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ABSTRACT – In this paper, a new vehicle sideslip angle estimation based on GPS is 

proposed. Course angle obtained from GPS receiver can be utilized as one measurement for 

estimation design, and the other measurement is yaw rate from gyroscope. While yaw rate is 

sampled every 1 millisecond, due to the limitation of GPS receiver the sampling time of 

course angle is much longer (200 millisecond). During inter-samples (between two updates of 

course angle), the conventional estimation method relies upon only yaw rate measurement. In 

order to enhance the estimation accuracy, multi-rate Kalman filter with the prediction of 

course angle measurement residual during inter-samples is designed. Experiments are 

conducted to verify the effectiveness of the proposed algorithm. 

 

INTRODUCTION 

 

Sideslip angle estimation technique plays an important role in vehicle stability control (VSC). 

In VSC system, sideslip angle must be controlled to prevent the vehicle accidents which may 

happen in critical driving situations, such as vehicle cornering into slippery road at high speed 

[1]. In fact, current vehicles are not equipped with an ability of measuring sideslip angle 

directly. Corrsys-Datron provides the noncontact optical sensor for sideslip angle calculation 

based on lateral and longitudinal velocity measurement [2]. Because of its high cost, Corrsys-

Datron sensor cannot be a practical solution. For both cost reducing and safety purpose, 

sideslip angle estimation has been a big issue in motion control of vehicle. 

 

In conventional sideslip angle estimation method, lateral accelerometer is used as output 

measurement [3]. Therefore, cornering stiffness appears in the measurement equations. In fact, 

the variation of road friction introduces uncertainties into the estimation model. In order to 

improve the sideslip angle estimation, non-conventional sensors have been utilized, such as 

visual information using camera image processing [4], attitude information from GPS receiver 

[5], [6], and the measurement of tire lateral force sensor [7]. However, the poor update rate of 

image processing is the main disadvantage of this approach. Camera visibility may also be 

unavailable when road makers are covered with leaves, snow, water, or dirt. Like visual based 

estimation, the main problem of GPS based estimation is the update rate of GPS receiver 

(from 1 to 10 Hz) which is not fast enough for motion control of vehicle. The high cost of tire 

force sensors is a question for the application of this method in commercial vehicles. 

 

Thanks to Japan’s own GPS system which has been constructed as national projects, high 

accuracy of vehicle motion measurement based on GPS is achieved. In this paper, sideslip 

angle estimation based on multi-rate Kalman filter is designed using yaw rate (sampling time 

of 1 millisecond) and course angle obtained from GPS receiver (sampling time of 200 

millisecond in this study). Using course angle measurement, cornering stiffness disappears in 



the measurement equations. The estimation steps between two continuous updates of course 

angle is called inter-samples in this paper. During inter-samples, conventional multi-rate 

Kalman filter relies upon yaw rate measurement only. In this study, prediction of course angle 

measurement residual during inter-samples is proposed. Therefore, sideslip angle is estimated 

every 1 millisecond with high accuracy, even under model uncertainties, such as the variation 

of cornering stiffness. 

 

The proposed method is implemented in the control system of in-wheel motored electric 

vehicle COMS prototyped by Toyota Auto Body Co., Ltd. Two in-wheel motors are equipped 

in the rear wheels to generate the yaw moment. A RT-Linux operating system computer is 

used as the controller of COMS with the control period of 1 millisecond. A Corrsys-Datron 

optical sensor installed in the front of vehicle can be used to calculate the sideslip angle at the 

center of gravity. GPS receiver CCA-600 is supported by Japan Radio Co., Ltd. It can provide 

the measurement of vehicle course angle with the accuracy of 0.14 degree RMS every 200 

millisecond. This is more accurate than the one used at Stanford University (course angle 

accuracy of 0.25 degree RMS) for the research in [5]. Experimental vehicle and GPS receiver 

are shown in Fig. 1.  

 

TABLE 1 
NOMENCLATURES 

,f rl l  Distances from front (rear) axle to the center of gravity 

,f rC C  Front (rear) cornering stiffness 

zI  Yaw moment of inertia  

fδ  Front steering angle  

z
N

 
Yaw moment generated by in-wheel motors 

M  Vehicle mass 

β  Sideslip angle  

γ  Yaw rate 
ψ

 Yaw angle  
c  Course angle obtained from GPS 

, ,x yv v V
 

Longitudinal, lateral, and velocity vector 
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Fig. 2.  Planar bicycle model of vehicle.  
 

Fig. 1.  Electric vehicle COMS. 



MODELING OF VEHICLE DYNAMICS 

 

The planar bicycle model of vehicle is shown in Fig. 2. This model is constructed under the 

following assumptions: 1) Tire slip angle is small such that lateral tire force is at linear region. 

2) Vehicle is symmetric about the fore-and-aft center line. 3) Load transfer is neglected. 4) 

Vehicle velocity is approximately constant. Table 1 shows the list of nomenclatures. Sideslip 

angle is defined as the angle between velocity vector and longitudinal direction. Course angle 

of a moving vehicle is the angle between vehicle’s direction and geodetic North. Using this 

definition, course angle can be represented as the summary of yaw angle and sideslip angle: 

c ψ β= +
                                                                                                   

(1) 

The lateral force equation and yaw moment equation can be expressed as follows: 
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From (1)-(5), the state space equation of vehicle dynamics is constructed as (6)-(10). Front 

steering angle and yaw moment are selected as input vector. 

x Ax Bu= +ɺ                                                                                   (6) 

[ ]
T

x β γ ψ=                                                                                   (7) 

T

f z
u Nδ =                                                                                     (8) 

( ) ( )

( ) ( )

2

2 2

22
1 0

22
0

0 1 0

f f r rf r

x x

f f r rf f r r

z z x

C l C lC C

Mv Mv

C l C lC l C l
A

I I v

 −− +
 − −
 
 

− +− − =  
 
 
 
  

                                                                  (9)
     

2
0

2 1

0 0

f

x

f f

z z

C

Mv

C l
B

I I

 
 
 
 

=  
 
 
 
 

                                                                  (10)
                                                                                                                              

 



PREDICTION OF INTER-SAMPLE MEASUREMENT RESIDUALS 

 

Dynamics of Single-rate Kalman Filter 

 

For the sake of simplicity, steady state Kalman filter is used to derive the dynamics of 

measurement residual. Assume that the output measurement’s sampling time is the same as 

the control period Tc. The discrete model under process noise wk-1 and measurement noise vk 

is expressed as follows: 

1 1 1k d k d k k

k d k k

x A x B u w

y C x v

− − −= + +


= +                                                                                                    
(11) 

The Kalman filter has two stages as follows where Ld is the Kalman gain matrix. 

- Prediction: 

1 1
ˆ

k d k d k
x A x B u− −= +

                                                                                                   
(12) 

- Correction: 

( )ˆ
k k d k k d k d k

x x L x L y C xε= + = + −
                                                         

(13)
                                                                                                

Where εk is the measurement residual which is updated every Tc in this case. From (11)-(13), 

the measurement residual is derived as follows: 

1 1k d d k d k k
C A e C w vε − −= + +

                                                                                    
(14)                                  

From (11)-(14), the dynamics of estimation error is obtained as: 

( ) ( )1 1k d d d k d d k d k
e I L C A e I L C w L v− −= − + − −                                                                   (15)

                                                                                                  The measurement residual in the next estimation step can be derived as: 

1 1k d d k d k k
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From (15) and (16), under zero-noise condition, the relation between measurement residual at 

step k+1 and measurement residual at step k is derived as: 
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The estimation error in the next n step can be derived as: 
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Dynamics of Conventional Multi-rate Kalman Filter 

 

Assume that the measurement output’s sampling time Ts is longer than the control period Tc. 

Define r = Ts/Tc is the multi-rate ratio and it is assumed that r is an integer. The steps between 

two measurement update are named inter-samples. The dual-rate system is shown in Fig. 3. If 

measurement output is updated (at step k = jr), the prediction and estimation equation are the 

same as the single-rate case.  

During inter-samples (at step k+n, k = jr, n ∈ [1, r – 1]), because no new measurement is 

updated, the correction term Ldεk is not accounted in the correction stage. Dynamics of 

estimation error during inter-samples is derived as follows: 
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Equation (21) shows that under model uncertainties with the influence of noises and 

disturbances, estimation performance may be degraded due to the lost of correction term Ldεk. 

The situation will be very serious if matrix Ad has unstable poles. 

                                                                                                                                                                                      Proposal of Inter-sample Measurement Residual Prediction 

 

The key idea can be explained using Fig. 4. If the measurement update is available, the real 

measurement residual is used to correct the estimated state. During inter-samples, the 

predictive measurement residuals are utilized to enhance the dynamics of the multi-rate 

estimation. The formulation of predictive residual is proposed as follows: 
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By applying (24) for r -1 times, we can prove the general formulation of estimation error with 

prediction of inter-samples: 
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From (25), the dynamics of estimation error during inter-samples is improved in comparison 

with the case of conventional multi-rate as expressed in (21). However, the accuracy of inter-

samples relies upon the past measurement at step k = jr. In case of single-rate estimation, as 

represented in (18), estimation error at any step is driven by the current and the past 

measurement noise. Thus, if the system is zero-noise, the proposed method has the same 

estimation error dynamics as the single-rate estimation. If a measurement error happens at 

step k = jr, the proposed estimation cannot be as good as the single-rate case. This is because 

the error at step k = jr is transferred to every step during inter-samples. Even though, 

dynamics of estimation error of the proposed method is better than the conventional multi-rate 

estimation.   
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Fig. 3.  Dual-rate system. 
 

Fig. 4.  Idea of inter-sample residual prediction.   



SIDESLIP ANGLE ESTIMATION DESIGN 

 

Output Measurements 

 

Yaw rate and course angle are selected as output measurements for Kalman filter design. The 

sampling time of yaw rate is the same as the control period Tc = 1 millisecond. Course angle 

is obtained from GPS receiver every Ts = 200 millisecond. Inter-samples are defined as the 

estimation steps between two continuous updates of course angle. The measurement equation 

is constructed as follows: 

k d k k
y C x v= +                                                                      (28 )

                                                        Where the measurement matrix is: 
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Discrete Model 

 

The continuous model in (6) is transformed into discrete model (30) by using the 

transformation (31) and (32). Tc = 1 millisecond is the fundamental sampling time. 

1 1 1k d k d k k
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Multi-rate Kalman Filter Algorithm 

 

Kalman filter is designed based on the dynamics model (29) and the measurement equation 

(27). Qv and Qw are the process noise and measurement noise covariance matrices, as 

expressed in (32) and (33), respectively. They are tuning parameters of the Kalman filter 

algorithm shown in Fig. 5.  
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If Qv is too large, the Kalman gain will decrease, thus, the estimation fails to update the 

propagated disturbance based on measurement. In (33), σγ_gyro and σc_GPS denote the variance 

of yaw rate noise and course angle noise, respectively. They are chosen based on the idea that 

measurement of course angle is more reliable than measurement of yaw rate. Small Qw results 

in unstable estimation. On the other hand, large Qw forces the estimation to completely rely 

upon the measurements. Therefore, the noise associated with the measurement is directly 

transmitted into the estimated values. 

 



At step k = jr, both yaw rate and course angle are update, thus, estimated states are corrected 

with real course angle residual and real yaw rate residual: 

ˆ c c

k k k k k k
x x L L

γ γε ε= + +                                                                        (35)
                                                                                             At step k = jr + 1, only yaw rate is updated, thus, estimated states are corrected with real yaw 

rate residual and predictive course angle residual, using the prediction formula (20).  

ˆ c c

k k k k k k
x x L Lγ γε ε= + + ɶ                                                                        (36)

                                                                                                   

GPS INTERFACE DESIGN 

 

GPS receiver CCA-600 outputs the information in NMEA-0183 protocol. In order to transfer 

data from CCA-600 to the experimental vehicle, GPS interface software is designed in a 

laptop (Fig. 6). It receives the NMEA messages from CCA-600 through serial port. Then, it 

decodes the messages for required data, such as vehicle position, course angle, and velocity. 

The decoded data are sent to the controller of experimental vehicle through LAN cable using 

user datagram protocol (UDP/IP). Measurements of course angle and velocity using the GPS 

interface are shown in Fig. 7. 
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Fig. 5.  Algorithm of sideslip angle estimation using multi-rate Kalman filter  

with prediction of course angle residual. 

 

 

Fig. 6.  GPS interface software. 



 

EXPERIMENT RESULTS 

 

In order to demonstrate the effectiveness of the proposed method, other three sideslip angle 

estimation methods are performed. The proposed method is named “Enhanced Three-State 

MRKF” in this study. The name and description of each method are listed as follows: 

- Two-State KF: The single-rate Kalman filter using only yaw rate measurement. 

- Three-State MRKF: Conventional multi-rate Kalman filter using yaw rate and course 

angle measurement. During inter-samples, sideslip angle is corrected based on yaw rate 

residual only. 

- Three-State MROb: From literature review, the enhancement of inter-sample estimation 

was proposed by Hara et al [8]. The key idea of this method is to hold the real residual to 

correct the estimated state during inter-samples. The observer gain is redesigned to 

confirm the convergence and stability of estimation. This method was applied in hard disk 

drive system. We re-apply this method for sideslip angle estimation by holding the real 

course angle residual during inter-samples. It is important to notice that, the multi-rate 

ratio in case of hard-disk drive (r < 10) is smaller than the multi-rate ratio of vehicle 

system, due to the limitation of GPS receiver (r = 200 in this study). Moreover, vehicle 

control system is a time varying system due to the change of road friction coefficient and 

velocity. The unknown external disturbance may be introduced into the system. Therefore, 

in case of vehicle system, Kalman filter is applied because it is the optimal linear 

estimator in sense that no other linear filter can gives a smaller variance of estimation 

error. 
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(c)                                                                  (d)     

Fig. 7. Data recorded by GPS interface: 

(a) Vehicle position on Google Earth, (b) Experiment place, (c) Course angle, (d) Velocity 



 

 

Fig. 8 shows the results of lane-change test on the asphalt road surface. The real cornering 

stiffness are Cf = 10,000 [N/rad] and Cr = 10,000 [N/rad]. However, the cornering stiffness of 

the estimation model are set as Cfm = 7000 [N/rad] and Crm = 7000 [N/rad]. This makes the 

model error condition for experiment. Two-State KF shows the poorest estimation 

performance. Three-State MRKF shows the better estimation result. The estimation error is 

reduced when course angle is updated. However, during inter-samples, sideslip angle is 

corrected by only yaw rate measurement, the estimation performance of Three-State MRKF is 

degraded. From Fig. 8 (f), thanks to the prediction of course angle residual, Enhanced Three-

State MRKF shows the best estimation performance. Besides sideslip angle estimation, yaw 

angle is estimated at 1 kHz in comparison with 5 Hz course angle, as shown in Fig. 8 (e). 

Root-mean-square-deviation (RMSD) from measured sideslip angle is calculated for 
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(e)                                                                   (f) 

Fig. 8. Lane change test experiment results 

(a) Two-state KF, (b) Three-State MRKF , (c) Three-State MROb, 

(d) Enhanced Three-State MRKF, (e) Vehicle attitude, (f) Inter-sample performance 



comparison. The results is shown in Table 2 in which, the proposed method has the smallest 

RMSD value. 

TABLE 2 
RMSD OF SIDESLIP ANGLE ESTIMATION 

Estimation method RMSD [rad] 

Two-state KF 1.02×10
-2

 

Three-state MRKF 0.86×10
-2

 

Three-state MROb 0.48×10
-2

 

Enhanced three-state MRKF 0.36×10
-2

 

 

CONCLUSIONS 

 

From the view of control theory, this paper proposes a new method for enhancing the multi-

rate estimation. During inter-samples, estimated state is corrected with the predictive 

measurement residual. The proposed method is applied in sideslip angle using GPS and multi-

rate Kalman filter for vehicle control system. Experiments are conduct to evaluate the 

effectiveness of the proposal in comparison with the previous estimation methods. Even under 

model error, accurate sideslip angle estimation is achieved. In future works, auto-tuning of 

process noise and measurement noise covariance matrix will be examined. 
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