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Abstract—Advanced control concepts for electric vehicles as-
sume the correct functioning of sensors. In this contribution the
problem of sensor failure detection and isolation in the case of
lateral vehicle dynamics of EVs is tackled. The method depends
on only basic vehicle parameters and assumes only a single failure
in the vehicle system. A single sensor failure can be detected and
the false alarm rate is minimized. The approach is based on the
parity space method implemented with residual observers. Noise
of sensors is taken into account and appropriate bounds in the
feature space are derived in order to get a robust fault detection
indicator. Simulation results and an experimental setup show the
validness of the approach.

I. INTRODUCTION

Electric Vehicles (EVs) with In-Wheel-Motors (IWMs) and
advanced sensors like Lateral Tire Force Sensors (LTFS) offer
great advantages for the control of the vehicle dynamics.
Lateral vehicle dynamics can become very precise and there
are new opportunities for a real ”3D” motion control scheme
[10]. The high degree of freedom that an electric vehicle
with 4 independent driven wheels and Active Front Steering
(AFS) and Active Rear Steering (ARS) can be exploited
in a very efficient way satisfying different constrains and
optimality criteria at the same time [7] [13]. The use of lateral
tire force sensors together with different acceleration and
angle rate sensors allows to estimate unknown parameters and
disturbances (cornering stiffness values, wind, . . . ) affecting
the vehicle. A comprehensive control scheme for an electric
vehicle based on many but cheap sensors and a high degree of
actuation (namely 6: 4 In Wheel Motor torques + AFS +ARS)
increases performance, safety and comfort as described in [7],
[12] and [13] and may also increase energy efficiency as in [8]
and in [9]; it is worth to be discussed how sensor and actuator
failures influence the control system performance and safety.

This contribution -as a first attempt to approach this topic- is
based on the detection of failures of sensors that are essential
for advanced EV lateral vehicle dynamics control. It is of out-
most importance to detect sensor failures (failure detection:
FD), to isolate them (failure isolation: FI) and to mitigate them
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Fig. 1. Left: Sensor concept for lateral vehicle dynamics for EVs with LTFS
Right: Additive sensor fault model

(failure mitigation: FM), meaning to reduce the impact of the
sensor failure as much as possible. The considered electric
vehicle is equipped with LTFS, lateral acceleration sensor and
yaw rate sensor (optionally the roll rate sensor). The problem
in the Fault Detection and Isolation in advanced lateral electric
vehicle dynamics control consists in detecting accurately a
sensor fault under following conditions:
• Disturbances (like unknown cross wind force)
• Uncertain parameters (mass, yaw inertia, position of

center of gravity, attack point of wind force)
• Noisy sensors (especially the force sensors are affected

by heavy noise)
This problem has been approached before in [1], [3], [4] and
others. Quantitative aspects in FD in the parity space have
been introduced (amongst others) in [2]. A good introduction
in the field of model-based fault diagnosis can be found in
[5] and [14]. Due to the advent of economic LTFS in the
near future it seems to be reasonable to develop FDI schemes
that do not rely on the knowledge of the cornering stiffness
values and the vehicle velocity as opposed to the aforemen-
tioned contributions. The proposed FDI method assumes the
following:
• The approach should use only basic vehicle characteriz-
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Fig. 2. Kinetic relationships for vehicle modelling, (γ: yaw rate, Fyf , Fyr :
front, rear lateral force, ay : lateral acceleration, Fw,y : crosswind force, φ:
roll angle)

ing parameters and not parameters that are determined by
estimation using sensor measurements and/or are highly
time variant.

• It is assumed that only one sensor fails at a certain time. If
there are no common mode causes this assumption seems
to be reasonable since the probability of two sensors
failing at the same time is very small or could be kept
small by design.

• Cross wind affecting the vehicle should not lead to a false
alarm.

In Fig. 1 the sensor concept is shown. The two front and
the two rear LTF sensors are summed up to a total front and
total rear lateral tire force sensor signal. This is reasonable
since the important control variable for the controller are these
overall forces and a discrimination within the two pair of
sensors requires detailed knowledge about the road conditions
for each wheel. The contribution is structured in the following
way: Section II introduces the vehicle model, the FDI scheme
is based on. In this particular model the lateral tire force
measurements are considered as inputs and the other sensor
measurements as outputs. Section III introduces the parity
space and how to extract model input and output errors.
Section IV deals with numeric implementation issues with
residual observers and to regularize the effect of sensor noise
on the detection and isolation scheme. Simulation results and
experimental validations are given in section V and section VI
gives short conclusions. The appendix gives on overview of the
implementational issues and the computation effort needed.

II. VEHICLE MODELLING FOR LATERAL VEHICLE
DYNAMICS SENSOR FAULT DETECTION

Due to the aforementioned requirements the vehicle model
should be very basic and not contain derived parameters such
as cornering stiffness values. By using the lateral tire forces
as inputs and the other sensor values as outputs (Fig. 4) the
describing equations are derived based on the kinetic relation-
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Fig. 3. Modelling of cross wind influence on the vehicle
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Fig. 4. Sketch of vehicle modelling for FDI purposes

ship (Fig. 2)1. The influence of crosswind is summarized as
a lateral force Fw,y acting at a certain distance lw from the
Center Of Gravity (COG) (Fig. 3) leading to:

ẋ =

 γ̇

φ̇

φ̈

 = ACx + BCu + bC,0 + bC,wFw,y (1)

y =
[
γ ay φ̇

]T
= Cx + Du + dWFw,y

with
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0 0 0
0 0 1

 ,D =

 0 0
l
m

l
m

0 0

 ,dw =

 0
1
m
0

 ,
where m,mS is the vehicle and vehicle sprung mass, hs

the height of the roll center, Jz, Jx the yaw and roll inertia,
Kphi, Cphi the roll stiffness and roll damping and Mz,Mx

2

is the yaw and roll moment due to IWMs.
In the case of the yaw rate this simple model would lead to

an open loop integration. Therefore it is advisable to use the
filtered signal γ∗ which can be derived from the real yaw rate
γ:

γ∗ = F (s) γ =
s

s+ w0
γ (2)

1The front and rear steering angles are assumed to be small, otherwise the
lateral tire force could be corrected by use of the steering angle signals.

2Since the driving force of IWM driven EVs can be estimated quite accu-
rately by use of driving force observers, these quantities can be determined
also.
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Fault r1 r2 r3 r4 r5

1 : ∆ay 0 1 1 1 1
2 : ∆γ∗ 1 0 1 1 1
3 : ∆Fy,f 1 1 0 1 1
4 : ∆Fy,r 1 1 1 0 1
5 : Fw 1 1 1 1 0

TABLE I
FAULT CODING SET (0:NOT INFLUENCED, 1: INFLUENCED)

with an appropriately chosen w0.
If one does not use the roll rate sensor as additional

information, the model is reduced to:

ẋ =
[
γ̇∗
]

= ACx+ BCu + bC,0 + bC,wFw,y

y =

[
γ∗

ay

]
= Cx+ Du + dWFw,y (3)

with

AC =
[
−w0

]
,BC =

[ lf
Jz

−lr
Jz

0 0

]
,

bC,o =

[
Mz

Jz
0

]
,bC,w =

[
lw
Jz
0

]
,

C =

[
1
0

]
,D =

[
0 0
l
m

l
m

]
,dw =

[
0
1
m

]
.

This means a model with four inputs r = 4 (lateral tire
forces, unknown wind force and additional yaw moment), one
state n = 1 and two outputs m = 2 is obtained. In order to use
the parity space model this model is approximated in discrete
time3 and the following description of the system obtained:

xk+1 = Axk + Buk + b0 + bwFwy,k

yk = Cxk + Duk + dwFwy,k + fSk + nk, (4)

where fSk contains the sensor errors of the γ∗ and ay sensor
and nk additional sensor noise at time instant k.

III. INTRODUCING PARITY SPACE APPROACH

The definition of the residuals in the parity space is used
here for fault detection and isolation. If one collects s + 1
samples (s is the dimension of the parity space4) into the
vectors U,Ym,Uw,

U =

 uk−s
...

uk

 ,Ym =

 yk−s
...

yk

 ,Xm = . . . ,

Uw =

 Fw,k−s
...

Fw,k

 ,Fs =

 fs,k−s
...

fs,k

 ,Ns = . . . (5)

the measured sensor signals can be described as following:

Ym = RX + QU + QwUw + Fs + Ns (6)

3for example by using the Tustin discretization method.
4s ≥ 2 for the use of the model with the roll rate sensor and s ≥ 1 for

the model without roll rate sensor.
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Fig. 5. Fault detection and isolation scheme (residual generator realized with
residual observers)

with

R = [ CT (CA)T (CA2)T . . . (CAs)T ]T (7)

and

Q =
[

q1 q2 q3 . . . qs+1

]
=

=



D 0 0 0 0
CB D 0 0 0

CAB CB D
. . . 0

...
...

...
. . . 0

CAs−1B CAs−2B . . . CB D

 ,

Qw =



dw 0 0 0 0
Cbw dw 0 0 0

CAbw Cbw dw
. . . 0

...
...

...
. . . 0

CAs−1bw CAs−2bw . . . Cbw dw

 . (8)

Since the tire force sensor signals (that according to Fig.
4 are inputs to this system) may be faulty and noisy the
following sample vector

Urec = U + ∆U + Nu, (9)

where ∆U collects the LTFS faults and Nu the LTFS noise
according to (5), can be determind and used to compute the
following error vector:

e = Ym −QUrec

= RX + QU + QwUw + Fs −Q(U + ∆U + Nu)

= RX + QwUw + Fs + Ns −Q∆U−QNU , (10)

which can be multiplied with a weighting vector wi in order
to form the corresponding residual ri:

ri = wT
ie = wT

i(RX + QwUw + Fs

− Q∆U) + wT
i (Ns −QNu). (11)

The residuals ri are now chosen in a way to make them
independent from the system states X and additionally from
one of the sensor or actuator faults. This leads to following
geometric conditions for the weighting vectors wi [6]:

w∗1 ∈ Null
{

RTF1

}
; w∗2 ∈ Null

{
RTF2

}
w3 ∈ Null

{[
RT

Q1
T

]}
; w4 ∈ Null

{[
RT

Q2
T

]}
w5 ∈ Null

{[
RT

Qw
T

]}
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Fig. 6. Fault directions in the feature space (x, y) (1: fs1 = ∆ay , 2: fs2 =
∆γ∗, 3: ∆u1 = ∆Fyf , 4: ∆u2 = ∆Fyr , 5: Fw)

with

F
1 [(s+1)m× (s+1)m

2 ]
= (fij), fij =

{
1 if i = 2j − 1
0 elsewhere,

F
2 [(s+1)m× (s+1)m

2 ]
= (fij), fij =

{
1 if i = 2j
0 elsewhere,

w1 =
[
w∗11 0 w∗12 0 . . . 0

]
,

w2 =
[

0 w∗21 0 w∗22 . . . 0
]
,

Q1 =
[

q1 0 q3 0 . . .
]
,

Q2 =
[

0 q2 0 q4 . . .
]
. (12)

The so called fault coding set can be seen in Tab. I (1
means that the corresponding residual is influenced by the
fault, 0 no influence). Each residual is independent of one
of the sensor errors or the influence of the wind disturbance.
More independence is not possible due to the dimensions of
the state space n, inputs r and outputs m [5].

IV. QUANTITATIVE PARITY SPACE APPROACH

As can be seen in Tab. 1 from the residual binary fault
signature a single failure of a sensor can be determined.
However, in real life operation it does not suffice to determine
which residual is activated (6= 0) or not (0) and to use this
information to isolate the single fault due to sensor noise and
some allowed small bias of the sensor; a more robust method
is to examine the quantitative influence of a static single fault
on the residuals:

S0 =


∂r1
∂fs,1

∂r1
∂fs,2

∂r1
∂∆u1

∂r1
∂∆u2

∂r1
∂Fw

...
...

...
...

...
∂r5
∂fs,1

∂r5
∂fs,2

∂r5
∂∆u1

∂r5
∂∆u2

∂r5
∂Fw

 (13)

This linear mapping from the fault to the residuals cannot
be directly used to recover the single faults since it has not full
rank. Actually in the case (3) approach it has only rank 2, this
means that the 5 dimensional space of residuals can be mapped
into a 2 dimensional space without loss of information and the
fault detection and isolation be done within a two dimensional
space by appropriate partitioning of this space and use of the
single failure assumption.

Fig. 7. Top: Regions where an unambiguous single fault detection is possible
(within two blue lines, where there is no intersection with other ”stripes”)
Bottom: Exemplary the region in the feature space for unambiguous rear
lateral tire force sensor fault detection is shown.

If one considers sensors affected by noise then the covari-
ance matrix of the noise affecting the residual vector can
be described in dependence of the covariance matrix of the
sensors and the matrices Q,W according to (11):

Rn = WT (RS + QRUQT )W

with

W = [w1 w2 w3 w4 w5], (14)

where RS is the covariance matrix of the sensors (the yaw
rate and lateral acceleration sensor) and RU is the covariance
matrix of the actuators (the lateral tire force sensors) in the
parity space (compare (5)). In order to whitening the noise [11]
the following decomposition of the effective noise covariance
is suggested

Rn = PPT (15)

and the following transformation of the residual vector r

rwh = P−1r = Sr. (16)

For the steady state (constant fault vector fT =
[fs1, fs2,∆u1,∆u2, Fw]) the following relationship between
the fault vector and the signal rwh holds:

rwh = Gf = Sr = SS0f . (17)

Since the matrix G has rank 2, the action of the matrix can be
represented with coordinates (x, y) in a two dimensional space
(which is called feature space here) by taking for example the
two first column as coordinate axis and therefore leading to
new coordinates:[

x y
]T

= {rwh}2 = (WfG
†G(:,1 : 2))Tf , (18)

where Wf is a matrix that weights the single faults. In Fig. 6
the single fault directions with vehicle parameters as given in
section VI are indicated. It can be seen that under the noise
assumptions and slight sensor deviations the ability of the
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Fault max det. time det. time assumed allowed
value simulation eperiment σn bias

∆ay 0.6 m
s2

0.12s 0.16s 0.283 m
s2

0.07 m
s2

∆γ 0.22 rad
s

0.03s 0.04s 0.01 rad
s

0.03 rad
s

∆Fy,f 300N 0.13s 0.12s 100N 10N
∆Fy,r 300N 0.13s 0.14s 100N 10N
∆Fw 300N - - − 80N

TABLE II
SINGLE SENSOR FAULTS (MAXIMAL VALUES)

Fig. 10. Effect of a lateral wind force (simulation with noise) of 300N
in the feature space. It is not detected as a failure in the lateral acceleration
sensor.

scheme to detect the failure is reduced. In the next section
the regions in this detection scheme where a sensor failure
can be detected in an unambiguous way are determined.

V. LEAN RESIDUAL DEAD BEAT OBSERVER
IMPLEMENTATION AND NUMERICAL ISSUES

The implementation of the fault detection and isolation
scheme requires a high amount of computation. However as
[1] has shown a lean dead beat observer implementation is
possible. By using the weight vectors wi from (12) it can
be directly translated to a dead beat observer by using the
following observer equations [1]:

zk+1 = Gzk + Hu,k + Lyk

rk = −ozk + vyk + quk

with

T =


wT

i,1 wT
i,2 . . . wT

i,s−1 wT
i,s

wT
i,2 . . . . . . wT

i,s 0
... . . . . . .

...
...

wT
i,s 0 . . . . . . 0




C
CA

...
CAs−1



L0 = −

 wT
i,1
...

wT
i,s−1

 ,G0 =


0 0 . . . 0
1 0 . . . 0
... . . .

. . .
...

0 . . . 0 1


G = [G0 g],L = L0 −wT

i,sg,g = 0,

o = [0 . . . 0 1],v = wT
i,s (19)

and together with the relations H = TB − LD and
q = −vD the observer is defined completely where wT

i =

Fig. 11. Test vehicle FPEV2 Kanon at Hori Fujimoto Laboratory

Fig. 12. Lateral tire force sensor (NSK Ltd.)

[wT
i,0, . . . ,w

T
s,0] is the weight vector for each residual as

defined in (12).
Together with the computational efficient computation of the

residuals, there must be regions in the feature space defined
where a single fault can be isolated, even if there is noise
affecting the sensors and other sensors are slightly biased
or affected by some negligible error. Since the noise effect
is whitened it can be represented as a circle in the feature
space. By defining what error on the sensors is tolerable,
regions in the feature space can be determined -by simply
varying a single fault and define the area due to the allowed
inaccuracy of the other sensors and the noise of all sensors-,
where unambiguously a single sensor failure can be detected.
If the residual vector in the feature space falls in the part of a
single fault region, which is not an intersection with another
single fault region (Fig. 7), the failure can be isolated.

VI. SIMULATION AND EXPERIMENT RESULTS

The method has been applied to a test vehicle in a simulation
and an experimental setup as shown in Fig. 11. The lateral tire
force sensor as shown in Fig. 12 has been used on all 4 wheels.
The vehicle describing parameters were m = 880kg, Jz =
560kgm

s2 , lf = 0.999m, lr = 0.701m and lw = −0.3m. The
vehicle has been considered during a cornering manoeuvre
with radius r = 20m beginning from speed 0 km/h to roughly
36 km/h and the different signal sensor faults artificially
added to the measurement signals (compare Fig. 1). It has
been assumed that the single faults occurred at a certain time
t = 15s and grows from 0 to its maximal value linearly
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Fig. 8. Left: Simulation results (without noise) with artificially added single sensor failures (drift), their representation (middle) in the feature space and the
estimated sensor fault (Faults occuring at t = 15s). The left diagrams show the disturbed signals (red) together with the correct signals (blue). The yaw rate
sensor failure reconstruction is not possible for a constant failure as it is applied in this case (only at the beginning).

Fig. 9. Experimental results with artificially added single sensor failures (drift), their representation (right) in the feature space (Faults occuring at t = 15s,
blue vertical line shows time instant, when error is detected). The left diagrams show the disturbed signals (red) together with the correct signals (blue).

within 125ms, remains fixed at the maximal value and acts
as a bias to the measurement signal. The fault detection
and isolation scheme has been implemented with residual
observers (sampling time has been set to 10ms) and then the

filtered residuals (with cut-off frequency of 10Hz5) mapped
to the feature space according to (16), (17) and (18), where

5This cut off frequency is a compromise between reducing noise power and
not increase detection time too much.
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Fig. 13. Overview of the RT implementation of the obs. based FDI scheme

a detector determined, if there is a single fault by making
out in which region the residual in the feature space lies.
The whole scheme (observers and detector) is implemented
very efficentely and runs in real time. w0 according to (2)
has been set to 3 rad

s . In Tab. II the maximum values of the
sensor faults are given together with the achieved detection
time in the simulation and experimental setup. Additionally
the assumed standard deviation of the noise of each sensor
are given together with the allowed where no alarm should be
given. Allowed bias and noise properties determine the region
in the feature spaces where an unambiguous failure detection
and isolation is possible.

In Fig. 8 and Fig. 9 the results are shown (single faulty
signals, feature space and reconstructed sensor error). The
chosen parameters allow for a detection and isolation of the
single sensor faults at a time, where (the vertical line in the
diagrams on the left side) the influence of the faulty signal is
still small enough to take countermeasures by the controller
(reconfiguration). Strong wind can be detected and in this case
no false alarm is given (Fig. 10). However the dimensionality
of the model does not allow to determine unambiguously a
single sensor fault in the case of crosswind.

VII. CONCLUSION

A scheme has been designed for lateral vehicle dynamics
of electric vehicle with lateral tire force sensors for fault
detection and isolation which uses ideas from classical parity
space approach by taking into account sensor noise and an
allowed bias or inaccuracy of the sensor. The scheme uses
only general vehicle describing parameters and not estimated
or very uncertain parameters like cornering stiffness values.
It can be embedded in a comprehensive FDI framework for
an EV. An additional sensor like a roll rate sensor would
allow for another degree of freedom that would mean that
the feature space would have dimensionality 3 instead of 2
allowing for creating residuals that are independent of two
sensor faults or 1 sensor fault and the influence of wind (if
the wind model reflects appropriately the reality). It should
now be enhanced to cover not only sensor errors for the
vehicle lateral dynamics, but also include additionally sensors
for longitudinal dynamics (together with actuator failures).

It is strongly anticipated that approaches like this together
with conventional sensor plausibility checks can contribute to
determine faults fast, isolate them and this knowledge be used
to prevent the EVs to become unsafe in case of a sensor or
actuator failure.
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APPENDIX

In Fig. 13 the implementation of the scheme is shown. The
algorithms are designed with MATLAB block diagrams, out
of this a real time version compiled and transferred to the
Autobox (DSPACE) RT system. The computational load for
the RT system is very low, the scheme has a sampling time
of 10ms.
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