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Force Maximization of Biarticularly Actuated
Manipulators Using Infinity Norm
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Abstract—There is a rising interest in biologically inspired ma-
nipulators equipped with biarticular actuators—actuators that
span two joints—for solving the known limitations of conventional
systems. In contrast with kinematic redundancy, actuator redun-
dancy resulting from the presence of biarticular actuators has the
added advantages of bringing more stability, reducing the inertia of
the robot links, and decreasing the nonlinearity of the end effector
force as a function of force direction. In this paper, the advantage of
the infinity norm optimization criteria on a robot designed under
the actuator redundancy paradigm is investigated. A closed form
solution based on the infinity norm for a manipulator with mono-
and biarticular actuators is derived. The proposed infinity norm-
based approach is compared with the conventional method based
on pseudoinverse matrix by both calculation and experiment. Un-
der the same actuator limitations, the maximum end effector force
produced with the proposed method is significantly greater than
the one produced by the conventional method. The proposed closed
form solution is suitable for redundant systems with three inputs
and two outputs, bringing the advantage of an higher maximum
output without the need for iterative algorithms.

Index Terms—Control systems, manipulators, robots.

I. INTRODUCTION

ROBOT manipulators presenting animal musculoskeletal
characteristics such as biarticular actuators—actuators

that span two joints—have been proposed for more than two
decades [1].

From a control point of view, biarticularly actuated robots
often present more actuators than joints, resulting in actuator
redundancy. The resolution of actuator redundancy represents a
key point in the control design for such robots.

Approaches based on pseudoinverse matrices are used in the
control design for kinematically redundant manipulator [2]–[4].
Pseudoinverse matrices are also used for actuator redundancy
resolution [5]–[7]. Moore–Penrose is the simplest pseudoin-
verse matrix, and correspond to the minimization of the eu-
clidean norm [8].
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Iterative algorithms based on ∞-norm optimization criteria
have been used to resolve redundancy in kinematically redun-
dant manipulators [9]–[12]. In this paper, the ∞-norm is used to
resolve the actuator redundancy for biarticularly actuated robot
arms. A closed form solution based on a piecewise linear func-
tion for the infinity-norm approach is proposed. This piecewise
linear function is valid also for the case in which the maximum
joint actuator torques are not the same, but differ form each
other.

The ∞-norm approach is compared with the Moore–Penrose
pseudoinverse approach (2-norm in the following) in terms of
maximum output force at the end effector by using both calcu-
lation and experimental methods. The ∞-norm approach max-
imizes the force at the end effector given the joint actuator
torque limitations. As a consequence, under the same joint ac-
tuator torque limitations, the maximum output force at the end
effector calculated using the ∞-norm approach is greater than
the one obtained using the 2-norm approach. Conversely, given a
desired output force at the end effector, the maximum joint actu-
ator torque required by using the ∞-norm approach is smaller.
Therefore, the proposed approach is suitable to optimize the
design of biarticularly actuation in manipulators.

The experimental validation of the proposed approach is real-
ized using BiWi, a biarticularly actuated and Wire driven robot
arm.

Modeling and advantages of biarticularly actuated manipula-
tors are described in Section II. In Sections III and IV, the re-
dundancy actuator problem and the resolution approaches based
on 2-norm and ∞-norm are illustrated. In Section V, the BiWi
robot arm is described together with the feedforward control
strategy used in the experiment. In Section VI, the proposed
∞-norm approach is compared with 2-norm approach in terms
of maximum output force at the end effector by both calculation
and experimental methods. Finally, in Section VII, the advan-
tages of the ∞-norm approach are summarized. The proof of
the closed form solution of the 2-norm and ∞-norm approaches
are reported in Appendix and Appendix, respectively.

II. MODELING OF BIARTICULARLY ACTUATED MANIPULATORS

In conventional manipulators each joint is driven by one ac-
tuator. On the other hand, animal and human limbs present a
complex musculoskeletal structure based on mono- and multi-
articular muscles.

1) Monoarticular muscles produce a torque on one joint.
2) Multiarticular muscles span more than one joint. Gastroc-

nemius is an example of biarticular muscle in the human
leg.
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Fig. 1. Two-link arm with four mono- and two biarticular actuators: model
and resulting forces at the end effector.

TABLE I
MUSCLES’ NAMES, TYPES AND SYMBOLS

A widely used simplified model of the complex animal mus-
culoskeletal system [13]– [17] is shown in Fig. 1. The muscles’
name, type, and relative symbol are illustrated in Table I. This
model is based on six contractile actuators—three extensors (e1,
e2, and e3) and three flexors (f1, f2, and f3)—coupled in three
antagonistic pairs:

1) e1–f1 and e2–f2: couples of monoarticular actuators that
produce torques about joint 1 and 2, respectively;

2) e3–f3: couple of biarticular actuators that produce torque
about joint 1 and 2 contemporaneously.

Every of the six muscles produce a force ei or fi with respec-
tive maximum force emax

i or fmax
i for i = (1, 2, 3).

The resulting forces at the end effector are shown in Fig. 1.
If only monoarticular muscles are considered, there are four
resulting forces at the end effector and the maximum output
force space is a quadrilateral. On the other hand, if biarticular
actuators are added, there are six forces at the end effector, hence
the maximum output force space becomes an hexagon.

A. Advantages of Biarticular Actuation

Biarticular actuators bring numerous advantages in robot ap-
plications. First, biarticular actuators dramatically increase the
range of end effector impedance that can be achieved with-
out feedback [1]. Consequences are, for example, capability of
path tracking and disturbance rejection using just feedforward
control [18], [19], and the improvement of balance control for
legged robots without force sensors [20].

Biarticular actuators transfer mechanical energy from prox-
imal to distal joints [21]. This is a key aspect in legged robots
for hopping [22]–[24], for jumping [25], and for running [26],
as well for power-assist robots [27], [28].

Biarticularly actuated manipulators produce a maximum out-
put force at the end effector in a more homogeneous distributed
way [29]. The maximum output force at the end effector for

Fig. 2. Maximum output force at the end effector for conventional and biar-
ticularly driven arm.

Fig. 3. Statics of two-link arm with four mono- and two biarticular actuators.

a two-link conventional manipulator and for a biarticularly ac-
tuated robot arm is shown in Fig. 2 for comparison. The con-
ventional manipulator has two actuators with maximum joint
actuator torques T1 = T2 = 10 Nm, and the biarticularly actu-
ated robot arm has three actuators with maximum joint actuator
torques τ1 = τ2 = τ3 = 6.66 Nm. All the gear ratios of all the
actuators are the same. Therefore, the sum of maximum actuator
torques are the same (i.e., 20 Nm) in the two cases. The conven-
tional quadrilateral shape becomes an hexagon for biarticularly
driven arms, which, therefore, produces a maximum force at
the end effector more homogeneously distributed in respect to
output force direction. The maximum output force that can be
physically produced by applications that interact with humans
is a key aspect in safety. There are power assist robots in which
pneumatic actuators [30], [31], elastic elements [32], [33], or
linear motor [34] are used to increase backdrivability and, there-
fore, safety for the users. Peak output forces such as the one in
point M in Fig. 2 cannot be produced by the human arm, there-
fore are unnecessary and dangerous in case of failure of the
controller. As a consequence, the use of biarticular actuators
further increases safety for power assist robots [35], [36].

In addition to these advantages, multiarticular actuators, such
as triarticular actuators, increase the efficiency in output force
generation, as for example in lancelet-like swimming robots
[17].

III. ACTUATOR REDUNDANCY PROBLEM

The resulting statics of the biarticularly actuated arm of Fig. 1
are shown in Fig. 3, where:
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1) The total torques about joint 1 and 2 are T1 and T2 , re-
spectively.

2) The torques produced by monoarticular actuators about
joints 1 and 2 are τ1 and τ2 , respectively. They are calcu-
lated from the actuator input forces ei and fi for i = (1, 2)
as follows:

τ1 = (f1 − e1)r (1)

τ2 = (f2 − e2)r (2)

where r is the distance between the joint axis and the
point where the muscle force is applied. The value of r is
consider to be the same for all the muscles and all joint
angles.

3) The torque produced about both joints by biarticular actu-
ators is τ3

τ3 = (f3 − e3)r. (3)

4) F is a general force at the end effector with magnitude F
and direction θf .

The statics of this system are therefore expressed by

T1 = τ1 + τ3 (4)

T2 = τ2 + τ3 . (5)

A two-link manipulator with the statics shown in Fig. 3
presents actuator redundancy. Given τ1 , τ2 , and τ3 , it is pos-
sible to determine T , and therefore F by using the Jacobian

[
T1
T2

]
= JT

[
Fx

Fy

]
(6)

where

J =
[−l1sin(θ1) − l2sin(θ1 + θ2) −l2sin(θ1 + θ2)

l1cos(θ1) + l2cos(θ1 + θ2) l2cos(θ1 + θ2)

]
(7)

and Fx and Fy are the orthogonal projection of F on the x-
axis and y-axis, respectively. On the other hand, given F , and
therefore T , it is generally not possible to determine uniquely τ1 ,
τ2 , and τ3 [see (4) and (5)] due to the actuator redundancy. The
problem represented by (4) and (5) is referred in the following
as the redundancy actuator problem.

The 2-norm and the ∞-norm approaches are described in the
following.

IV. APPROACHES FOR ACTUATOR REDUNDANCY RESOLUTION

Given the arm with the statics as in Fig. 3 and a desired
force at the end effector F , the desired joint torques T are
calculated using (6), and the three desired joint actuator torques
τ1 , τ2 , and τ3 that produces T are calculated using the 2-norm
and the ∞-norm approaches as described in Section IV-A and
Section IV-B, respectively.

A. 2-Norm-Based Approach

The actuator redundancy is resolved using the 2-norm by
solving the following problem:

min

√
(τ1)2

(τmax
1 )2 +

(τ2)2

(τmax
2 )2 +

(τ3)2

(τmax
3 )2

s.t. T1 = τ1 + τ3

T2 = τ2 + τ3 (8)

where τmax
i , i = (1, 2, 3) is the maximum joint actuator torque

that the actuator i can produce.
The solution of the problem expressed by (8) is

τ1 =
(T1 − T2)(τmax

1 )2(τmax
3 )2 + T1(τmax

1 )2(τmax
2 )2

(τmax
1 )2(τmax

2 )2 + (τmax
1 )2(τmax

3 )2 + (τmax
2 )2(τmax

3 )2

(9)

τ2 =
T2(τmax

1 )2(τmax
2 )2 + (T2 − T1)(τmax

2 )2(τmax
3 )2

(τmax
1 )2(τmax

2 )2 + (τmax
1 )2(τmax

3 )2 + (τmax
2 )2(τmax

3 )2

(10)

τ3 =
T1(τmax

2 )2(τmax
3 )2 + T2(τmax

1 )2(τmax
3 )2

(τmax
1 )2(τmax

2 )2 + (τmax
1 )2(τmax

3 )2 + (τmax
2 )2(τmax

3 )2 .

(11)

Proof of (9), (10), and (11) is reported in Appendix A.
If τmax

1 = τmax
2 = τmax

3 the solution becomes

τ1 =
2
3
T1 −

1
3
T2 (12)

τ2 = −1
3
T1 +

2
3
T2 (13)

τ3 =
1
3
T1 +

1
3
T2 . (14)

B. Infinity Norm-Based Approach

The actuator redundancy is resolved using the ∞-norm by
solving the following problem:

min max

(
|τ1 |
τmax
1

,
|τ2 |
τmax
2

,
|τ3 |
τmax
3

)

s.t. T1 = τ1 + τ3

T2 = τ2 + τ3 . (15)

The fact that three torque values are scaled by the respective
maximum torque guarantees that the solution, when exists, does
not violate any of the three constraints:

−τmax
1 ≤ τ1 ≤ τmax

1 (16)

−τmax
2 ≤ τ2 ≤ τmax

2 (17)

−τmax
3 ≤ τ3 ≤ τmax

3 . (18)

Let us define

c1 =
τmax
3 − τmax

1

τmax
3 + τmax

2
(19)
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c2 =
τmax
3 + τmax

2

τmax
3 + τmax

1
(20)

c3 =
τmax
3 − τmax

2

τmax
3 + τmax

1
. (21)

The three parameters c1 , c2 , and c3 are defined for any maximum
joint actuator torque, and are constant. A closed form solution
of the problem (15) is determined on the basis of the values of
T1 and T2 as follows:

τ1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(T1 − T2)
τmax
1

τmax
1 + τmax

2
if case1

T1 − T2
τmax
3

τmax
2 + τmax

3
if case2

T1
τmax
1

τmax
1 + τmax

3
if case3

(22)

τ2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(T2 − T1)
τmax
2

τmax
1 + τmax

2
if case1

T2
τmax
2

τmax
2 + τmax

3
if case2

T2 − T1
τmax
3

τmax
1 + τmax

3
if case3

(23)

τ3 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

T1τ
max
2 + T2τ

max
1

τmax
1 + τmax

2
if case1

T2
τmax
3

τmax
2 + τmax

3
if case2

T1
τmax
3

τmax
1 + τmax

3
if case3

(24)

where

case1 = (T1 ≤ c1T2 and T2 ≥ c3T1)

or (T1 > c1T2 and T2 < c3T1)

case2 = (T1 ≥ c1T2 and T2 ≥ c2T1)

or (T1 < c1T2 and T2 < c2T1)

case3 = (T2 ≤ c2T1 and T2 ≥ c3T1)

or (T2 > c2T1 and T2 < c3T1).

Proofs of (22), (23), and (24) are reported in Appendix B.
It is trivial to verify that the three linear piecewise func-

tions (22), (23), and (24) are continuous in all the domain
D = (T1 , T2).

In summary, the values of τ1 , τ2 , and τ3 that produce a given
F at the end effector, are determined as follows.

1) Calculate the desired joint torques T = JT F .
2) According to calculated T1 and T2 , the three desired joint

actuator torques are directly determined using the three
piecewise linear function (22), (23), and (24).

When all the actuators produce the same maximum joint
actuator torque, that is τmax

1 = τmax
2 = τmax

3 , c1 = c3 = 0 and

Fig. 4. Graphical comparison between ∞-norm and 2-norm: solution com-
parison (left), no solution for 2-norm (right).

c2 = 1, and the solution becomes as in the following [37], [38]:

τ1 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

T1 − T2

2
if T1T2 ≤ 0

T1 −
T2

2
if T1T2 > 0 and |T1 | ≤ |T2 |

T1

2
if T1T2 > 0 and |T1 | > |T2 |

(25)

τ2 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

T2 − T1

2
if T1T2 ≤ 0

T2

2
if T1T2 > 0 and |T1 | ≤ |T2 |

T2 −
T1

2
if T1T2 > 0 and |T1 | > |T2 |

(26)

τ3 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

T1 + T2

2
if T1T2 ≤ 0

T2

2
if T1T2 > 0 and |T1 | ≤ |T2 |

T1

2
if T1T2 > 0 and |T1 | > |T2 |.

(27)

C. Infinity-Norm Approach: The Reason Why

Fig. 4 shows the graphical comparison between ∞-norm and
2-norm optimization criteria in selecting the optimal solution
for a problem in R

2 . The dashed line represents the infinite set
of solutions (x, y) that satisfy

k = αx + y (28)

where α represent the relationship between the desired output k
and the necessary inputs x and y. The positive constants xmax

and ymax define the allowable ranges for x and y:

− xmax ≤ x ≤ xmax (29)

− ymax ≤ y ≤ ymax . (30)

The two sets (x2 , y2) and (x∞, y∞) in Fig. 4 (left) are the
two solutions of (28) calculated using the 2-norm (the circle)
and ∞-norm (the square) optimization criteria, respectively.
By definition, the infinity norm minimize the maximum input,
therefore, it holds that

max{|x∞|, |y∞|} ≤ max{|x2 |, |y2 |}. (31)

Therefore, if x and y are bounded as in (29) and (30), the
∞-norm model admits solution for higher values of k than the
2-norm, as shown in Fig. 4 (right).
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Fig. 5. BiWi, a biarticulated driven and wire driven robotic arm: top view
(top), side view (bottom) [39].

The greater solution space of the ∞-norm model holds also
for R

3 , which represents the mathematical space of the redun-
dancy resolution problem in this study.

V. EXPERIMENTAL SETUP

A. BiWi: A Biarticularly Actuated and Wire Driven Robot Arm

BiWi robot arm, shown in Fig. 5, is used to experimentally
validate the proposed ∞-norm approach, and compare it with
the 2-norm approach. BiWi is a two-link planar manipulator
actuated by six motors, each representing one of the six muscles
in Fig. 1. The power is transmitted to the joints through pulleys
and polyethylene wires as shown in Fig. 6.

1) A pair of antagonistic monoarticular motors (e1–f1) are
connected by mean of polyethylene wires to two pulleys
fixed on joint 1. This motor pair produces the torque τ1
about joint 1 as in Fig. 3.

Fig. 6. Torque transmission system.

TABLE II
BiWi CHARACTERISTICS

TABLE III
ACTUATOR AND SENSOR SYSTEM

Fig. 7. Feedforward control block diagram.

2) A pair of antagonistic mono-articular motors (e2–f2) are
connected by thrust wires to two pulleys fixed on joint 2.
This motor pair produces the torque τ2 about joint 2 as in
Fig. 3.

3) A pair of antagonistic biarticular motors (e3–f3) are con-
nected by mean of polyethylene wires to pulleys fixed on
joint 2, and to free pulleys about joint axis 1. This motor
pair produces the torque τ3 about joint 1 and 2 as in Fig. 3.

Main characteristics of BiWi and of the actuator and sensor
systems are shown in Tables II and III, respectively. Further
details are available in [39].

B. Feedforward Control Strategy

The feedforward control strategy used to collect the experi-
mental data is shown in Fig. 7. Both the 2-norm and the∞-norm
approaches determine the joint actuator torques given a desired
end effector force using a closed form solution. However, as the
maximum end effector force is the object of study, the desired
joint actuator torques τ1 , τ2 , and τ3 that produce the maximum
end effector force are calculated using an algorithm as in the
following. Given a desired force angle θf and a redundancy
resolution approach (2-norm or ∞-norm), the desired joint ac-
tuator torques (τ1 , τ2 , and τ3) producing the maximum force in
direction θf , while respecting the torque limits (τmax

1 , τmax
2 , and

τmax
3 ) are calculated using the following algorithm. For θf = k:
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TABLE IV
CALCULATION OF MOTOR INPUT REFERENCES FROM JOINT

ACTUATOR TORQUES

1) Set i = 0, and |F|i = 0.001
2) Calculate Ti using the Jacobian (7)
3) Given Ti , calculate the necessary (τ1)i , (τ2)i and (τ3)i

using either the 2-norm approach [(9), (10), and (11)] or
the ∞-norm approach [(22), (23), and (24)]

4) If (|(τ1)i | > τmax
1 ) or (|(τ2)i | > τmax

2 ) or (|(τ3)i | >
τmax
3 ) then (τ1)i = (τ1)i−1 , (τ2)i = (τ2)i−1 , (τ3)i =

(τ3)i−1 else |F| = |F| + 0.001, i = i + 1, and repeat from
step 2

5) The calculated (τ1)i , (τ2)i , and (τ3)i are used as input
reference torques.

The six motor reference torques are calculated using Table IV,
where (τi)+ = max(0, τi) and (τi)− = max(−τi, 0) for i =
(1, 2, 3).

In order to compensate for the inevitable transmission loss
in the thrust wires the reference motor torques for joint 2—
mote2 and motf 2—are multiplied by a constant Ktl = 1.33.
Such value is relatively high, due to the low cost of the thrust
wires. However, by using more sophisticated thrust wires the
transmission loss can be reduced to smaller value.

The desired reference motor torques [motei and motf i for
i = (1, 2, 3)] are sent to the robot arm as step inputs. The ma-
nipulator end effector output force (F = [Fx, Fy ]T ) is measured
by a force sensor, and its steady state value is taken into account.
The desired end effector output force direction θf varies from 0
to 360◦ every 5◦.

VI. RESULTS

The joint actuator input torque patterns calculated using both
the 2-norm and the∞-norm approaches, as well as the calculated
and measured maximum output force at the end effector of BiWi,
obtained using these torque patterns are shown in Fig. 8(a) for
θ1 = −60◦ and θ2 = 120◦, and in Fig. 8(b) for θ1 = −25◦ and
θ2 = 50◦. In both cases, τmax

1 = τmax
3 = 1.84 Nm and τmax

2 =
1.38 Nm.

The experimental results agree with the calculated values,
and show that the maximum output force at the end effector is
greater when using the ∞-norm approach.

The relative difference in maximum output force magnitude
expressed by

F diff =
|Fmax

∞−n | − |Fmax
2−n |

|Fmax
2−n | (32)

for the two approaches is shown in Fig. 8(a) and (b) for the two
configurations. The ∞-norm approach allows a maximum end
effector force greater (up to 35%) than the 2-norm approach.

VII. CONCLUSION

In this paper, a new approach based on ∞-norm to resolve ac-
tuator redundancy for robot arms driven by biarticular actuators

is proposed. A closed form solution based on a piecewise lin-
ear function for the proposed method is derived. The piecewise
linear function is continuous in all its domain.

The proposed approach is compared with the traditional
Moore–Penrose pseudoinverse approach (2-norm), by both cal-
culation and experiment. Under the same maximum joint actu-
ator torques, the proposed approach allows to obtain a greater
output force at the end effector (up to 35%). Conversely, given
a desired output force, by using the ∞-norm approach a smaller
maximum joint actuator torque is required. Consequently, the
∞-norm approach allows the minimization of actuator size.

BiWi, a biarticularly actuated and wire driven manipulator,
and a feedforward control strategy are used to experimentally
validate the calculation.

In the future, the advantages of the proposed solution for
three inputs and two outputs as, for example, parallel manipu-
lators with a redundant DOF [12], or pen-based force display
for precision manipulation in virtual environments [40], will be
investigated in detail.

APPENDIX A

PROOF OF CLOSED FORM SOLUTION

FOR THE 2-NORM APPROACH

The problem expressed by (8) is written for a simpler notation
as follows:

min

√
(x)2

(mx)2 +
(y)2

(my)2 +
(z)2

(mz)2

s.t. T1 = x + z

T2 = y + z (33)

where T1 and T2 are the desired joint torques (known), x, y, and
z are the desired joint actuator torques τ1 , τ2 , and τ3 (unknown),
respectively; mx = τmax

1 , my = τmax
2 , and mz = τmax

3 .
Taking into account R

3 , the solution (x, y, z) which satisfy√
(x)2

(mx)2 + (y )2

(my )2 + (z )2

(mz )2 has to meet the following three re-
quirements.

1) To be on the line defined by

T1 = x + z (34)

T2 = y + z. (35)

2) To be on the ellipsoid surface defined by

x2

(mx)2 +
y2

(my)2 +
z2

(mz)2 = k (36)

where k is a constant.
3) The plane passing through the line defined by (34) and

(35) has to be tangent to the ellipsoid defined by (36).
Hence,

1
(mx)2

∂x2

∂x
+

1
(my)2

∂y2

∂y
+

1
(mz)2

∂z2

∂z
= 0. (37)
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Fig. 8. 2-norm versus ∞-norm: joint actuator input torques (top), measured maximum output force (middle), relative difference in maximum output force
(bottom). (a) θ1 = −60◦ and θ2 = 120◦. (b) θ1 = −25◦ and θ2 = 50◦.

Combining (34), (35), (36), and (37) straightforward follows
the solution of the problem (33)

x =
(T−

1 T2)(mx)2(mz)2 + Tm
1 x2(my)2

(mx)2(my)2 + (mx)2(mz)2 + (my)2(mz)2 (38)

y =
Tm

2 x2(my)2 + (T−
2 T1)(my)2(mz)2

(mx)2(my)2 + (mx)2(mz)2 + (my)2(mz)2 (39)

z =
Tm

1 y2(mz)2 + Tm
2 x2(mz)2

(mx)2(my)2 + (mx)2(mz)2 + (my)2(mz)2 . (40)

Equations (38), (39), and (40) correspond to (9), (10), and (11),
respectively.

APPENDIX B
PROOF OF CLOSED-FORM SOLUTION

FOR THE ∞-NORM APPROACH

The problem expressed by (15) is written for a simpler nota-
tion as follows:

min max

(
|x|
mx

,
|y|
my

,
|z|
mz

)

s.t. T1 = x + z

T2 = y + z (41)

where T1 and T2 are the desired joint torques (known), x, y, and
z are the desired joint actuator torques τ1 , τ2 , and τ3 (unknown),
respectively; mx = τmax

1 , my = τmax
2 , and mz = τmax

3 .
A closed form solution of (41) is determined in the following.

The searched solution has to satisfy at least one of the three
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equations |x|
mx = |y |

my , |y |
my = |z |

mz , |x|
mx = |z |

mz . In fact, when one
of three variable’s absolute value decreases at least one of the
other two increases. Therefore, for any solution of the system
with |x|

mx �= |y |
my �= |z |

mz it is possible to decrease the higher value
among the three so to be equal to at least one of the other two.
Therefore, the searched solution is one among the following six:

1) x
mx = − y

my

⎧⎪⎪⎨
⎪⎪⎩

x + z = T1

y + z = T2
x

mx
= − y

my

⇒

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x = (T1 − T2)
mx

my + mx

y = (T2 − T1)
my

my + mx

z = T2 − (T2 − T1)
my

my + mx
(42)

2) y
my = z

mz

⎧⎪⎪⎨
⎪⎪⎩

x + z = T1

y + z = T2
y

my
=

z

mz

⇒

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x = T1 − T2
mz

my + mz

y = T2
my

my + mz

z = T2
mz

my + mz

(43)

3) x
mx = z

mz

⎧⎪⎪⎨
⎪⎪⎩

x + z = T1

y + z = T2
x

mx
=

z

mz

⇒

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x = T1
mx

mz + mx

y = T2 − T1
mz

mz + mx

z = T1
mz

mz + mx

(44)

4) x
mx = y

my

⎧⎪⎪⎨
⎪⎪⎩

x + z = T1

y + z = T2
x

mx
=

y

my

⇒

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x = (T2 − T1)
mx

my − mx

y = (T2 − T1)
my

my − mx

z = T2 − (T2 − T1)
my

my − mx
(45)

5) y
my = − z

mz

⎧⎪⎪⎨
⎪⎪⎩

x + z = T1

y + z = T2
y

my
= − z

mz

⇒

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x = T1 − T2
mz

mz − my

y = −T2
my

mz − my

z = T2
mz

mz − my

(46)

6) x
mx = − z

mz

⎧⎪⎪⎨
⎪⎪⎩

x + z = T1

y + z = T2
x

mx
= − z

mz

⇒

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x = −T1
mx

mz − mx

y = T2 − T1
mz

mz − mx

z = T1
mz

mz − mx
.

(47)

Among the six possible solutions the searched one is directly
selected on the basis of T1 and T2 as follows (the variable
subscript represents the respective equation number):

1) If (T1 ≤ c1T1 and T2 ≥ c3T1) or (T1 > c1T2 and
T2 < c3T1),

∣∣∣x(42)

mx

∣∣∣ =
∣∣∣∣y(42)

my

∣∣∣∣ ≥
∣∣∣z(42)

mz

∣∣∣ (48)

|x(42) | ≤ |x(43) | (49)

|y(42) | ≤ |y(44) | (50)

|x(42) | ≤ |x(45) | (51)

|x(42) | ≤ |x(46) |, if mz ≥ my (52)

|y(42) | ≤ |y(46) |, if mz < my (53)

|x(42) | ≤ |x(47) |, if mx ≥ mz (54)

|y(42) | ≤ |y(47) |, if mx < mz. (55)

Therefore, solution is (42). In this case, τ1 in (22), τ2 in
(23), and τ3 in (24), are equal to x in (42), y in (42), and
z in (42), respectively.

2) If (T1 ≥ c1T2 and T2 ≥ c2T1) or (T1 < c1T2 and
T2 < c2T1),∣∣∣∣y(43)

my

∣∣∣∣ =
∣∣∣z(43)

mz

∣∣∣ ≥
∣∣∣x(43)

mx

∣∣∣ (56)

|z(43) | ≤ |z(42) | (57)

|y(43) | ≤ |y(44) | (58)

|y(43) | ≤ |y(45) |, if my ≥ mx (59)

|z(43) | ≤ |z(45) |, if my < mx (60)

|y(43) | ≤ |y(46) | (61)

|y(43) | ≤ |y(47) |, if mx ≥ mz (62)

|z(43) | ≤ |z(47) |, if mx < mz. (63)

Therefore, solution is (43). In this case, τ1 in (22), τ2 in
(23), and τ3 in (24), are equal to x in (43), y in (43), and
z in (43), respectively.

3) If (T2 ≤ c2T1 and T2 ≥ c3T1) or (T2 > c2T1 and
T2 < c3T1),

∣∣∣x(44)

mx

∣∣∣ =
∣∣∣z(44)

mz

∣∣∣ ≥
∣∣∣∣y(44)

my

∣∣∣∣ (64)

|z(44) | ≤ |z(42) | (65)

|x(44) | ≤ |x(43) | (66)

|x(44) | ≤ |x(45) |, if mx ≥ my (67)

|z(44) | ≤ |z(45) |, if mx < my (68)

|x(44) | ≤ |x(46) |, if my ≥ mz (69)

|z(44) | ≤ |z(46) |, if my < mz (70)

|x(44) | ≤ |x(47) |. (71)

Therefore, solution is (44). In this case, τ1 in (22), τ2 in
(23), and τ3 in (24), are equal to x in (44), y in (44), and
z in (44), respectively.
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