A Fault Detection and Isolation Scheme for Lateral Vehicle Dynamics of EVs using a Quantitative Parity Space Approach

Alexander Viehweider
Dept. of Advanced Energy
Grad. School of Frontier Sc.
Hori Fujimoto Laboratory
The University of Tokyo
Kashiwa, Japan 277-8561
viehweider@ieee.org

Kanghyun Nam
Dept. of Electr. Engineering
Hori Fujimoto Laboratory
The University of Tokyo
Tokyo 113-8656, Japan
nam@hori.k.u-tokyo.ac.jp

Hiroshi Fujimoto
Dept. of Advanced Energy
Grad. School of Frontier Sc.
Hori Fujimoto Laboratory
The University of Tokyo
Kashiwa, Japan 277-8561
fujimoto@k.u-tokyo.ac.jp

Yoichi Hori
Dept. of Advanced Energy
Grad. School of Frontier Sc.
Hori Fujimoto Laboratory
The University of Tokyo
Kashiwa, Japan 277-8561
hori@k.u-tokyo.ac.jp

Abstract—Advanced control concepts for electric vehicles assume the correct functioning of sensors. In this contribution the problem of sensor failure detection and isolation in the case of lateral vehicle dynamics of EVs is tackled. The method depends on only basic vehicle parameters and assumes only a single failure in the vehicle system. A single sensor failure can be detected and the false alarm rate is minimized. The approach is based on the parity space method implemented with residual observers. Noise of sensors is taken into account and appropriate bounds in the feature space are derived in order to get a robust fault detection indicator. Simulation results and an experimental setup show the validity of the approach.

I. INTRODUCTION

Electric Vehicles (EVs) with In-Wheel-Motors (IWMs) and advanced sensors like Lateral Tire Force Sensors (LTFS) offer great advantages for the control of the vehicle dynamics. Lateral vehicle dynamics can become very precise and there are new opportunities for a real "3D" motion control scheme [10]. The high degree of freedom that an electric vehicle with 4 independent driven wheels and Active Front Steering (AFS) and Active Rear Steering (ARS) can be exploited in a very efficient way satisfying different constrains and optimality criteria at the same time [7] [13]. The use of lateral tire force sensors together with different acceleration and angle rate sensors allows to estimate unknown parameters and disturbances (cornering stiffness values, wind, …) affecting the vehicle. A comprehensive control scheme for an electric vehicle based on many but cheap sensors and a high degree of actuation (namely 6: 4 In Wheel Motor torques + AFS + ARS) increases performance, safety and comfort as described in [7], [12] and [13] and may also increase energy efficiency as in [8] and in [9]; it is worth to be discussed how sensor and actuator failures influence the control system performance and safety.

This contribution - as a first attempt to approach this topic - is based on the detection of failures of sensors that are essential for advanced EV lateral vehicle dynamics control. It is of utmost importance to detect sensor failures (failure detection: FD), to isolate them (failure isolation: FI) and to mitigate them (failure mitigation: FM), meaning to reduce the impact of the sensor failure as much as possible. The considered electric vehicle is equipped with LTFS, lateral acceleration sensor and yaw rate sensor (optionally the roll rate sensor). The problem in the Fault Detection and Isolation in advanced lateral electric vehicle dynamics control consists in detecting accurately a sensor fault under following conditions:

- Disturbances (like unknown cross wind force)
- Uncertain parameters (mass, yaw inertia, position of center of gravity, attack point of wind force)
- Noisy sensors (especially the force sensors are affected by heavy noise)

This problem has been approached before in [1], [3], [4] and others. Quantitative aspects in FD in the parity space have been introduced (amongst others) in [2]. A good introduction in the field of model-based fault diagnosis can be found in [5] and [14]. Due to the advent of economic LTFS in the near future it seems to be reasonable to develop FDI schemes that do not rely on the knowledge of the cornering stiffness values and the vehicle velocity as opposed to the aforementioned contributions. The proposed FDI method assumes the following:

- The approach should use only basic vehicle characteriz-
ing parameters and not parameters that are determined by estimation using sensor measurements and/or are highly time variant.

- It is assumed that only one sensor fails at a certain time. If there are no common mode causes this assumption seems to be reasonable since the probability of two sensors failing at the same time is very small or could be kept small by design.

- Cross wind affecting the vehicle should not lead to a false alarm.

In Fig. 1 the sensor concept is shown. The two front and the two rear LTF sensors are summed up to a total front and total rear lateral tire force sensor signal. This is reasonable since the important control variable for the controller are these overall forces and a discrimination within the two pair of sensors requires detailed knowledge about the road conditions for each wheel. The contribution is structured in the following way: Section II introduces the vehicle model, the FDI scheme is based on. In this particular model the lateral tire force measurements are considered as inputs and the other sensor measurements as outputs. Section III introduces the parity space and how to extract model input and output errors. Section IV deals with numeric implementation issues with residual observers and to regularize the effect of sensor noise on the detection and isolation scheme. Simulation results and experimental validations are given in section V and section VI gives short conclusions. The appendix gives on overview of the implementational issues and the computation effort needed.

II. VEHICLE MODELLING FOR LATERAL VEHICLE DYNAMICS SENSOR FAULT DETECTION

Due to the aforementioned requirements the vehicle model should be very basic and not contain derived parameters such as cornering stiffness values. By using the lateral tire forces as inputs and the other sensor values as outputs (Fig. 4) the describing equations are derived based on the kinetic relationship (Fig. 2). The influence of crosswind is summarized as a lateral force \(F_{w,y} \) acting at a certain distance \(l_w \) from the Center Of Gravity (COG) (Fig. 3) leading to:

\[
\begin{align*}
\dot{x} &= \begin{bmatrix} \dot{\gamma} \\ \dot{\phi} \end{bmatrix} = A_C x + B_C u + b_{C,0} + b_{C,w} F_{w,y} \\
y &= \begin{bmatrix} \gamma \\ a_y \\ \dot{\phi} \end{bmatrix}^T = Cx + Du + d_W F_{w,y}
\end{align*}
\]

with

\[
A_C = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -K_s & -C_s \end{bmatrix}, \quad B_C = \begin{bmatrix} \frac{J_z}{J_x} & -\frac{J_z}{J_x} \\ \frac{m \phi}{m_x} & \frac{m \phi}{m_x} \\ 0 & 0 \end{bmatrix},
\]

\[
b_{C,0} = \begin{bmatrix} 0 \\ \frac{J_z}{J_x} \end{bmatrix}, \quad b_{C,w} = \begin{bmatrix} \frac{l_w}{J_x} \\ 0 \end{bmatrix}, \quad u = \begin{bmatrix} F_{yf} \\ F_{yr} \end{bmatrix},
\]

\[
C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \quad D = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad d_w = \begin{bmatrix} 0 \\ 0 \end{bmatrix},
\]

where \(m, m_S \) is the vehicle and vehicle sprung mass, \(h_s \) the height of the roll center, \(J_z, J_x \) the yaw and roll inertia, \(K_{phi}, C_{phi} \) the roll stiffness and roll damping and \(M_z, M_x \) is the yaw and roll moment due to IWMs.

In the case of the yaw rate this simple model would lead to an open loop integration. Therefore it is advisable to use the filtered signal \(\gamma^* \) which can be derived from the real yaw rate \(\gamma \):

\[
\gamma^* = F(s) \gamma = \frac{s}{s + \omega_0} \gamma
\]
with an appropriately chosen w_0.

If one does not use the roll rate sensor as additional information, the model is reduced to:

\[
\dot{x} = \begin{bmatrix} \gamma^* \\ a_y \end{bmatrix} = A_C x + B_C u + b_{C,0} + b_{C,w} F_{w,y} \\
 y = \begin{bmatrix} \gamma^* \\ a_y \end{bmatrix} = C x + D u + d_w F_{w,y}
\]

(3)

with

\[
A_C = \begin{bmatrix} -w_0 \\ \frac{M_s}{I_x} & -\frac{M_s}{I_y} \end{bmatrix},
B_C = \begin{bmatrix} \frac{1}{J_x} & 0 \\ 0 & \frac{1}{J_y} \end{bmatrix},
\]

\[
b_{C,0} = \begin{bmatrix} \frac{M_s}{J_x} \\ 0 \end{bmatrix}, b_{C,w} = \begin{bmatrix} \frac{1}{m} \\ 0 \end{bmatrix},
\]

\[
C = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, D = \begin{bmatrix} 0 & 0 \\ \frac{1}{m} & \frac{1}{m} \end{bmatrix},
d_w = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.
\]

This means a model with four inputs $r = 4$ (lateral tire forces, unknown wind force and additional yaw moment), one state $n = 1$ and two outputs $m = 2$ is obtained. In order to use the parity space model this model is approximated in discrete time and the following description of the system obtained:

\[
x_{k+1} = A x_k + B u_k + b_0 + b_w F_{w,y,k}
\]

\[y_k = C x_k + D u_k + d_w F_{w,y,k} + f_{sk} + n_k,
\]

(4)

where f_{sk} contains the sensor errors of the γ^* and a_y sensor and n_k additional sensor noise at time instant k.

III. Introducing Parity Space Approach

The definition of the residuals in the parity space is used here for fault detection and isolation. If one collects $s + 1$ samples (s is the dimension of the parity space) into the vectors U, Y_m, U_w.

\[
U = \begin{bmatrix} u_{k-s} \\ \vdots \\ u_k \end{bmatrix},
Y_m = \begin{bmatrix} y_{k-s} \\ \vdots \\ y_k \end{bmatrix},
X_m = \ldots,
\]

\[
U_w = \begin{bmatrix} F_{w,k-s} \\ \vdots \\ F_{w,k} \end{bmatrix},
F_s = \begin{bmatrix} f_{sk-s} \\ \vdots \\ f_{sk} \end{bmatrix},
N_s = \ldots
\]

(5)

the measured sensor signals can be described as following:

\[
Y_m = RX + QU + Q_w U_w + F_s + N_s
\]

\[
(6)
\]

\(^3\)for example by using the Tustin discretization method.

\(^4\)s ≥ 2 for the use of the model with the roll rate sensor and s ≥ 1 for the model without roll rate sensor.
Fig. 6. Fault directions in the feature space (x, y) (1: $f_{s1} = \Delta a_y$, 2: $f_{s2} = \Delta \gamma^*$, 3: $\Delta u_1 = \Delta F_{yf}$, 4: $\Delta u_2 = \Delta F_{yr}$, 5: F_w)

with

$$
F_1 \frac{(s+1)m \times (s+1)m}{2} = (f_{ij}), f_{ij} = \begin{cases}
1 & \text{if } i = 2j - 1 \\
0 & \text{elsewhere,}
\end{cases}
$$

$$
F_2 \frac{(s+1)m \times (s+1)m}{2} = (f_{ij}), f_{ij} = \begin{cases}
1 & \text{if } i = 2j \\
0 & \text{elsewhere,}
\end{cases}
$$

$$
\begin{align*}
\mathbf{w}_1 &= \begin{bmatrix} w_{11}^* & 0 & w_{12}^* & 0 & \cdots & 0 \end{bmatrix}, \\
\mathbf{w}_2 &= \begin{bmatrix} 0 & w_{21}^* & 0 & w_{22}^* & \cdots & 0 \end{bmatrix}, \\
Q_1 &= \begin{bmatrix} q_1 & 0 & q_3 & 0 & \cdots \end{bmatrix}, \\
Q_2 &= \begin{bmatrix} 0 & q_2 & 0 & q_4 & \cdots \end{bmatrix}.
\end{align*}
$$

The so called fault coding set can be seen in Tab. I (1 means that the corresponding residual is influenced by the fault, 0 no influence). Each residual is independent of one of the sensor errors or the influence of the wind disturbance. More independence is not possible due to the dimensions of the state space n, inputs r and outputs m [5].

IV. QUANTITATIVE PARITY SPACE APPROACH

As can be seen in Tab. 1 from the residual binary fault signature a single failure of a sensor can be determined. However, in real life operation it does not suffice to determine which residual is activated ($\neq 0$) or not (0) and to use this information to isolate the single fault due to sensor noise and some allowed small bias of the sensor; a more robust method is to examine the quantitative influence of a static single fault on the residuals:

$$
S_0 = \begin{bmatrix}
\frac{\partial r_1}{\partial f_{s1}} & \frac{\partial r_1}{\partial f_{s2}} & \frac{\partial r_1}{\partial \Delta u_1} & \frac{\partial r_1}{\partial \Delta u_2} & \frac{\partial r_1}{\partial F_w} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\frac{\partial r_1}{\partial f_{s1}} & \frac{\partial r_1}{\partial f_{s2}} & \frac{\partial r_5}{\partial \Delta u_1} & \frac{\partial r_5}{\partial \Delta u_2} & \frac{\partial r_5}{\partial F_w} \\
\end{bmatrix}
$$

(13)

This linear mapping from the fault to the residuals cannot be directly used to recover the single faults since it has not full rank. Actually in the case (3) approach it has only rank 2, this means that the 5 dimensional space of residuals can be mapped into a 2 dimensional space without loss of information and the fault detection and isolation be done within a two dimensional space by appropriate partitioning of this space and use of the single failure assumption.

If one considers sensors affected by noise then the covariance matrix of the noise affecting the residual vector can be described in dependence of the covariance matrix of the sensors and the matrices Q, W according to (11):

$$
R_n = W^T (R_S + Q R_U Q^T) W
$$

with

$$
W = [w_1 \ w_2 \ w_3 \ w_4 \ w_5],
$$

(14)

where R_S is the covariance matrix of the sensors (the yaw rate and lateral acceleration sensor) and R_U is the covariance matrix of the actuators (the lateral tire force sensors) in the parity space (compare (5)). In order to whitening the noise [11] the following decomposition of the effective noise covariance is suggested

$$
R_n = PP^T
$$

(15)

and the following transformation of the residual vector r

$$
r_{wh} = P^{-1}r = Sr.
$$

(16)

For the steady state (constant fault vector $f^T = [f_{s1}, f_{s2}, \Delta u_1, \Delta u_2, F_w]$) the following relationship between the fault vector and the signal r_{wh} holds:

$$
r_{wh} = Gf = Sr = SS_0f.
$$

(17)

Since the matrix G has rank 2, the action of the matrix can be represented with coordinates (x, y) in a two dimensional space (which is called feature space here) by taking for example the two first column as coordinate axis and therefore leading to new coordinates:

$$
[r_{wh}^T]_2 = (W_f G(:, 1:2))^T f,
$$

(18)

where W_f is a matrix that weights the single faults. In Fig. 6 the single fault directions with vehicle parameters as given in section VI are indicated. It can be seen that under the noise assumptions and slight sensor deviations the ability of the
<table>
<thead>
<tr>
<th>Fault</th>
<th>max value</th>
<th>det. time simulation</th>
<th>det. time experiment</th>
<th>assumed σ_n</th>
<th>allowed bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δa_y</td>
<td>0.6 m/s2</td>
<td>0.12 s</td>
<td>0.16 s</td>
<td>0.283 m/s2</td>
<td>0.07 m/s2</td>
</tr>
<tr>
<td>$\Delta \gamma$</td>
<td>0.22 m/s2</td>
<td>0.05 s</td>
<td>0.04 s</td>
<td>0.01 m/s2</td>
<td>0.03 m/s2</td>
</tr>
<tr>
<td>ΔF_{yF}</td>
<td>300 N</td>
<td>0.13 s</td>
<td>0.12 s</td>
<td>100 N</td>
<td>10 N</td>
</tr>
<tr>
<td>ΔF_{yr}</td>
<td>300 N</td>
<td>0.13 s</td>
<td>0.14 s</td>
<td>100 N</td>
<td>10 N</td>
</tr>
<tr>
<td>ΔF_y</td>
<td>300 N</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>80 N</td>
</tr>
</tbody>
</table>

TABLE II

SINGLE SENSOR FAULTS (MAXIMAL VALUES)

![Fig. 11. Test vehicle FPEV2 Kanon at Hori Fujimoto Laboratory](image1)

Fig. 11. Test vehicle FPEV2 Kanon at Hori Fujimoto Laboratory

scheme to detect the failure is reduced. In the next section the regions in this detection scheme where a sensor failure can be detected in an unambiguous way are determined.

V. LEAN RESIDUAL DEAD BEAT OBSERVER IMPLEMENTATION AND NUMERICAL ISSUES

The implementation of the fault detection and isolation scheme requires a high amount of computation. However as [1] has shown a lean dead beat observer implementation is possible. By using the weight vectors w_i from (12) it can be directly translated to a dead beat observer by using the following observer equations [1]:

$$z_{k+1} = Gz_k + Hu_k + Ly_k$$

$$r_k = -oz_k + vy_k + qu_k$$

with

$$T = \begin{bmatrix} w_{1,1}^T & w_{1,2}^T & \cdots & w_{1,s-1}^T & w_{1,s}^T \\ w_{2,1}^T & \cdots & \cdots & \cdots & \cdots \\ \vdots & \cdots & \cdots & \cdots & \cdots \\ w_{s,1}^T & \cdots & \cdots & \cdots & 0 \end{bmatrix} \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{s-1} \end{bmatrix}$$

$$L_0 = - \begin{bmatrix} w_{1,1}^T \\ \vdots \\ w_{1,s-1}^T \end{bmatrix}, G_0 = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

$$G = [G_0 \ g], L = L_0 - w_{1,s}^T g, g = 0,$$

$$o = [0 \ \cdots \ 0 \ 1], v = w_{1,s}^T$$

(19)

and together with the relations $H = TB - LD$ and $q = -vD$ the observer is defined completely where $w_i = [w_{i,0}^T, \ldots, w_{i,s}^T]$ is the weight vector for each residual as defined in (12).

Together with the computational efficient computation of the residuals, there must be regions in the feature space defined where a single fault can be isolated, even if there is noise affecting the sensors and other sensors are slightly biased or affected by some negligible error. Since the noise effect is whitened it can be represented as a circle in the feature space. By defining what error on the sensors is tolerable, regions in the feature space can be determined -by simply varying a single fault and define the area due to the allowed inaccuracy of the other sensors and the noise of all sensors-, where unambiguously a single sensor failure can be detected. If the residual vector in the feature space falls in the part of a single fault region, which is not an intersection with another single fault region (Fig. 7), the failure can be isolated.

VI. SIMULATION AND EXPERIMENT RESULTS

The method has been applied to a test vehicle in a simulation and an experimental setup as shown in Fig. 11. The lateral tire force sensor as shown in Fig. 12 has been used on all 4 wheels. The vehicle describing parameters were $m = 880 kg, J_z = 560 kgm^2$, $l_f = 0.999 m$, $l_r = 0.701 m$ and $l_w = -0.3 m$. The vehicle has been considered during a cornering manoeuvre with radius $r = 20 m$ beginning from speed $0 km/h$ to roughly $36 km/h$ and the different signal sensor faults artificially added to the measurement signals (compare Fig. 1). It has been assumed that the single faults occurred at a certain time $t = 15 s$ and grows from 0 to its maximal value linearly.
within 125 ms, remains fixed at the maximal value and acts as a bias to the measurement signal. The fault detection and isolation scheme has been implemented with residual observers (sampling time has been set to 10 ms) and then the filtered residuals (with cut-off frequency of $10 Hz$) mapped to the feature space according to (16), (17) and (18), where

\footnote{This cut off frequency is a compromise between reducing noise power and not increase detection time too much.}
a detector determined, if there is a single fault by making out in which region the residual in the feature space lies. The whole scheme (observers and detector) is implemented very efficiently and runs in real time. \(\nu_0 \) according to (2) has been set to \(\frac{3}{100} \). In Tab. II the maximum values of the sensor faults are given together with the achieved detection time in the simulation and experimental setup. Additionally the assumed standard deviation of the noise of each sensor are given together with the allowed where no alarm should be given. Allowed bias and noise properties determine the region in the feature spaces where an unambiguous failure detection and isolation is possible.

In Fig. 8 and Fig. 9 the results are shown (single faulty signals, feature space and reconstructed sensor error). The chosen parameters allow for a detection and isolation of the single sensor faults at a time, where (the vertical line in the diagrams on the left side) the influence of the faulty signal is still small enough to take countermeasures by the controller (reconfiguration). Strong wind can be detected and in this case no false alarm is given (Fig. 10). However the dimensionality of the model does not allow to determine unambiguously a single sensor fault in the case of crosswind.

VII. CONCLUSION

A scheme has been designed for lateral vehicle dynamics of electric vehicle with lateral tire force sensors for fault detection and isolation which uses ideas from classical parity space approach by taking into account sensor noise and an allowed bias or inaccuracy of the sensor. The scheme uses only general vehicle describing parameters and not estimated or very uncertain parameters like cornering stiffness values. It can be embedded in a comprehensive FDI framework for an EV. An additional sensor like a roll rate sensor would allow for another degree of freedom that would mean that the feature space would have dimensionality 3 instead of 2 allowing for creating residuals that are independent of two sensor faults or 1 sensor fault and the influence of wind (if the wind model reflects appropriately the reality). It should now be enhanced to cover not only sensor errors for the vehicle lateral dynamics, but also include additionally sensors for longitudinal dynamics (together with actuator failures).

It is strongly anticipated that approaches like this together with conventional sensor plausibility checks can contribute to determine faults fast, isolate them and this knowledge be used to prevent the EVs to become unsafe in case of a sensor or actuator failure.

ACKNOWLEDGMENT

This research has been made possible partly by a JSPS (Japan Society for the Promotion of Science) fellowship and a kakenhi grant with number 23-00760. It was supported by the Industrial Technology Research Grant Program from the New Energy and Industrial Technology Development Organization (NEDO) of Japan (number 05A48701d), and by the Ministry of Education, Culture, Sports, Science and Technology grant (number 22246057).

The authors acknowledge the helpful comments from the anonymous reviewers.

REFERENCES

APPENDIX

In Fig. 13 the implementation of the scheme is shown. The algorithms are designed with MATLAB block diagrams, out of this a real time version compiled and transferred to the Autobox (DSPACE) RT system. The computational load for the RT system is very low, the scheme has a sampling time of 10ms.