 4, correspond to the test results,
shown in Fig. 3(a)–(d). As shown in Fig. 4, the proposed
estimation method shows much smaller RMS values.

IV. DESIGN OF ROLL ANGLE ESTIMATOR

Vehicle roll motion generally occurs as a result of lateral
motion by steering maneuvers or road disturbances. In contrast
to conventional engine vehicles, electric vehicles with in-
wheel motors have a low ratio of sprung mass over unsprung
mass due to having in-wheel motors installed in each wheel.
This implies that ride quality can be deteriorated. In order
to avoid deterioration in ride quality, the suspension stiffness
was selected as a smaller value. It indicates that the roll motion
easily occurs. Thus, a roll stability control system is required
and an accurate roll angle should be obtained before control
design. In this section, a roll angle estimation method, which
uses sensor kinematic relationships and a linear roll model,
is introduced. In a proposed roll angle estimator, lateral tire
forces which are measured by MSHub units are utilized to
estimate roll angle for the first time.

A. Roll Dynamics for Kalman Filter Design

This section introduces roll dynamics for Kalman filter
design. Fig. 5 shows the two-dimensional roll dynamics for
electric vehicles with in-wheel motors. In order to model the
roll dynamics, the following assumptions are made:
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Fig. 5. 2–dimensional roll dynamics for an electric vehicle.

1) The location of the roll axis is constant with height hRC

and the lateral and vertical movements of RC due to the
asymmetric suspension geometry are not considered.

2) Since roll angle is small, sinϕ ≈ ϕ and cosϕ ≈ 1.
3) Pitching and bouncing motion of sprung mass are ne-

glected.
4) The effect of the road bank angle is not considered in

this study.
The two-dimensional roll dynamic equation [24], the kine-

matic relationships of the lateral acceleration of CG, ay, and
sensor measurement, aym, are expressed as

Ixϕ̈+ Crollϕ̇+Krollϕ = ms(aym)hroll

= ms(ay + gϕ)hroll (26)
ay = v̇y + γvx (27)

aym = v̇y + γvx + gϕ. (28)

In (26), a roll moment acting on the sprung mass, which
is caused by lateral motion, can be explained by lateral
inertial force and gravity force of the sprung mass. The
lateral acceleration effect in roll moment generation can be
equivalently explained by lateral tire forces applied on tires,
and the equivalent equation using lateral tire forces can be
derived from the roll moment balance equation with respect
to point RC as seen in Fig. 5.∑

Mx = ms(ay + gϕ)hroll = F y
eqhRC . (29)

Here, F y
eq is the equivalent lateral tire force causing roll

motion, which corresponds to roll motion caused by lateral
acceleration of sprung mass. In (29), F y

eq is replaced by lateral
tire forces measured from the MSHub units, installed in each
wheel. Therefore, an external roll moment acting on the sprung
mass is explained with lateral tire forces.

F y
eqhRC ≈ (F y

left + F y
right)hRC =

4∑
i=1

(F y
i )hRC . (30)

Combining (26), (29), and (30), and using lateral tire forces
as an external input, the following roll dynamics is obtained.

Ixϕ̈+ Crollϕ̇+Krollϕ =
4∑

i=1

(F y
i )hRC . (31)
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Fig. 6. Roll moment induced by the lateral vehicle motion: (a) Driving on
dry asphalt (µ≃0.9). (b) Driving on a slippery road (µ≃0.3).

In contrast to conventional roll model-based estimation
methods, the proposed roll angle estimation method uses
lateral tire forces as inputs. Therefore, the effects of nonlinear
tire characteristics (e.g., tire deflection by load transfer) can be
considered in roll dynamics by directly using measured lateral
tire forces. In this paper, two Kalman filters are designed–one
that uses lateral tire force measurements (“Fy-based method”),
and one that uses lateral acceleration measurements (“Ay-
based method”). Since the MSHub units are superior to the
lateral acceleration sensor in response time, it is expected that
estimations based on lateral tire force measurements will lead
that of estimations based on lateral acceleration measurements.
Since the main source of lateral dynamic motion is the lateral
tire force induced by driver’s steering actions, the measured
lateral tire forces can provide accurate estimation of vehicle
states.

In order to check the response characteristics of two sensors
(i.e., a lateral acceleration sensor and a MSHub unit), the roll
moments, described in (29), were calculated from experiment
data obtained in field tests on dry asphalt and a slippery
road, respectively. From field test data, it is founded that the
response time difference between a MSHub unit and a lateral
acceleration sensor ranges from 80msec to 200msec. Fig. 6
shows the roll moments calculated from (29). As shown in
Fig. 6, the roll moment calculated from lateral acceleration
measurements has phase lag compared with the calculated roll
moment from lateral tire force measurements.

B. Kalman Filter Design for Roll Angle Estimation

In this section, vehicle states are estimated using available
sensor measurements and roll dynamics. The Kalman filter

Preliminary Estimator

RLS

States EstimatorSensor Measurement

§ Wheel speed

§ Steering angle

§ Yaw rate

§ Lateral acceleration

§ Lateral tire forces
 
§ In-wheel motor 

torque

yvɶ

  y y

f rF Fγ  

Kalman Filter

Pseudo-measurement

Sensor measurement

 ym za M  
Input

Fig. 7. Schematic of the roll angle estimator.

was applied to estimate unknown states (e.g., roll angle and
roll rate) and to smoothen the sensor measurement noise. An
overall structure of the proposed state estimator is shown in
Fig. 7. The process of roll angle estimation can be divided
into two stages: first, the preliminary estimation of a lateral
vehicle velocity is conducted using the sensor measurements;
second, this preliminary estimate (i.e., pseudo-measurement)
and available sensor measurements are used in Kalman filter
design for roll angle estimation. The estimated vy from (20)
is considered as a measurement variable, called a pseudo-
measurement ṽy, and thereby (28) can be rewritten as follows:

˙̃vy = aym − γvx − gϕ. (32)

From (10), (31), and (32), the state space equation for
Kalman filter design is obtained as

ẋ = Ax+Bu+ w
y = Cx+ v

(33)

where A, B, and C are defined at the top of the next page.
State variables, inputs, and measurement outputs are defined
as

x = [ ṽy γ ϕ ϕ̇ F y
f F y

r ]T , u = [ aym Mz ]T ,

y = [ ṽy γ F y
f F y

r ]T .

Note that the system described by (33) could be completely
observable by using ṽy in (32) as a sensor measurement.
Observability, which is concerned with the problem of de-
termining the states of a dynamics system from observations
of the output and control vectors, is examined through a
rank condition on the Kalman observability matrix. By using
pseudo-measurement ṽy, (A,C) is observable (which means
that observability matrix has full rank).

For real-time implementation, (33) is discretized as follows:

x[k + 1] = G[k]x[k] +H[k]u[k] + w[k]
y[k] = C[k]x[k] + v[k]

(34)

where

G[k] = eATs , H[k] =

∫ Ts

0

eAτBdτ

C[k] = C, Ts : Sampling time.

Here, w[k] and v[k] are the process noise and measurement
noise, k is the time step. It is assumed that the process and
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A =



0 −vx −g 0 0 0

0 0 0 0
lf
Iz

−lr
Iz

0 0 0 1 0 0

0 0 −Kroll

Ix
−Croll

Ix

hRC

Ix

hRC

Ix
0 0 0 0 0 0
0 0 0 0 0 0


, B =



1 0

0
1
Iz

0 0
0 0
0 0
0 0


, C =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1



measurement noise are zero-mean Gaussian processes, and the
covariance matrices are given as follows:

Qw = E(w[k]w[k]T ) > 0 (35)
Rv = E(v[k]v[k]T ) ≫ 0 (36)

E(w[k]v[k]T ) = 0. (37)

The Kalman filter bandwidth and its susceptibility to sensor
measurement noise totally depend on the process noise covari-
ance matrix Qw and the measurement noise covariance matrix
Rv , which represent level of confidence placed in the accuracy
of the observer model and sensor measurements. These ma-
trices determine the filter characteristics including accuracy
and response, and their matrix values were experimentally
determined by using sensor measurements. In this paper, the
covariance matrices of process noise and measurement noise
are given as follows:

Qw = diag[Qṽy , Qγ , Qϕ, Qϕ̇, QFy
f
, QFy

r
] (38)

Rv = diag[Rṽy , Rγ , RFy
f
, RFy

r
]. (39)

In principle, the covariance matrices are not necessarily
diagonal. However, treating the noise covariance matrix as
a diagonal matrix (i.e., individual noise components are not
cross-correlated) is advantageous since it reduces computation
time. In selection of covariance matrices, it should be noted
that the less noise in sensor measurements compared to the
uncertainty in dynamics model, the more the states will
be adapted to follow sensor measurements. Since the new
measurements for lateral tire forces are much more accurate
than the prior estimates, we put the high uncertainty on
states (i.e., lateral tire forces). The states (e.g., roll angle and
roll rate) are modeled using reliable vehicle roll dynamics.
Therefore, the process noises are relatively small. The suitable
process noise variances for other states (e.g., lateral vehicle
velocity and yaw rate) are selected based on comparison to
the corresponding measurement noise variances. The noise
variances of three sensor measurements are determined from
statistical data analysis (e.g., a statistical evaluation of the
histogram) using Matlab software.

The Kalman filter, designed based on (33)–(39), performs
filtering and prediction [35]. The basic steps of computational
procedure for the Kalman filter are illustrated in Fig. 8.

V. EXPERIMENTAL VERIFICATION

The proposed estimation method was implemented on the
experimental electric vehicle shown in Fig. 9. In order to
evaluate estimation results of the Kalman filter, the vertical
potentiometers and a roll rate sensor were used to accurately

[ ]u k

[ ]y k

Linear model, Initial estimate, Noise covariance

Project the 
state forward

Calculate 
Kalman gain

Update state 
estimate

Update error 
covariance

Sensor 
measurement

Project the 
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:Time update

:Measurement update

( ) ( ) ( )ˆ,  ,  ,  [0],  [0] ,  ,   w vG H C x P Q R

ˆ [ 1]x k− + = ˆ[ ] [ ]Gx k Hu k+

( )
1

[ ] [ ] [ ] [ ] [ ] [ ]T T

vK k P k C k C k P k C k R
−

− −= +
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( )[ ] [ ] [ ] [ ]P k I K k C k P k−= −

[ 1] [ ] T

wP k GP k G Q− + = +

Fig. 8. Recursive structure of the Kalman filter algorithm.

measure the roll angle and roll rate. The random steering test
and pulse steering test on dry asphalt were conducted and field
tests on wet asphalt and a slippery road were also carried out
to verify the robustness against road conditions. Moreover,
the same driving conditions, described in Section III. C, were
applied in field tests.

A. Experimental Electric Vehicle: FPEV–II Kanon

The experimental electric vehicle named “FPEV–II Kanon”,
shown in Fig. 9, was used for field tests. The “FPEV–II Kanon”
was developed by the Hori/Fujimoto research team and it has
following special features.

1) In-wheel motors (i.e., Permanent magnet motors) are
mounted in each wheel as shown in Fig. 11(a). There-
fore, we can control each wheel torque completely and
independently for vehicle motion control. Regenerative
braking is also available. The specifications of “FPEV–II
Kanon” are listed in Table I.

2) MSHub units for measuring lateral tire forces in real-
time are installed in each wheel. Fig. 11(b) shows the
MSHub unit invented by NSK Ltd. [36].

3) 4WS (4 Wheel Steering) control is possible through
front and rear EPS (Electric Power Steering) systems.

As shown in Fig. 10, sensor outputs from the MSHub
units, gyro sensor, and steering angle sensor are connected to
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Fig. 9. Experimental electric vehicle: FPEV–II Kanon.

TABLE I
SPECIFICATIONS OF FPEV–II KANON

Type

Maximum Torque

Maximum Power

Weight

In-wheel motor

Direct drive outer rotor type

500Nm(Front*)/340Nm(Rear*)

20.0kW(Front*)/10.7kW(Rear*)

32kg(Front*)/26kg(Rear*)

Battery

Type

Capacity

Numbers

Lithium-ion type

5kWh

10 modules (1module=4cell)

Control system

Controller

Sampling Time

Sensors

AutoBox-DS1103

0.001sec

Gyro sensor , Wheel speed sensor ,

Steering angle sensor , Multi-

sensing hub unit

Front*: one front wheel motor,  Rear*: one rear wheel motor

dSPACE AutoBox (DS1103), used for real-time data acquisi-
tion. The dSPACE AutoBox (DS1103), which is a powerful
controller board for rapid control prototyping, consists of
a power PC 750GX controller board running at 933 MHz,
16 channel A/D converter and 8 channel D/A converter.
Additionally, a non-contact optical sensor, Correvit (Corrsys–
Datron), is used for accurate measurements of sideslip angle,
lateral vehicle velocity and longitudinal vehicle velocity, and
its outputs are connected to AutoBox. The Correvit sensor
uses optical means to capture planar road texture and evaluate
the motion of the vehicle by measuring the direction and
magnitude of change with respect to the road texture. The
sensor outputs from vertical potentiometers and a roll rate
sensor are also connected. The sampling time is set at 1ms.

Contrary to other experimental electric vehicles, the electric
vehicle used in this research provides lateral tire forces in real-
time. By directly using lateral tire forces, we can accurately
estimate vehicle states. In addition, the heuristic tire models
are not required in estimator and control design. MSHub
units, including rolling bearings used to support wheels of
the vehicle, can measure the loads applied to the rolling
bearing. In many conventional vehicles, wheel hub units with
built-in active ABS sensors (i.e., wheel velocity sensor) were
equipped. Comparing MSHub units with wheel hub units
which are currently used in vehicles, MSHub units have almost
the same mechanical structure except for rolling elements in

MSHub

Fig. 10. Schematic of the electrical system of FPEV–II Kanon.

(a) (b)

Fig. 11. (a) Rear In-wheel motor, (b) Multi-sensing hub (MSHub) unit.

a pair of rows and is capable of being constructed at a low
cost. The measurement principle is as follows: the revolution
speeds of rolling elements in a pair of rows are sensed by
a pair of revolution speed sensors and difference of sensed
revolution speeds is used to calculate the radial or axial loads
[36]. Therefore, accurate lateral tire force measurements using
MSHub units can be realized without much additional cost
and, due to cost-effective aspects, MSHub units are recently
considered practically applicable to vehicles by automotive
manufacturers.

B. Experimental Results

Experimental results obtained from field tests are presented
to validate the estimator and to compare the Fy-based method
and Ay-based method. Fig. 12 shows experimental results for
the random steering test on dry asphalt. Driving conditions
including vehicle speed and steering angle (i.e., wheel angle)
are illustrated in Fig. 12(a). Fig. 12(b)–(d) present estimates
of yaw rate, roll angle, and roll rate compared with sensor
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Fig. 12. Experimental results for roll state estimation in a random steering
test on dry asphalt (i.e., µ≃0.9): (a) Driving condition. (b) Yaw rate. (c) Roll
angle. (d) Roll rate.
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Fig. 13. Experimental results for roll state estimation in a random steering
test on wet asphalt (i.e., µ≃0.7): (a) Driving condition. (b) Yaw rate. (c) Roll
angle. (d) Roll rate.
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Fig. 14. Experimental results for roll angle estimation: (a) Driving at vx=50
km/h on dry asphalt (i.e., µ≃0.9). (b) Driving at vx=40 km/h on dry asphalt
(i.e., µ≃0.9). (c) Driving at vx=40 km/h on wet asphalt (i.e., µ≃0.7). (d)
Driving at vx=30 km/h on a slippery road (i.e., µ≃0.3).

(a) (b) (c) (d)

Fy-based method

Ay-based method

Fig. 15. Calculated RMS errors for estimation.

measurements. It can be seen that the estimated roll angle
and roll rate track the sensor measurement values with small
errors.

Experimental results obtained from the Fy-based and Ay-
based methods are compared using Fig. 12(c) and (d). We
can confirm that the Fy-based method shows more accurate
results without noticeable phase lag. This agrees with earlier
discussion about roll moments, which are calculated from
lateral tire forces and lateral acceleration respectively. Fig.
13 shows experimental results of the random steering test at
vx=40 km/h on wet asphalt. Similarly, the proposed Kalman
filter in this case provides accurate estimation with no phase
lag.

In order to verify the robustness of the proposed Kalman
filter, several field tests on different roads were performed
and those results are shown in Fig. 14. The RMS values
of estimation errors are shown in Fig. 15. The experimental
results shown in Fig. 14(a)–(d) correspond to (a)–(d) in Fig.
15, and are explained as follows: (a) shows the result of a sine
steering test at vx=50 km/h on dry asphalt. As shown in Fig.
15, the roll angle estimated by the Kalman filter using lateral
tire forces shows relatively low RMS values (in this case, the
maximum roll angle is |ϕ|max≈ 4 degree). (b) and (c) show
the results of sine steering and pulse steering tests at vx=40
km/h on dry asphalt and wet asphalt respectively. Roll angles
estimated with the proposed Kalman filter track the measured
values with small errors. It is noted that result (d), obtained
from the field test on a slippery road, also shows the low RMS
value. This implies that the proposed Kalman filter is robust
to road conditions.

VI. CONCLUSION

This paper presents novel estimation methods to accurately
estimate the vehicle sideslip angle and roll angle using lat-
eral tire force sensors. The RLS algorithm and a Kalman
filter were used in estimator design. Characteristics of the
proposed estimation methods, such as estimation performance
and robustness, were discussed and evaluated through field
tests under different road conditions. It was shown that the
estimation methods utilizing lateral tire forces provide even
more improved estimation of the vehicle sideslip angle and
roll angle. Additionally, the experimental results demonstrated
that Kalman filter design using lateral tire forces could provide
reliable estimation without noticeable phase lag. By using
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lateral tire force measurements, important vehicle states for
vehicle stability control could be estimated without using
expensive sensors and we could confirm the possibilities of the
practical applications of MSHub units to vehicle stability con-
trol systems for in-wheel-motor-driven electric vehicles. This
is one of the important results of this paper. From experimental
results of proposed estimators, it is anticipated that lateral tire
forces, measured from MSHub units, will provide practical
solutions to challenging issues in vehicle state estimation.
Since the proposed estimator for sideslip angle estimation
is designed based on linear tire models, some estimation
errors may occur during severe driving on low friction roads.
Therefore, in future works, we will improve the tire model
by taking into account nonlinear tire characteristics and an
effect of road-bank angle. Moreover, advanced motion control
systems based on proposed estimators will be presented.

APPENDIX

NOMENCLATURE

ax Longitudinal acceleration at center of gravity
(CG) (m/s2).

ay Lateral acceleration at CG (m/s2).
aym Sensor measurement of lateral acceleration

(m/s2).
d Track width = 1.3 m.
g Acceleration due to gravity = 9.81 m/s2.
hroll Height of the center of sprung mass above roll

center (RC) = 0.32 m.
hRC Height of the RC above the ground = 0.21 m.
i 1, 2, 3, 4 corresponding to front left, front right,

rear left, and rear right (= fl, fr, rl, rr).
lf Distance from CG to front axle = 1.013 m.
lr Distance from CG to rear axle = 0.702 m.
vx Longitudinal velocity at CG of vehicle (m/s).
vy Lateral velocity at CG of vehicle (m/s).
ṽy Estimated lateral vehicle velocity (m/s).
m Total mass of vehicle = 875 kg.
ms Sprung mass = 670 kg.
Ci Tire cornering stiffness at the ith tire (N/rad).
Cf Front tire cornering stiffness = 11200 N/rad.
Cr Rear tire cornering stiffness = 31600 N/rad.
Croll Roll damping coefficient = 3200 N·m·s/rad.
F x
i Longitudinal tire force at the ith tire (N).

F y
i Lateral tire force at the ith tire (N).

F y
left Lateral tire force on the left track wheels

(=F y
fl+F

y
rl) (N).

F y
right Lateral tire force on the right track wheels

(=F y
fr+F y

rr) (N).
Ix Roll moment of inertia = 250 kg·m2.
Iz Yaw moment of inertia = 617 kg·m2.
Kroll Roll stiffness coefficient = 12000 N·m/rad.
L Observer gain matrix.
Mx Roll moment (N·m).
Mz Yaw moment (N·m).
αi Slip angle at the ith tire (rad).
αf Front tire slip angle (rad).
αr Rear tire slip angle (rad).

β Vehicle sideslip angle (rad).
β̂com Estimated sideslip angle from combined method

(rad).
β̂kin Estimated sideslip angle from kinematics-based

estimation method (rad).
β̂mod Estimated sideslip angle from model-based esti-

mation method (rad).
δf Front steering angle (rad).
ϕ Roll angle (rad).
ϕ̇ Roll rate (rad/s).
ϕ̈ Roll acceleration (rad/s2).
γ Yaw rate (rad/s).
λ Forgetting factor in RLS algorithm.
µ Road friction coefficient.
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