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Abstract—Over-actuated EVs offer a high degree of freedoms
that can be exploited for better vehicle dynamic behaviour,
energy efficiency, vehicle safety and comfort. If the cost of the
actuators can be brought to a reasonable level, then sophisticated
control algorithm should make the most out of the over-actuation
property.

A key aspect in lateral dynamics control of an over actuated
EV with In Wheel motors and active front and/or rear steering is
the so called control allocation problem. Often such problems are
solved using the 2 norm (weighted least square solution) as it is
expressed in a closed form-solution and has a low fixed number
of arithmetic operations suited for real time control. In this work
a closed-form solution based on the infinity norm for the case of
2 to 3 control allocation problem in EV lateral dynamic control is
derived, and validated by means of simulation runs considering
an electric vehicle with In-Wheel-Motor traction and active front
and rear steering. During a ”sine with a dwell” steering command
at a constant velocity the superiority of the proposed algorithm
based on the infinity norm is shown.

I. INTRODUCTION

Over-actuated systems have an intrinsic redundancy ex-
ploited for fault robustness and in the case that all actua-
tors work properly for optimizing some other property of
the system (energy consumption, limiting maximal actuator
power ...). They appear in nearly all engineering disciplines.
Mechatronic examples are airplanes [1], bi-articularly actuated
robots [2], and electric vehicles with In-Wheel-Motors [3]
with/without active front and rear steering [4], [5].

As a consequence of redundancy in actuation, a control
allocation problem arises in all these applications. Tradition-
ally the 2 norm is used to resolve such problem, due to
the fact that it allows to write a solution in a closed form
solution. For certain specific problems, such as the actuator
redundancy resulting from bi-articular actuation in robot arms
[6], a closed-form solution based on the infinity norm is
possible, and its higher performances in respect to the 2 norm
in terms of output maximization have been shown [7], [8].

In this work, lateral dynamic control for EV is considered.
A closed-form solution based on the ∞ norm for the 2 outputs
to 3 inputs control allocation problem in EV lateral dynamic
control is derived, and its higher performances in respect to
the traditional 2 norm based algorithm are investigated.

In Sec. II the vehicle lateral dynamics modeling and allo-
cation problem is described. In Sec. III the traditional 2 norm

based and the proposed ∞ norm based models for resolving the
2 to 3 allocation problem are shown. In Sec. IV the simulation
results are analyzed and discussed. Finally, the advantages of
the proposed algorithm are summarized in Sec. V.

II. EV LATERAL DYNAMICS CONTROL

EVs offer apart from their particular energy source the
opportunity to install in each wheel a motor, therefore in-
troducing new degrees of freedom in the vehicle dynamic
control design [9], [10]. In this contribution the opportunity
to generate an additional yaw moment Mz by appropriate
single wheel torque commands is exploited. Compared to
conventional cars [11] the yaw moment Mz can be generated
quite easily by a EV with In-Wheel-Motors. Additionally, it is
assumed that front and rear steering are active, meaning that
front and rear steering are influenced by the control system
and are not strictly coupled with handwheel steering angle.
Such vehicles do already exist as test vehicle in laboratories
[12].

A. Vehicle lateral dynamics modelling

The linear bicycle model in the case of an In-Wheel-Driven
Electric Vehicle with Active Front and Rear steering in the
case of constant vehicle longitudinal velocity vx (As far as
the influence of longitudinal forces in contributing to the
overall lateral forces due to the steering angle is concerned,
we consider this influence as model uncertainty.) is as follows
[13]:
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]
=
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where C f ,Cr are the front and rear cornering stiffness values,
m,Jz the vehicle mass and the vehicle yaw inertia, l f , lr the
distance from the front and rear axle to the center of gravity
and δ f ,δr,Mz the front steering angle,the rear steering angle
and the additional yaw moment respectively. Three inputs are
used to determine the two states (body slip angle β and yaw
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Fig. 1. Bicycle model (left) with combined front lateral and rear lateral tire
forces and definition of tire slip angle α (right). (ay: lateral acceleration, γ:
yaw rate, β : body slip angle, δ f : front steering angle, δr: rear steering angle,
Fy f : combined front lateral tire force, Fyr: combined rear lateral tire force,
Fw: wind disturbance force, l f : distance of front axle from COG, lr: distance
of rear axle from COG , lw: distance of aerocenter from COG).

rate γ). This means it is an over actuated system and control
allocation problem of the type 2 to 3.

The model (1) describes the vehicle in the linear domain of
operation. It assumes that the steering angles δ f ,δr and the tire
slip angles α f ,αr are small. However under certain operation
condition the EV enters the non linear domain of operation.
The allocation scheme should help to keep the EV in the linear
domain of operation.

B. Vehicle lateral dynamics control and allocation problem

A control system for lateral vehicle dynamics is established
as shown in Fig. 2. The controller tries to track the yaw rate
γ and the body slip angle β of the vehicle. It is assumed
that these two quantities are measured/observed. This may be
difficult as far as the body slip angle β is concerned. However,
this estimation problem is not part of this contribution, we refer
to [14]. The controller computes a two dimensional virtual
controller output v∗ which is mapped by using an infinity
norm criteria and the allocation equation to a three dimensional
actuator demand u∗ (true controller output) :

v∗ = Bu∗ (2)

with

B =

[ C f
mvx

Cr
mvx

0
C f l f

Jz
−Cr lr

Jz
1
Jz

]
,u∗ =

 δ f
δr
Mz

 . (3)

In the following we assume a linear relationship between
the tire slip angles α f , αr and the steering angles δ f , δr as
follows:

α f =δ f −β −
l f

vx
γ (4)

Fig. 2. Overview of the considered control system. The controller computes
a virtual control input which is translated by the control allocator to the true
control input. It is assumed that the vehicle yaw rate γ and the body slip angle
β can be measured or observed.

Fig. 3. Instead of allocating the front and rear steering angles directly,
the allocator output u1,u2 are the front and rear tire slip angles which are
translated to the steering angles. By doing so the bounds in the allocation can
be kept constant.

αr =δr−β +
lr
vx

γ (5)

Since the value of the tire slip angles α f , αr are to be kept
small and not necessarily the steering angles δ f , δr in order to
keep the vehicle in the linear range of operation (stable) and
in order to avoid time variant bounds as maximal values in
the allocation equation we decompose the allocated variable
(actuator demand):

u∗ = u0 +u, (6)

where u0 corresponds to the actuator demand corresponding
to zero tire slip angles:

u0(t) =

 β (t)+ l f
vx

γ(t)
β (t)− lr

vx
γ(t)

0

 . (7)

With the decomposition (Fig. 3) of the actuator demand the
allocation problem is formulated as following:

v = Bu. (8)

By combining (2), (6) and (8) it follows:

v = v∗−Bu0. (9)

The entry u1 and u2 of the vector u = [u1,u2,u3]
T can be

directly interpreted as the front and rear lateral tire slip angle
α f ,αr respectively.

389



Taking into account (8), given u it is possible to determine v
uniquely. On the other hand, given v it is generally not possible
to determine uniquely u due to the actuator redundancy.
The problem represented by (8) is referred in the following
as 2 outputs to 3 inputs control allocation problem. The
vector u = [u1,u2,u3]

T in this contribution is also referred as
true controller output and the vector v = [v1,v2]

T as virtual
controller output and

B =

[
b11 b12 b13
b21 b22 b23

]
(10)

as allocation matrix.

III. 2 OUTPUTS TO 3 INPUTS ALLOCATION RESOLUTION

To determine a specific solution from the infinite number
of solutions due to the actuation redundancy an optimization
criteria must be used. The most used criteria is the (weighted)
least square problem (2 norm), mainly because the solution
is expressed by a closed-form expression (using the pseudo
inverse). However, the least square solution does not exploit
the available actuation range very well [6]. In contrast, op-
timization criteria based on ∞ norm allow the use of all the
solution space, but usually the solution is determined using
iterative algorithms. As a consequence, to have a closed-form
solution based on the ∞ norm is highly advantageous.

A. 2 norm based approach

The 2 to 3 allocation problem is resolved using the 2 norm
by solving the following problem:

min
√

(u1)
2

(um
1 )

2 +
(u2)

2

(um
2 )

2 +
(u3)

2

(um
3 )

2

s.t. v = Bu
(11)

The solution of the problem expressed by (11) is obtained
using a generalized pseudo inverse:

uopt = W−1BT (BW−1BT )−1v (12)

where

W = diag(
1

(um
1 )

2 ,
1

(um
2 )

2 ,
1

(um
3 )

2 ). (13)

B. Infinity norm based approach

The 2 to 3 allocation problem is resolved using the ∞ norm
by solving the following problem:

min max
(
|u1|
um

1
, |u2|

um
2
, |u3|

um
3

)
s.t. v = Bu

(14)

The objective function is weighted, that is the three input
values ui for (i= 1,2,3) are scaled by the respective maximum
value um

i for (i = 1,2,3). By doing so the entire solution space

−um
i ≤ ui ≤ um

i , for i = 1,2,3 (15)

is exploited efficiently as shown in III-C.

A closed form solution of the problem (14) is represented
by three functions, each one expressed with a three piecewise
linear function:

u1 =


v1b23um

1 −v2b13um
1

um
1 det13+um

2 det23
if case1

v1b22um
1 −v2b12um

1
um

1 det12−um
3 det23
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−v1(b22um

2 −b23um
3 )−v2(b13um

3 −b12um
2 )

um
3 det13−um

2 det12
if case3

(16)
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2
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2
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(17)

u3 =


−v1(b21um

1 +b22um
2 )+v2(b11um

1 +b12um
2 )

um
1 det13+um

2 det23
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v1b22um
3 −v2b12um

3
um

1 det12−um
3 det23
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v1b21um

3 −v2b11um
3

um
2 det12−um

3 det13
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(18)

where

det23 = b12b23−b13b22 (19)
det13 = b11b23−b13b21 (20)
det12 = b11b22−b12b21 (21)

and

case1 =(kv21v2 ≤ kv11v1 and kv22v2 ≥ kv12v1) or
(kv21v2 ≥ kv11v1 and kv22v2 ≤ kv12v1)

case2 =(kv21v2 ≤ kv11v1 and kv23v2 ≥ kv13v1) or
(kv21v2 ≥ kv11v1 and kv23v2 ≤ kv13v1)

case3 =(kv22v2 ≤ kv12v1 and kv23v2 ≤ kv13v1) or
(kv22v2 ≥ kv12v1 and kv23v2 ≥ kv13v1)

where

kv11 = (b21um
1 +b22um

2 +b23um
3 ) (22)

kv12 = (b21um
1 +b22um

2 −b23um
3 ) (23)

kv13 = (b21um
1 −b22um

2 +b23um
3 ) (24)

kv21 = (b11um
1 +b12um

2 +b13um
3 ) (25)

kv22 = (b11um
1 +b12um

2 −b13um
3 ) (26)

kv23 = (b11um
1 −b12um

2 +b13um
3 ) (27)

Equations (16), (17), and (18) are derived following the same
method used in [6]. They are continuous in all the domain
D = (v1,v2) under the condition that all the denominators are
different from 0 (satisfied for B and um in this work).

C. Infinity Norm Approach: the Reason Why

Fig. 4 shows the graphical comparison between ∞ norm and
2 norm optimization criteria in selecting the optimal solution
for a problem in R2. The dashed line represents the infinite
set of solutions (x,y) that satisfy,

k = αx+ y (28)

where α represents the relationship between the desired output
k and the necessary inputs x and y. The positive constants xmax

390



Fig. 4. Graphical comparison between ∞ norm and 2 norm: solution
comparison (left), no solution for 2 norm (right)

and ymax define the allowable ranges for x and y:

−xmax ≤ x≤ xmax (29)
−ymax ≤ y≤ ymax (30)

The two sets (x2,y2) and (x∞,y∞) in Fig. 4 (left) are the
two solutions of (28) calculated using the 2 norm (the circle)
and ∞ norm (the square) optimization criteria, respectively.
By definition, the infinity norm minimize the maximum input,
therefore it holds:

max{|x∞|, |y∞|} ≤max{|x2|, |y2|} (31)

Therefore, if x and y are bounded as in (29) and (30), the
∞ norm model admits solution for higher values of k than the
2 norm, as shown in Fig. 4 (right). The greater solution space
of the ∞ norm model holds also in R3, the mathematical space
of the redundancy resolution problem in this work.

IV. SIMULATION AND RESULTS

Advantages by using the ∞ norm are now shown by consid-
ering an EV at constant velocity carrying out a ”sine with a
dwell” steering command. The simulation runs have been car-
ried out with the professional simulation environment CarSim.
A highly sophisticated CarSim vehicle model has been used
that considers explicitly the different side slip angles at the
four wheels, load transfer, suspension effects and a complex
non linear tyre model including tire dynamics. Whereas the
control design has been based on a highly simplified model
of the vehicle dynamics as shown in (1), the overall system
simulation used the aforementioned sophisticated CarSim ve-
hicle model. The parameters are set in the following way: mass
m = 830 kg, yaw inertia Jz = 562 kgm2 and front (rear) axle
distance from the center of gravity l f = 0.999 m (lr = 0.701 m)
has been considered. The vehicle is assumed to be running on
a slightly slippery road with µ = 0.7 and the driver to give a
sine with a dwell steering command as depicted in Fig. 5.

As controller a sliding mode controller as described in [4]
has been used, the controller parameter (gains) have been
set once and left untouched during all simulation runs. The
controller gets reference values which are derived from the

Fig. 5. Steering command signal δsteer ”sine with a dwell” used for the
simulation series. The maximal steering angle δmax is varied during the
simulation runs.

”sine with a dwell” steering command:

γre f =
vx

(l f + lr)(1+ v2
x

v2
ch
)

δsteer (32)

where vch is the characteristic velocity of the car. The reference
for the body slip angle has been set to zero, βre f = 0◦.

Two allocation methods have been compared. The first is
the weighted means square solution according to (11) and
the second one is the weighted infinity norm according to
(14) with the closed form solution as described in III-B.
Both methods have been embedded in the scheme of Fig. 3
where the tire slip angles α f ,αr are allocated by the allocation
algorithm instead of the steering angles and after the allocation
translated to the steering angles δ f ,δr by use of (4), (5) and
(6) since the body slip angle β , the yaw rate γ and the velocity
vx are assumed to be known. The torque moment Mz has been
evenly distributed to the 4 wheels. The tire slip angle maximal
values um

1 ,u
m
2 have been set to 5◦ for front and rear tire slip.

The torque moment value um
3 has been set to 2000 Nm. Without

further knowledge of these bounds this seems to be reasonable.
The inclusion of online estimation of these bounds is not
topic of this contribution, it is referred to [15], [16], [17].
Additionally geometric constraints for the steering angles have
been considered in the simulation (δ f ,max = 17◦,δr,max = 4.5◦).

In Fig. 6 and Fig. 7 the steering manoeuvre from Fig. 5 with
two different maximum steering angles δmax is shown in detail.
In Fig. 6 (δmax = 3◦,vx = 70km/h) both approaches (2 and ∞

norm) satisfactorily achieve the desired lateral dynamics. The
yaw rate tracking error is negligible and the body slip angle
kept small. This situation changes (Fig. 7) if the steering angle
of the same manoeuvre is slightly increased (δmax = 3.25◦,vx =
70km/h). In this case the allocation efficiency (by allocation
efficiency we understand the exploitation of the available
solution space according to (15)) of the ∞ norm approach
prevents the controller to reach the actuator saturation. In the
case of 2 norm approach the actuator limitations are reached
and the controller has difficulties to keep the yaw rate tracking
error and the body slip angle small leading to some inaccuracy
in the yaw rate tracking and a pronounced body slip angle
(1.36◦) compared to a negligible body slip angle of 0.18◦ in
the case of ∞ norm approach. In Fig. 8 the tire slip angles
α f ,αr are compared. It can be seen that the allocation is
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Fig. 6. Comparison between 2 norm (left) and ∞ norm (right) allocation
approach at a speed of 70km/h and with maximum steering command δmax =
3◦. The diagram show the yaw rate (top), front and rear steering angle (middle)
and achieved body slip angle (bottom).

different especially after 1 s and that the 2 norm allocation
violates the 5◦ bound meaning that the vehicle becomes highly
non linear which has drastic consequences for the dynamics
control system. During the ”dwell” period of the manoeuvre
the steering actuators saturate.

The overall results are summarized in Tab. I and Tab. II. For
both the 2 and the ∞ norm allocation, the velocity has been
varied from 60km/h to 90km/h and the maximum steering
angle from 2◦ to 4.5◦. The steering angle command is shown
in Fig. 5. It is translated by (32) into an yaw rate reference
value for the controller. In Tab. I the RMS value of the
yaw rate tracking error is shown. It is important to track the
yaw rate very precisely in order to have a high performance
lateral vehicle dynamics. Tab. II shows the maximal body
slip angle occurring during the manoeuvre. A high body
slip angle is undesired, dangerous, and should be avoided.
For low velocities and small steering angles 2 norm and ∞

norm allocation behave equally well. For higher velocities and
steering angles the ∞ norm is superior. Actuator saturation
occurs later (shown with italic numbers) and the body slip

Fig. 7. Comparison between 2 norm (left) and ∞ norm (right) allocation
approach at a speed of 70km/h and with maximum steering command δmax =
3.25◦. The diagram show the yaw rate (top), front and rear steering angle
(middle) and achieved body slip angle (bottom).

Fig. 8. Allocated front and rear tire slip angles α f ,αr comparison between
2 norm (left) and ∞ norm (right) allocation approach at a speed of 70km/h
and with maximum steering command δmax = 3.25◦. Due do the different
allocation strategy, the 2 norm leads to the violation of the bounds (5◦).

angle is quite reduced compared to the 2 norm solution.
For certain combinations of velocity and steering angle the
vehicle gets unstable (marked with ∗). It is a consequence
of the vehicle running into the highly non linear mode of
operation due to lateral tire force saturation and/or actuator
physical saturation. The ∞ norm approach due to its allocation
efficiency enlarges the operation range where the vehicle is not
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speed δmax 2◦ 2.25◦ 2.5◦ 2.75◦ 3◦ 3.25◦ 3.5◦ 3.75◦ 4◦ 4.25◦ 4.5◦

60 km/h 2 norm 0.16 0.18 0.19 0.20 0.21 0.22 0.22 0.56 0.95 1.24 2.29
∞ norm 0.17 0.19 0.19 0.20 0.21 0.21 0.22 0.23 0.47 0.80 1.09

70 km/h 2 norm 0.18 0.20 0.21 0.21 0.21 0.75 1.10 * * * *
∞ norm 0.19 0.20 0.20 0.21 0.21 0.26 0.72 1.05 1.42 1.99 2.72

80 km/h 2 norm 0.20 0.20 0.20 0.49 0.94 * * * * * *
∞ norm 0.20 0.20 0.21 0.22 0.62 0.98 1.38 1.93 2.66 3.67 *

90 km/h 2 norm 0.20 0.19 0.57 0.99 * * * * * * *
∞ norm 0.20 0.20 0.23 0.69 1.07 1.49 2.06 2.88 * * *

TABLE I
RMS VALUE OF THE YAW TRACKING ERROR ∆γ = γre f − γ IN

◦
s FOR THE ”SINE WITH A DWELL” STEERING COMMAND FOR DIFFERENT MAXIMUM

STEERING ANGLES AND DIFFERENT SPEEDS. * MEANS THAT THE VEHICLE BECOMES UNSTABLE, Italic NUMBERS MEAN THAT THE ACTUATOR
SOMETIMES SATURATE DURING THE MANOEUVRE.

speed δmax 2◦ 2.25◦ 2.5◦ 2.75◦ 3◦ 3.25◦ 3.5◦ 3.75◦ 4◦ 4.25◦ 4.5◦

60 km/h 2 norm 0.15 0.16 0.16 0.17 0.18 0.21 0.20 0.39 2.37 3.91 6.73
∞ norm 0.14 0.16 0.17 0.18 0.19 0.20 0.21 0.21 1.11 2.12 2.92

70 km/h 2 norm 0.14 0.14 0.16 0.18 0.18 1.36 3.13 * * * *
∞ norm 0.14 0.15 0.16 0.17 0.18 0.18 1.57 2.36 3.19 3.87 4.05

80 km/h 2 norm 0.13 0.14 0.16 0.73 2.35 * * * * * *
∞ norm 0.13 0.14 0.15 0.16 1.11 1.90 2.67 3.36 3.53 3.76 *

90 km/h 2 norm 0.12 0.15 0.72 2.45 * * * * * * *
∞ norm 0.13 0.14 0.14 1.09 1.81 2.54 2.95 3.17 * * *

TABLE II
MAXIMUM BODY SLIP ANGLE β IN ◦ FOR THE ”SINE WITH A DWELL” STEERING COMMAND FOR DIFFERENT MAXIMUM STEERING ANGLES AND

DIFFERENT SPEEDS. * MEANS THAT THE VEHICLE BECOMES UNSTABLE, Italic NUMBERS MEAN THAT THE ACTUATOR SOMETIMES SATURATE DURING
THE MANOEUVRE.

yet into the heavy non linear region. However, if especially
due to bad road condition and too high velocity and/or large
steering angles with regard to the µ value of the road the
controller demand cannot be realized, the reference signal
should be adapted.

V. CONCLUSIONS AND OUTLOOK

In this work a new approach to solve the 2 to 3 control
allocation problem in EV lateral dynamic control is proposed.
The algorithm is based on the infinity norm and a closed-
form solution for the specific problem of EV lateral dynamic
control is derived. The solution is implemented with a defined
low number of arithmetic and logic operations. In contrast
to the 2 norm approach, when using the proposed algorithm
the linear region in which the EV operates is extended, the
actuator saturation occurs at higher velocity, the body slip
angle at high velocities is significantly reduced, the maximum
velocity at which the EV shows instability is increased. Further
research will be to consider each wheel of the IWM driven
EV separately. Together with the steering actuators (front and
rear), 6 actuators must be controlled. Depending how many
vehicle dynamics output variables should be controlled it could
be a (3 to 6), (4 to 6), or (5 to 6) allocation problem. A specific
closed form solution based on infinity norm for such higher
dimensional problems will be investigated.
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[1] O. Härkegård, Backstepping and Control Allocation with Applications to
Flight Control., PhD Thesis, Dept. of Electr. Eng., Linköping Univ., 2003.
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