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ABSTRACT: In this paper, by the fusion of GPS receiver and dynamic sensors, we design a double-layer estimator to 
obtain key states for active safety control system of electric vehicle. Using course angle from GPS and yaw rate from 
gyroscope, the first layer provides the estimation of sideslip angle and yaw angle. Utilizing the estimated sideslip angle and 
measured accelerations, the lateral and longitudinal velocities are estimated by the second layer. Kalman filter with 
disturbance accommodating technique considering the compensation of measurement delay of GPS is proposed. Estimated 
states are applied in two active safety controls. The former is the traction control based on slip ratio control of electric 
vehicle using sliding mode theory. The later is a lateral stability control system using direct yaw moment generated by in-
wheel motors and active front steering. 
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1. Introduction 

From the view of motion control, the remarkable advantages 
of in-wheel motors have opened a new era of active safety control 
of electric vehicle (EV) (1). One of the big challenges in active 
safety control is how to accurately obtain the key vehicle states. 
Sideslip angle is mandatory for lateral stability control, and 
longitudinal velocity is required for slip ratio calculation in 
traction control on slippery road. However, reliable sensors to 
measure such kind of vehicle motion information are not available 
at affordable costs. For instance, the optical sensor produced by 
Corrsys-Datron is only used for sideslip angle measurement in 
experiments at research institutes, but it cannot be equipped in 
commercial vehicle. For maintaining the reasonable cost of the 
control system, vehicle state estimator plays a very important role. 
Literature review shows that vehicle state estimation using on-
board dynamic sensors have been widely researched (2-4) and 
applied in active safety control system (5-6). However, the 
measurements of dynamic sensor such as gyroscope and 
accelerometers are often influenced by strong noise, bias, gravity 
on bank road, and the wind effect is also not properly captured. 
The variation of estimation model’s parameters like cornering 
stiffness which changes according to road condition is also a 
nontrivial problem. 

Since the last decade, GPS has been a candidate for vehicle 
state estimation. Besides the absolute positions of vehicle, GPS 
receiver can provide other measurements that cannot be obtain 
from dynamic sensors: velocity and attitude (course angle). By 
using double antenna GPS receiver, sideslip angle can be 
calculated directly without using vehicle model (7). This method is 
then applied in vehicle stability control system using braking 
and/or active steering (8). However, the main disadvantage of this 
method is the poor update rate of GPS receiver which is often less 
than 50 Hz. This method is not applicable for advanced motion 
control of EV in which the in-wheel motor can be controlled at 
high frequency of 1 kHz or more. In order to provide high rate 

estimation, the fusion of GPS receiver with dynamic sensor has 
been studied. For instance, the combination of GPS receiver with 
gyroscope (9) or magnetometer (10) was proposed for sideslip angle 
estimation. In these methods, the robustness of estimation under 
model uncertainties and external disturbances were not deeply 
examined. Moreover, the time delay of data transferred from GPS 
receiver is another challenge. 

In this paper, a vehicle state estimator using the fusion of 
single antenna GPS receiver and dynamic sensors is proposed. 
Kalman filter is developed as the core theory of the estimator. By 
treating the combination of model uncertainties and external 
disturbances as extended states, the robustness of state estimation 
is improved. The time delay of data from GPS receiver is handled 
by the reconstruction of measurement in current time. The 
estimator has two layers and can provide the key states for active 
safety control of EV: sideslip angle and yaw angle by the first 
layer, longitudinal and lateral velocities by the second layer. 
Using sliding mode theory, traction control of in-wheel motored 
EV is designed with wheel slip ratio calculated from estimated 
longitudinal velocity. Lateral stability control system using direct 
yaw moment and active front steering angle is designed based on 
the estimation of sideslip angle. Experiments are conducted to 
verify the proposed estimator and active safety control systems. 

 
Fig. 1. Experimental EV and GPS receiver. 
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2. Experimental electric vehicle 

2.1. Experimental setup 
 
A one seat micro EV named “supper capacitor COMS” is 

used for this research (Fig. 1). An optical sensor produced by 
Corrsys-Datron is installed in the front of vehicle. It can provide 
the measurement of sideslip angle, longitudinal velocity, and 
lateral velocity for comparing with the estimated values. The 
dynamic sensors including gyroscope and accelerometers are 
installed at the center of gravity of the vehicle. Encoders are used 
for obtaining the rotational velocity of the wheels and the steering 
angle. Vehicle control unit (VCU) with RT-Linux operating 
system is used to implement the estimation and control algorithm. 
The basic sampling time of the system is 1 millisecond which is 
the same as that of dynamic sensors. A real-time kinematic (RTK) 
GPS receiver, the Hemisphere R320 OmniSTAR, is used to 
measure the position of vehicle with the accuracy less than 1 
centimeter RMS at 20 Hz update-rate. We design GPS interface 
software in a laptop for decoding the NMEA messages from GPS 
receiver, and sending the decoded data to the VCU. From the 
measurement of position, vehicle velocity and course angle can be 
obtained in real time. Two in-wheel motors are installed in the 
rear wheels for generating the direct yaw moment. An EPS 
system is used to generate active front steering and it is applicable 
for steer-by-wire mode. 

 
2.2. Modeling of experimental EV 

 
In this paper, planar bicycle model is used for estimation 

design (Fig. 2). In order to estimate the sideslip angle and yaw 
angle, the following state space model is proposed: 
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Table 1  Nomenclatures. 
Planar bicycle model (lateral motion) 

β  Sideslip angle 
V  

Velocity vector 
,x yv v  Longitudinal and lateral velocity 

,x ya a  Longitudinal and lateral acceleration 
, ,γ ψ ν  Yaw rate, yaw angle, and course angle 

fδ  Front steer angle 

zN  Yaw moment 

,f rC C  Front and rear tire cornering stiffness 

zI  Yaw moment of inertia 

M  Total mass of vehicle 
,f rl l  Distance from front and rear axle to CG 

,yf yrF F  
Front and rear lateral force 

On-wheel model (longitudinal motion) 
dF  Driving force at tire-road contact path 

rF  Driving force at tire-road contact path 

mT  Motor torque 

r  Wheel radius 
Iω  Wheel moment of inertia 

λ  
Wheel slip ratio 

 
In this model, course angle from GPS is fused with the yaw 

rate from gyroscope. Course angle is the angle between velocity 
vector and the North direction, and it equals to yaw angle plus 
sideslip angle. 

The lateral and longitudinal velocity can be calculated from 
velocity vector (obtained from GPS) and sideslip angle. 

 

cos
sin

x

y

v V
v V

β

β

=


=
                                                   (6)  

βCG

γ

yv

xv
fδ

V
�

rl fl

ψ ν

North

yrF
yfF

 
Fig. 2. Planar bicycle model of electric vehicle. 
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Fig. 3. One-wheel longitudinal model of electric vehicle. 
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In order to estimate the longitudinal and lateral velocity, the 
following state space model is established: 
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For the sake of simplicity, one-wheel model is used for 

longitudinal traction control of EV, as shown in Fig. 3. Assuming 
that the vehicle is accelerated, the following equations 
demonstrate the longitudinal motion: 

 
m dI T rFωω = −ɺ                                                    (13)  
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3. Vehicle state estimator design 

In this section, Kalman filter is developed for estimating the 
vehicle state using the model constructed in the previous section. 
To deal with the uncertainties of modeling, and the bias of sensor 
measurement, disturbance accommodating method is applied. The 
delay in measurement from GPS receiver is handled using the 
reconstruction of measurement in present time. 
 
3.1. Disturbance accommodating method 

 
Considering the discrete-time system with model uncertainties 

and disturbances as follows: 
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where An, Bn and Cn represent the nominal model; △A, △B, and 
△C represent the uncertainties in system modeling; d is the 
unknown disturbance vector. Two unknown disturbance terms 
can be defined as follows: 
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In conventional Kalman filter algorithm, the model is often 

constructed using the nominal parameters. Therefore, the 
accuracy of estimation may be degraded due to model 

uncertainties and external disturbances. Disturbance 
accommodating is a simple but effective method to solve this 
problem. As the first publication, the unknown disturbance terms 
can be augmented to be extended states in a control system based 
on LQR theory (11). This idea was applied in Kalman filter design 
for sideslip angle estimation using GPS (12). The unknown 
disturbance terms are assumed to be random walk processes with 
the rate 

1dn  and
2dn . 
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where Ts is the fundamental sampling time. From (16) and (18), a 
new system with extended states is established as follows: 
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 By selecting the suitable rates of random walks and the 

process and measurement noise covariance matrices, the unknown 
terms can be estimated. This means the accuracy of state 
estimation using Kalman filter is improved.  
 
3.2. Reconstruction of present measurement 

 
Time delays consisting of few samples can be handled in 

Kalman filter algorithm by augmenting the state vector 
accordingly (13). However, if the delay stands for a big number of 
samples, the size of the augmented state space system will 
increase considerably. Larsen proposed a well-known method 
based on the extrapolating the measurement to present time (14). In 
this method, the size of Kalman filter is unchanged, burden in 
Kalman gain calculation. Recently, another method of calculating 
the optimal gain for robust Kalman filter with delayed 
measurement is proposed (15). In this paper, the present time 
measurement is reconstructed from the delayed measurement and 
the control input stored in an N-step-storage.  

A system with N-sample delay measurement is expressed as 
follows: 
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Fig. 4. Kalman filter with reconstruction of measurement in 

present time. 
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When the delayed measurement comes, it can be used to 
estimate the state at N samples before ˆk Nx − . Using this estimate, 
the measurement at present time can be constructed as follows: 
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Block diagram of Kalman filter with present time 

measurement reconstruction is shown in Fig. 4. The general 
formulation of the reconstruction is expressed as follows: 
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3.3. Double-layer state estimator design 

 
In Section 2, two models are established for vehicle state 

estimation. Using two models, a double-layer state estimator is 
designed for Kalman filter. Each estimation layer is designed 
using the disturbance accommodating method with the 
reconstruction of present time measurement from GPS. The 
configuration of the proposed estimator is shown in Fig. 5. 

As expressed in (1)-(5), the model of layer 1 is used for 
estimate the sideslip angle and yaw angle. The output 
measurement is the fusion of long sampling time course angle 
from GPS and with the short sampling time yaw rate. In layer 1, 
velocity is a time varying parameter instead of vehicle state. 
Therefore, it is acceptable that the velocity of non-driven wheel 
(obtain from encoder) is used as the approximate measurement of 
longitudinal velocity. In layer 1, between two consecutive updates 
of course angle, sideslip angle still can be estimated using only 
yaw rate. 

From the estimated sideslip angle and the measurement of 
velocity vector from GPS receiver, measurements of longitudinal 
and lateral velocity are obtained using (6). However, the sampling 
time of these measurements depends on the update rate of GPS 
receiver (less than 100 Hz). In order to achieve velocity every 1 
millisecond, the estimation model of layer 2 is constructed based 
on (7)-(12). Between two consecutive updates of velocity 
measurements, the lateral and longitudinal velocity can be 
predicted using the inputs of lateral and longitudinal accelerations. 

4444. Active safety controller design 

In this section, we present the design of two active safety control 
system based on state estimator. The former is a wheel slip ratio 
control system (Fig. 6), and the later is a lateral stability control 
system (Fig. 7).  

 
4.1. Wheel slip ratio control system 

 
From (13), (14), and (15), a dynamic model for slip ratio 

control using motor torque is established as follows: 
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Thanks to the in-wheel motor, driving force Fd can be 
estimated easily from disturbance observer (DOB) using motor 
torque and wheel velocity(16). The slip ratio is obtained from 
estimated longitudinal velocity and wheel velocity. Sliding model 
theory is applied to design the wheel slip ratio controller. The 
sliding surface, reaching law, and Lyapunov function V are 
expressed as follows: 
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In (25), L and Q are selected as positive constant. Thus, Vɺ  is 
always negative. In other words, the stability of the control system 
is confirmed. A sliding mode control law is obtained as follows 
with the estimated slip ratio and the observation of driving force: 
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4.2. Lateral stability control system 

 
As shown in Fig. 7, the estimated values of sideslip angle and 

yaw rate are provided by Kalman filter in the double-layer state 
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Fig. 5. Double-layer state estimator of EV. 
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Fig. 6. Wheel slip ratio control system of EV. 



         
                 
              FAST-zero ’13      
 

5 
Copyright  2013   Society of Automotive Engineers of Japan, Inc. All rights reserved 

 

estimator. The reference values are calculated from steering 
command and neutral steering condition using the bicycle model. 
Due to the fact that cornering stiffness varies according to the 
change of road friction coefficient, model uncertainty is a big 
problem of lateral stability control. In order to improve the 
robustness of the control system, we propose a control system 
with feedback-feed forward controller and disturbance 
rejection(12). The feed forward controller Cff  is simply designed 
using the inverse of lateral dynamics established from bicycle 
model. The feedback controller Cfb is designed such that the 
closed loop system has the following transfer function: 
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In (29), the cut-off frequency Kβ and Kγ are determined by 

trial and error experiment to ensure the best responsibility of the 
sideslip angle and yaw rate in the respect of steering angle 
command. It is impossible to set these cut-off frequencies too 
high due to limitation of actuators.  

In order to improve the robustness of the control system, the 
influence of two unknown terms that represent the model 
uncertainties and external disturbances must be compensated. 
They are estimated by using the disturbance accommodating 
method in Kalman filter. The disturbance rejecter is designed as 
the inverse of the input matrix with the respect of front steering 
angle and direct yaw moment. 
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The command signals generated by the proposed controller are 

expressed as follows: 
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5555. Verification of the proposed active safety system 

In this section, simulation and experimental results are 
demonstrated to verify the proposed active safety control system.  

 
5.1. Verification of double-layer state estimator 

 
In order to simulate the conventional GPS receiver, 

measurements from Hemisphere R320 are sampled at 200 
millisecond (or 5 Hz update rate) and the time delay is set as 100 
millisecond. 

Results of sideslip angle estimation are shown in Fig. 8. 
Another sideslip angle estimation method using dynamic sensors 
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Fig. 8. Sideslip angle estimation results. 
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Fig. 9. Yaw angle estimation results. 
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Fig. 10. Longitudinal velocity estimation results. 
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Fig. 11. Lateral velocity estimation results. 
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is performed for comparison. This method was proposed based on 
linear observer using the measurement of yaw rate and lateral 
acceleration(2). The cornering stiffness of the EV according to 
road condition in this experiment are Cf ≈ Cr ≈ 7000 [N/rad]. 
We intentionally design each estimation model with the nominal 
cornering stiffness Cfn = Crn = 10,000 [N/rad]. This means a 
considerable model error is introduced to each estimator. Fig. 8 
shows that the linear observer using dynamic sensors is sensitive 
to model error. In contrast, by using the fusion of GPS and 
gyroscope with proposed Kalman filter algorithm, sideslip angle 
can be estimated with much smaller estimation error. The 
advantages of the proposed sensor fusion method is vehicle 
attitude can be estimated, as shown in Fig. 9. The course angle 
obtained from GPS receiver is delayed and its sampling time is 
200 milliseconds. For comparison, calculated course angle at 1 
millisecond is obtained using measured sideslip angle and 
estimated yaw angle. Using the proposed estimator, the time delay 
is handled and yaw angle is estimated at high rate (every 1 
millisecond). 

The estimation results of longitudinal and lateral velocity are 
shown in Fig. 10 and Fig. 11, respectively. Based on kinematic 
relationship, a Kalman filter is designed for estimating vehicle 
velocity(3). According to this method, the non-driven wheel’s 
velocity is used as the approximate measurement of EV’s 
longitudinal velocity while longitudinal and lateral accelerations 
are inputs. Using this method, estimated longitudinal velocity is 
almost closed to the measured value. However, under the 
measurement noise and the influence of roll motion to lateral 
motion, the estimation error of lateral velocity increases 
considerably. Using the proposed double-layer estimator, the time 
delay of measurements from GPS receiver is handled, and both 
longitudinal and lateral velocity are estimated with high accuracy. 

 
5.2. Verification of wheel slip ratio control system 

 
The low friction sheets covered with water is placed on the test 

course to simulate the slippery road (Fig. 12). The driver 
accelerates the vehicle from a starting point near by the low 
friction sheets. Because the vehicle motion is straight in this test, 
it is necessary to show the results of only one wheel (the rear left, 
for instance). In case of without control, the motor torque is kept 
constant as the driver’s command (Fig. 13 (a)). As the results, the 
wheel slip ratio increase considerably (Fig. 13 (b)) and the slip 
occurs. When the proposed slip ratio control based on sliding 
mode theory is applied, motor torque is controlled and reduced in 
the low friction sheets as shown in Fig. 14 (a). Wheel slip ratio 
follows the reference value of 0.1 (Fig. 14 (b)) and safety traction 
of EV is achieved. 

 
5.3. Verification of lateral stability control system 

 
Cornering tests are conducted on high friction road at the 

speed of 20 kph. In this test, steer-by-wire mode is performed 
such that the steering angle is generated by control program and 

there is no need to handle the EV by the driver. In case of without 
control, both sideslip angle and yaw rate increase over their 
reference values (Fig. 15 (a) and (b)). When the proposed lateral 
stability control is applied, the controlled variables can track with 
the reference values, as shown in Fig. 16 (a) and (b). This means 
that the proposed control system can improve the stability of EV. 

 

 
Fig. 12. Traction control on slippery road. 
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(a) Wheel torque                       (b) Slip ratio 

Fig. 13. Longitudinal motion on slippery road (without control). 
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(a) Wheel torque                       (b) Slip ratio 

Fig. 14. Longitudinal motion on slippery road (with control). 
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(a) Sideslip angle                    (b) Yaw rate 
Fig. 15. Lateral motion of EV (without control). 
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(a) Sideslip angle                    (b) Yaw rate 
Fig. 16. Lateral motion of EV (without control). 
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6. Conclusion 

In this paper, a framework of active safety control of EV based 
on the fusion of single antenna GPS receiver and dynamic sensors 
is proposed. Kalman filter is developed as the core theory of 
sensor fusion. In order to deal with model uncertainties and 
external disturbances, disturbance accommodating method is 
applied in Kalman filter to enhance the robustness of estimation. 
The time delay of GPS receiver is handled by the reconstruction 
of measurement in current time applied in Kalman filter. Using 
the development in Kalman filter, a double-layer state estimator is 
proposed to provide key states for active safety system of EV: 
sideslip angle, yaw angle, longitudinal velocity, and lateral 
velocity. Experiments are conducted to verify the effectiveness of 
the proposal in comparison with other estimation methods using 
dynamic sensors. Thanks to the estimated states from double-
layer estimator, two active safety control systems are designed. 
The former is wheel slip ratio control system with slip ratio 
calculation through estimated longitudinal velocity. The later is 
lateral stability control system with estimated sideslip angle. 

In future works, the lost of a source of sensors (GPS or a 
dynamic sensor) will be considered. The change of GPS receiver 
accuracy due to the number of satellites in view is another 
nontrivial problem to solve. 
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