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Abstract—Bi-articular actuators — actuators that span two
joints — are rising interest in robot application because they
increase stability, optimize force production, and reduce the
non-linearity of the end effector force as a function of force
direction. In this paper, we propose an approach to resolve
actuator redundancy for bi-articularly actuated robot arms in
which the three actuators produce maximum joint actuator
torques that differs among each other. A closed form solution
based on the infinity norm is derived. The proposed infinity
norm based approach is compared with the conventional 1-norm
and 2-norm based methods. Under the same actuator limitations,
the maximum end effector force produced with the proposed
method is significantly greater than the one produced by the
conventional methods. The proposed closed form solution is
suitable for redundant systems with three inputs and two outputs,
bringing the advantage of an higher maximum output without
the need for iterative algorithms.

I. INTRODUCTION

Robot arms presenting animal musculo-skeletal characteris-
tics such as bi-articular actuators — actuators that span two
joints — have been proposed for more than two decades [1].
In recent years there has been increasing attention on such
animal inspired robot arms, both in hardware and control
design aspects.Regarding the hardware design, bi-articularly
actuated robots have been realized by means of pneumatic
actuators [2], [3], and motors with transmissions systems based
on pulleys [4], [5], planetary gears , [6], [7], wires [8], [9],
and passive springs [10], [11].

All these robots are driven by more actuators than joints,
resulting therefore in actuator redundancy. In order to resolve
the actuator redundancy problem due to the presence of bi-
articular actuators, many approaches have been proposed.

In [12] several animal inspired approaches such as fa-
tigue minimization, muscle force minimization, total muscle
metabolic energy consumption, total muscle stress minimiza-
tion are compared among each others. Among these ap-
proaches, the muscle force minimization [13] is implemented
on robot applications using the 1−norm.

Approaches based on pseudo-inverse matrices are used in
the control design for kinematically redundant robot arm
[14], [15]. Pseudo-inverse matrices are also used for actuator
redundancy resolution [5], [16]. Moore-Penrose is the simplest
pseudo-inverse matrix, and correspond to the minimization of
the euclidean norm (2−norm) [17].

Iterative algorithms based on ∞−norm optimization criteria
have been used to resolve redundancy in kinematically redun-
dant robot arms [18], [19]. In this paper the ∞−norm norm
is used to resolve the actuator redundancy for bi-articularly
actuated robot arms. Differently from our previous work [20],
the here proposed ∞−norm based approach is extended also
to the case in which the three actuators produce different
maximum joint actuator torque among each other. A closed
form solution based on a piecewise linear function for the
infinity norm approach is proposed. The ∞− norm approach
allows to minimize the necessary maximum torque at each
joint for a given force at end effector. Therefore it is an
approach to optimize actuators design for robot arm equipped
with by bi-articular actuators.

In addition, the proposed ∞−norm is analytically compared
with the traditional 1− norm and 2− norm approaches both
in terms of joint actuator input torques and maximum output
force at the end effector.

In Section II main features and statics of robot arms
equipped with bi-articular actuators are described. Then, in
Section III, three approaches for torque distribution resolution
— minimization of muscle force (1− norm), 2− norm and
∞−norm — are introduced. In Section IV the characteristics
of 1−norm, 2−norm and ∞−norm approaches are analyzed
in terms of joint actuator input torques and maximum output
force at the end effector. Finally, in Section V, the advantages
of the proposed optimization criteria are summarized.

II. CHARACTERISTICS AND MODELING OF ROBOT ARM
WITH BI-ARTICULAR ACTUATORS

In conventional robot arms each joint is driven by one
actuator. On the contrary, animal limbs present a complex
musculoskeletal structure based on two types of muscles:

1) Monoarticular: the contraction of one of these muscles
produces a torque on one joint.

2) Bi-articular: the contraction of one of these muscles
produces the same torque on two consecutive joints
at the same time. Gastrocnemius is an example of bi-
articular muscle in the human leg.

A simplified model of the complex animal musculoskeletal
system is shown in Fig. 1. This model is based on 6 contractile
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Fig. 1. Two-link arm with four mono- and two bi-articular muslces: model
and resulting forces at the end effector

actuators — extensors (e1, e2 and e3) and flexors (f1, f2 and
f3) — coupled in three antagonistic pairs:

• e1–f1 and e2–f2: couples of mono-articular actuators that
produce torques about joint 1 and 2, respectively.

• e3–f3: couple of bi-articular actuators that produce torque
about joint 1 and 2 contemporaneously.

Robot arms driven by bi-articular actuators have numerous
advantages: dramatical increase in range of end effector
impedance which can be achieved without feedback [1], re-
alization of path tracking and disturbance rejection using just
feedforward control [21], improvement of balance control for
jumping robots that do not use force sensors [22]. Moreover,
multi-joints actuators such as tri-articular actuators, increase
the efficiency in the output force for robot arm [4]. Another
advantage of robot arm equipped with bi-articular actuators
is the ability to produce a more homogeneously distributed
maximum output force at the end effector [20], [23].

III. ACTUATOR REDUNDANCY PROBLEM AND
RESOLUTION METHODS

The resulting statics of the bi-articularly actuated arm of
Fig. 1 are shown in Fig. 2, where:

T1 = τ1 + τ3 (1)
T2 = τ2 + τ3 (2)

• The total torques about joint 1 and 2 are T1 and T2,
respectively.

• The torques produced by mono-articular actuators about
joints 1 and 2 are τ1 and τ2, respectively. They are
calculated from the actuator input forces ei and fi for
i = (1,2) as:

τ1 = ( f1 − e1)r (3)

τ2 = ( f2 − e2)r (4)

where r is the distance between the joint axis and the
point where the muscle force is applied, consider to be
the same for all the muscles and all joint angles.
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Fig. 2. Statics of two-link arm with four mono- and two bi-articular actuators

• The bi-articular torque produced about both joints is τ3:

τ3 = ( f3 − e3)r (5)

• F is a general force at the end effector with magnitude
F and direction θ f .

A two-link robot arm with the statics shown in Fig. 2
presents actuator redundancy. Given τ1, τ2, and τ3, it is pos-
sible to determine T , and therefore F by using the Jacobian:[

T1
T2

]
= JT

[
Fx
Fy

]
(6)

where

J =

[
−l1sin(θ1)− l2sin(θ1 +θ2) −l2sin(θ1 +θ2)
l1cos(θ1)+ l2cos(θ1 +θ2) l2cos(θ1 +θ2)

]
(7)

and Fx and Fy are the orthogonal projection of F on the x-axis
and y-axis, respectively.

On the other hand, given F , and therefore T , it is generally
not possible to determine uniquely τ1, τ2, and τ3 (see (1) and
(2)) due to the actuator redundancy. The problem represented
by (1) and (2) is referred in the following as the redundancy
actuator problem.

A. 1−norm approach

The actuator redundancy is resolved using the 1−norm by
solving the following problem:

min
(
|τ1|
τm

1
+ |τ2|

τm
2
+ |τ3|

τm
3

)
s.t. T1 = τ1 + τ3

T2 = τ2 + τ3

(8)

where τm
i , i = (1,2,3) is the maximum joint actuator torque

that the actuator i can produce. The problem is solved using
an iterative algorithm. Software tools as MATLAB can solve
such problems.



B. 2-norm based approach

The actuator redundancy is resolved using the 2−norm by
solving the following problem:

min
√

(τ1)
2

(τm
1 )2 +

(τ2)
2

(τm
2 )2 +

(τ3)
2

(τm
3 )2

s.t. T1 = τ1 + τ3
T2 = τ2 + τ3

(9)

The solution of the problem expressed by (9) is:

τ1 =
(T1 −T2)(τm

1 )
2(τm

3 )
2 +T1(τm

1 )
2(τm

2 )
2

(τm
1 )

2(τm
2 )

2 +(τm
1 )

2(τm
3 )

2 +(τm
2 )

2(τm
3 )

2 (10)

τ2 =
T2(τm

1 )
2(τm

2 )
2 +(T2 −T1)(τm

2 )
2(τm

3 )
2

(τm
1 )

2(τm
2 )

2 +(τm
1 )

2(τm
3 )

2 +(τm
2 )

2(τm
3 )

2 (11)

τ3 =
T1(τm

2 )
2(τm

3 )
2 +T2(τm

1 )
2(τm

3 )
2

(τm
1 )

2(τm
2 )

2 +(τm
1 )

2(τm
3 )

2 +(τm
2 )

2(τm
3 )

2 (12)

Proof of (10), (11), and (12) is reported in Appendix A.
If τm

1 = τm
2 = τm

3 the solution becomes [20]:

τ1 =
2
3

T1 −
1
3

T2 (13)

τ2 =−1
3

T1 +
2
3

T2 (14)

τ3 =
1
3

T1 +
1
3

T2 (15)

C. Infinity norm based approach

The actuator redundancy is resolved using the ∞−norm by
solving the following problem:

min max
(
|τ1|
τm

1
,
|τ2|
τm

2
,
|τ3|
τm

3

)
s.t. T1 = τ1 + τ3

T2 = τ2 + τ3

(16)

The fact that three torque values are scaled by the respective
maximum torque guarantees that the solution, when exists,
does not violate any of the three constraints:

−τm
1 ≤ τ1 ≤ τm

1 (17)
−τm

2 ≤ τ2 ≤ τm
2 (18)

−τm
3 ≤ τ3 ≤ τm

3 (19)

Let us define:

c1 =
τm

3 − τm
1

τm
3 + τm

2
(20)

c2 =
τm

3 + τm
2

τm
3 + τm

1
(21)

c3 =
τm

3 − τm
2

τm
3 + τm

1
(22)

The three parameters c1, c2, and c3 are defined for any
maximum joint actuator torque, and are constant. A closed
form solution of the problem (16) is determined on the basis

of the values of T1 and T2 as follows:

τ1 =


(T1 −T2)

τm
1

τm
1 +τm

2
if case1

T1 −T2
τm

3
τm

2 +τm
3

if case2

T1
τm

1
τm

1 +τm
3

if case3

(23)

τ2 =


(T2 −T1)

τm
2

τm
1 +τm

2
if case1

T2
τm

2
τm

2 +τm
3

if case2

T2 −T1
τm

3
τm

1 +τm
3

if case3

(24)

τ3 =


T1τm

2 +T2τm
1

τm
1 +τm

2
if case1

T2
τm

3
τm

2 +τm
3

if case2

T1
τm

3
τm

1 +τm
3

if case3

(25)

where

case1 = (T1 ≤ c1T2 and T2 ≥ c3T1)

or (T1 > c1T2 and T2 < c3T1)

case2 = (T1 ≥ c1T2 and T2 ≥ c2T1)

or (T1 < c1T2 and T2 < c2T1)

case3 = (T2 ≤ c2T1 and T2 ≥ c3T1)

or (T2 > c2T1 and T2 < c3T1)

Proof of (23), (24), and (25) is reported in Appendix B.
It is trivial to verify that the three linear piecewise func-

tions (23), (24), and (25) are continuous in all the domain
D = (T1,T2).

In summary, the values of τ1, τ2, and τ3 that produce a
given F at the end effector, are determined as follows:

1) Calculate the desired joint torques T = JTF .
2) According to calculated T1 and T2, the three desired joint

actuator torques are directly determined using the three
piecewise linear function (23), (24), and (25).

When all the actuators produce the same maximum joint
actuator torque, that is τm

1 = τm
2 = τm

3 , c1 = c3 = 0 and c2 = 1,
and the solution becomes as in the following [20]:

τ1 =


T1−T2

2 if T1T2 ≤ 0
T1 −

T2
2 if T1T2 > 0 and |T1| ≤ |T2|

T1
2 if T1T2 > 0 and |T1|> |T2|

(26)

τ2 =


T2−T1

2 if T1T2 ≤ 0
T2
2 if T1T2 > 0 and |T1| ≤ |T2|

T2 −
T1
2 if T1T2 > 0 and |T1|> |T2|

(27)

τ3 =


T1+T2

2 if T1T2 ≤ 0
T2
2 if T1T2 > 0 and |T1| ≤ |T2|
T1
2 if T1T2 > 0 and |T1|> |T2|

(28)

IV. RESULTS

In the following a two-links robot arm with l1 = 15 m and
l2 = 12 m is taken into account. The maximum joint actuator
torques are τm

1 = 16 N, τm
2 = 14 N, and τm

3 = 18 N.
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Fig. 3. Comparison of joint actuators torque inputs among 1−norm, 2−norm
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A. Joint actuator torques comparison

Fig. 3 shows a comparison of actuator joint torques input
for three actuator redundancy resolution methods, 1− norm,
2 − norm and ∞−norm. The desired output is an output
force F at the end effector with magnitude 1 N in all the
directions for θ2 = 90◦. The compared values are |τ1|

τm
1

+

|τ2|
τm

2
+ |τ3|

τm
3

(Fig. 3(b)),
√

(τ1)
2

(τm
1 )2 +

(τ2)
2

(τm
2 )2 +

(τ3)
2

(τm
3 )2 (Fig. 3(c)), and

max
(
|τ1|
τm

1
,
|τ2|
τm

2
,
|τ3|
τm

3

)
(Fig. 3(d)).

The advantage of 1− norm approach is that requires the
lowest sum of actuator joint torques (Fig. 3(b)). The advantage
of ∞−norm is that allows to minimize the maximum actuator
joint torques (Fig. 3(d)). 2−norm is in between the other two
approaches. The same results can be obtained for θ2 6= 90◦.

B. Maximum output force

Fig. 4 shows the maximum output force at end effector
for θ2 = (30,60,90,120,150◦). Given the same maximum
actuator joint torques ∞−norm can produce the greatest force
at end effector. This is the great advantage of the ∞− norm
approach. 1− norm produces the lower output force, while
2−norm is in between the other two approaches.

V. CONCLUSIONS

In this paper, we propose an approach to resolve actuator
redundancy for bi-articularly actuated robot arms in which the
three actuators produce maximum joint actuator torques that
differs among each other. Moreover, the proposed ∞−norm
based approach is compared with the muscle force mini-
mization approach (1 − norm) and with the Moore-Penrose
pseudoinverse matrix (2−norm) approaches. Main results are:

• The proposed ∞−norm approach allows the maximiza-
tion of output force at the end effector.

• The 1−norm approach minimizes the total muscle force
input, but the maximum force space is the smallest. If
a circular output force the end effector is desired, this
approach requires the highest joint actuator torque.

• The 2 − norm approach is in between 1 − norm and
∞−norm in terms of both maximum force space and
total torque input.
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APPENDIX A
PROOF OF CLOSED FORM SOLUTION FOR THE 2-NORM

APPROACH

The problem expressed by (9) is written for a simpler
notation as:

min
√

(x)2

(mx)2 +
(y)2

(my)2 +
(z)2

(mz)2

s.t. T1 = x+ z
T2 = y+ z

(29)

where T1 and T2 are the desired joint torques (known),
x, y, and z are the desired joint actuator torques τ1, τ2,
and τ3 (unknown), respectively; mx = τm

1 , my = τm
2 , and

mz = τm
3 . Taking into account R3, the solution (x, y, z) which

satisfy
√

(x)2

(mx)2 +
(y)2

(my)2 +
(z)2

(mz)2 has to meet the following three

requirements:
1) To be on the line defined by

T1 = x+ z (30)
T2 = y+ z (31)

2) To be on the ellipsoid surface defined by:

x2

mx2 +
y2

my2 +
z2

mz2 = k (32)

where k is a constant.
3) The plane passing through the line defined by (30) and

(31) has to be tangent to the ellipsoid defined by (32).
Hence:

1
mx2

∂x2

∂x
+

1
my2

∂y2

∂y
+

1
mz2

∂ z2

∂ z
= 0 (33)

Combining (30), (31), (32), (33) straightforward follows the
solution of the problem (29):

x =
(T1 −T2)mx2mz2 +T1mx2my2

mx2my2 +mx2mz2 +my2mz2 (34)

y =
T2mx2my2 +(T2 −T1)my2mz2

mx2my2 +mx2mz2 +my2mz2 (35)

z =
T1my2mz2 +T2mx2mz2

mx2my2 +mx2mz2 +my2mz2 (36)

Equations (34), (35), and (36) correspond to (10), (11), and
(12), respectively.

APPENDIX B
PROOF OF CLOSED FORM SOLUTION FOR THE

INFINITY-NORM APPROACH

The problem expressed by (16) is written for a simpler
notation as:

min max
(

|x|
mx ,

|y|
my ,

|z|
mz

)
s.t. T1 = x+ z

T2 = y+ z
(37)

where T1 and T2 are the desired joint torques (known), x, y,
and z are the desired joint actuator torques τ1, τ2, and τ3
(unknown), respectively; mx = τm

1 , my = τm
2 , and mz = τm

3 .
A closed form solution of (37) is determined in the follow-

ing. The searched solution has to satisfy at least one of the
three equations |x|

mx =
|y|
my , |y|

my =
|z|
mz , |x|

mx =
|z|
mz . In fact, when one

of three variable’s absolute value decreases at least one of the
other two increases. Therefore for any solution of the system
with |x|

mx 6=
|y|
my 6=

|z|
mz it is possible to decrease the higher value

among the three so to be equal to at least one of the other two.
Therefore the searched solution is one among the following
six:

1) x
mx =− y

my
x+ z = T1
y+ z = T2

x
mx =− y

my

⇒


x = (T1 −T2)

mx
my+mx

y = (T2 −T1)
my

my+mx
z = T2 − (T2 −T1)

my
my+mx

(38)

2) y
my =

z
mz

x+ z = T1
y+ z = T2

y
my =

z
mz

⇒


x = T1 −T2

mz
my+mz

y = T2
my

my+mz
z = T2

mz
my+mz

(39)

3) x
mx = z

mz
x+ z = T1
y+ z = T2

x
mx = z

mz

⇒


x = T1

mx
mz+mx

y = T2 −T1
mz

mz+mx
z = T1

mz
mz+mx

(40)

4) x
mx = y

my
x+ z = T1
y+ z = T2

x
mx = y

my

⇒


x = (T2 −T1)

mx
my−mx

y = (T2 −T1)
my

my−mx
z = T2 − (T2 −T1)

my
my−mx

(41)

5) y
my =− z

mz
x+ z = T1
y+ z = T2

y
my =− z

mz

⇒


x = T1 −T2

mz
mz−my

y =−T2
my

mz−my
z = T2

mz
mz−my

(42)

6) x
mx =− z

mz
x+ z = T1
y+ z = T2

x
mx =− z

mz

⇒


x =−T1

mx
mz−mx

y = T2 −T1
mz

mz−mx
z = T1

mz
mz−mx

(43)

Let us define:

c1 =
mz−mx
mz+my

(44)

c2 =
mz+my
mz+mx

(45)

c3 =
mz−my
mz+mx

(46)

These values depend only on the hardware characteristics
of the arm, therefore are constant. Among the six possible
solutions the searched one is directly selected on the basis



of T1 and T2 as follows (the variable subscript represents the
respective equation number):

• If (T1 ≤ c1T1 and T2 ≥ c3T1) or (T1 > c1T2 and T2 < c3T1):∣∣∣x(38)

mx

∣∣∣= ∣∣∣∣y(38)

my

∣∣∣∣≥ ∣∣∣∣ z(38)

mz

∣∣∣∣ (47)

|x(38)| ≤|x(39)| (48)
|y(38)| ≤|y(40)| (49)
|x(38)| ≤|x(41)| (50)
|x(38)| ≤|x(42)|, if mz ≥ my (51)
|y(38)| ≤|y(42)|, if mz < my (52)
|x(38)| ≤|x(43)|, if mx ≥ mz (53)
|y(38)| ≤|y(43)|, if mx < mz (54)

Therefore solution is (38). In this case, τ1 in (23), τ2 in
(24), and τ3 in (25), are equal to x in (38), y in (38), and
z in (38), respectively.

• If (T1 ≥ c1T2 and T2 ≥ c2T1) or (T1 < c1T2 and T2 < c2T1):∣∣∣∣y(39)

my

∣∣∣∣= ∣∣∣∣ z(39)

mz

∣∣∣∣≥ ∣∣∣x(39)

mx

∣∣∣ (55)

|z(39)| ≤|z(38)| (56)
|y(39)| ≤|y(40)| (57)
|y(39)| ≤|y(41)|, if my ≥ mx (58)
|z(39)| ≤|z(41)|, if my < mx (59)
|y(39)| ≤|y(42)| (60)
|y(39)| ≤|y(43)|, if mx ≥ mz (61)
|z(39)| ≤|z(43)|, if mx < mz (62)

Therefore solution is (39). In this case, τ1 in (23), τ2 in
(24), and τ3 in (25), are equal to x in (39), y in (39), and
z in (39), respectively.

• If (T2 ≤ c2T1 and T2 ≥ c3T1) or (T2 > c2T1 and T2 < c3T1):∣∣∣x(40)

mx

∣∣∣= ∣∣∣∣ z(40)

mz

∣∣∣∣≥ ∣∣∣∣y(40)

my

∣∣∣∣ (63)

|z(40)| ≤|z(38)| (64)
|x(40)| ≤|x(39)| (65)
|x(40)| ≤|x(41)|, if mx ≥ my (66)
|z(40)| ≤|z(41)|, if mx < my (67)
|x(40)| ≤|x(42)|, if my ≥ mz (68)
|z(40)| ≤|z(42)|, if my < mz (69)
|x(40)| ≤|x(43)| (70)

Therefore solution is (40). In this case, τ1 in (23), τ2 in
(24), and τ3 in (25), are equal to x in (40), y in (40), and
z in (40), respectively.
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