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Abstract—Driver assistance systems such as automatic 
steering for lane keeping are of particular importance for 
vehicle’s lateral safety, and onboard look-ahead cameras are 
widely employed to acquire surrounding information for 
realization of such applications. In fact, vision-based lane keeping 
and automatic steering have been intensively studied in the past 
few decades. Meanwhile, electric vehicles, as green solutions for 
future transportation, are gaining increasing attentions 
nowadays. From the viewpoint of motion control, differential 
torque between left and right in-wheel-motors is considered as an 
effective method for lateral safety control of electric vehicles. 
Nevertheless, the sampling rate of normal cameras is 30 Hz, 
which is much slower compared with that of motors and other 
kinds of onboard sensors. Moreover, image processing brings 
uneven time delay (which is usually measurable) into the visual 
signals, which further complicate the system sampling sequence. 
Many previous research simply adapt the whole system’s 
sampling frequency to the camera; however, the held and 
random delayed feedbacks deteriorate system performance and 
may cause instability. In this paper, the two problems are solved 
by a multi-rate Kalman filter with random measurement delays 
compensation using a residual estimation technique. 

 Keywords—Electric vehicle, integrated motion control, 
multi-rate estimation, measurable uneven measurement delay, 
vehicle lateral position, vision system. 

I.  INTRODUCTION  
For vehicle safety control systems, online state information 

such as yaw rate and lateral position with reference to the road 
are considered as key enablers. In [1], a yaw moment control 
algorithm was developed using differential torque of in-wheel-
motors (IWMs) for effective vehicle yaw motion stabilization. 
Another research tried to control both yaw rate and body slip 
angle at the same time using IWMs [2]. Yaw rate can be easily 
obtained from gyroscope which is widely used for a variety of 
motion control applications. On the other hand, automatic 
steering devices for lane keeping have been extensively 
investigated by automotive companies and research institutions. 
Joel C. McCall et al. surveyed some previous researches, 
proposed their own methods for lane detection and evaluated 

the methods with systematic criteria [3]. Another research was 
conducted by M. Bertozzi et al. [4], in which stereo vision 
system was employed to detect lane markers and obstacles on 
the road. While lane keeping strategies of these proposed 
methods differ somewhat, most of them use cameras and image 
processing systems for lane detection and location. 

For yaw motion control and vehicle position control, most 
of the previous studies developed them independently [1]-[4]. 
However, they have to be considered together in many cases. 
For example, even if the yaw rate is controlled to be zero, the 
vehicle may deviate from the desired path [5]; on the other 
hand, the vehicle may spin even the vehicle is kept within the 
lane. That is, vehicle motion and position control should be 
considered in a systematic way. Therefore, some studies 
investigated integrated vehicle lateral stability systems such as 
control yaw rate and heading angle [5]. In this paper, an 
integrated lateral controller addressing yaw motion and vehicle 
position at the same time is investigated for electric vehicles 
(EVs). In fact, vehicle heading angle and vehicle lateral 
position are coupled as can be seen later in this paper, and they 
are equivalent in the sense of position control. 

In case of EVs, the sampling time of traction motors is in 
millisecond-level. Considering the open loop stability margin, 
faster feedback is desirable compared with traditional vehicles 
using internal combustion engines and hydraulic actuator. 
Unfortunately, the sampling rate of normal cameras is not fast 
enough for realization of such motion control applications. 
That is, multi-rate issue exists in both state estimation and 
control for EVs. In addition, due to the variation of incoming 
images and processing loads, image processing time is not 
constant in practice. In this study, the information from vision 
system is considered to be random delayed. For measurement 
delay, a widely employed approach is to augment the states 
with delayed measurements. However, in case of uneven and 
large time delay as studied in this research, expansion of 
system state space equation is not practical. In this paper, the 
measurable uneven delay issue is solved with a residual 
reconstruction approach. Moreover, the aforementioned 
sampling mismatch of vision system and other onboard sensors 
is addressed in the Kalman filter design. 
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Fig. 1. Combined vehicle and vision model. 

 

II. SYSTEM MODELLING 
The model utilized in this research is constructed based on 

the model utilized in [6], and it is a combination of vehicle 
dynamic model and vision kinematic model. With this model, 
vehicle lateral position can be estimated accordingly. 

For state estimation and control of EVs, bicycle model 
considering the yaw moment generated by the left and right 
IWMs is usually employed. The vehicle model used in this 
research is shown in Fig. 1, where Frl and Frr are the forces of 
IWMs, and they can be different for the generation of yaw 
moment Nz. The governing equations are given in equations (1) 
and (2), where β and γ are the body slip angle and the yaw rate 
at the vehicle’s center of gravity (CoG), respectively, δf is the 
front-steering angle, Vx is the vehicle’s longitudinal velocity, 
Vcg is the vehicle’s velocity at CoG, m is the vehicle mass, I is 
the moment of inertia about the yaw axis, Cf and Cr are the 
cornering stiffness of the front and rear wheels, respectively, lf 
and lr are the distances from the CoG to the front and rear 
wheels, respectively. 
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The vehicle dynamic model is independent of road 
reference, whereas the vision kinematic model is obtained 
from the geometric relationship between the vehicle and the 
road. The vision model is also shown in Fig. 1, where yl is the 
lateral offset at a preview point, ψ denotes the heading angle, 
ycg is the lateral offset at the vehicle’s CoG, and lpre is the fixed 
preview distance that needs to be calibrated beforehand. The 
gray borders in Fig. 1 are the lane makers, and the vision 
system is located at the vehicle’s CoG. In this model, 
assumptions that the vehicle travels along a straight road and 
that the onboard vision system detects the lane and provides 
relative position information were made.  

Vehicle lateral offset at a preview distance yl and heading 
angle ψ can be described as equations (3) and (4). Detailed 
derivations can be found in [7]. 
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Combining (1) to (4) yields a new system that is 
represented in a continuous state space form as equation (5). 
The first two states are modelled by the vehicle model and the 
latter two are modelled by the vision model. Clearly, the 
vision model contains much fewer uncertainties compared 
with the bicycle model. 
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 In the combined vehicle and vision models, the 
measurable outputs are yaw rate, vehicle heading angle, 
and lateral offset at the preview point. The control inputs 
are steering angle and yaw moment. 
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Fig. 2. Sampling sequence of sensing devices. 



III. PROBLEM STATEMENT 
To apply the Kalman filter in real time, equation (5) needs 

to be implemented in the discretized form, as shown in 
equation (6), where k is the time step. As the system model 
contains uncertainties and the sensor measurements are 
contaminated by noises, process noise wk and measurement 
noise vk are also included. The state space matrices are time 
varying because of changes in vehicle parameters.  

1
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Unlike other kinds of onboard sensors, data from vision 
system is unevenly delayed and the sampling time of a camera 
is longer than the other sensors. The sampling sequence is 
shown in Fig. 2. 

A. Uneven Sampled Visual Data 
Measurements from the vision system are random delayed 

because of image processing. Therefore, the visual output 
equation becomes 

_ _
(7)
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where Td_i is the time delay of the vision signals, i is the time 
visual stamp of image, and i = 1, 2, 3, … , nd_i = Td_i / Ts. 

From equation (7), it can be known that the information 
from the vision system at step k represents the measurement at 
step k-nd_i. It should be noticed that nd_i is not constant due to 
the change of image processing time. In this research, Td_i is 
assumed to be less than one sampling period of the camera, 
therefore, nd_i can only be one value from the set {1, 2, …, 33} 
at an arbitrary i. In case of constant and small time delay, 
augmentation of state vector can be effectively employed. 
However, it is calculation intensive and complex for the 
random delay with large multi-ratio as discussed in this study. 

B. Multiple Sampling Rates 
In the combined system model, two different measurement 

times are available: the updating time of yaw rate is short 
(defined as Ts), and the sampling period of camera is much 
longer (defined as Tl). The multi-rate ratio n is defined as Tl /Ts. 
Therefore, the selection of Ts and Tl for system discretization 
needs to be considered. If the system sampling time is set to Tl, 
data from the high-speed sensors have to be dropped during 
inter-samples of the slow-speed device. This is a 
straightforward solution for the multi-rate issue but obviously 
deteriorates the estimation performance. An alternative 

method is to set the system sampling time to Ts; then, all the 
information from the fast-rate sensors can be utilized. 
However, as expressed in equation (8), visual data are not 
always available at every time step. Therefore, the inter-
sample residuals of the visual information must be addressed. 

_

_

( 1) ,

( 1) .

[ ]

[ 0 0]

(8)
l d i

l d i

sk k l k

sk

i T T T

k

i T T T

Ty if k
y

T if k

γ ψ

γ

⎡ ⎤− ⋅ +⎢ ⎥⎣ ⎦
=

⎡ ⎤− ⋅ +⎢ ⎥⎣ ⎦

=

≠

⎧
⎪⎪
⎨
⎪
⎪⎩

 

 

IV. KALMAN FILTER CONSIDERING MULTI-RATE AND 
MEASURABLE UNEVEN DELAYED MEASUREMENTS 

As aforementioned, with the combined system model, two 
issues need to be considered in the Kalman filter design, 
namely, measurable uneven delay issue and multi-rate issue. 
Aimed at solving the uneven and multi-rate sampling issues, a 
multi-rate Kalman filter with inter-samples estimation is 
designed. Moreover, the multi-rate Kalman filter takes more 
information from high-speed sensors and increases the 
updating rate of the estimator for high-performance control. 

First, the system is discretized with the sampling time of 
the fastest device (T is set to 1 ms in this research). Next, the 
time and measurement updates need to be designed. For the 
time update, the multi-rate Kalman filter can be implemented 
in the same way as the single-rate one. The camera’s sampling 
period is Tl -Td_i+Td_i+1 and during the sampling intervals, no 
information from the vision system is available. Therefore, 
pseudo-corrections have to be implemented for the operation 
of the measurement update. For Kalman filter design, 
measurements are utilized for residuals calculation, therefore, 
the residuals will be considered instead of the measurements 
in the remainder of this paper. 

A. Reconstruction of Sampling Sequence 
As can be seen in Fig. 2, the out-of-sequence visual 

information is not straightforward for fusion with other sensor 
signals, and it is therefore desired to reconstruct the visual 
signals. Consider that the image data are sampled at (i-1)·Tl, 
but are not available until time (i-1)·Tl +Td_i, it is reasonable to 
assume that the samplings are taken at (i-1)·Tl +Td_i instead of 
(i-1)·Tl. Thus, the delay is removed from the reconstructed 
sampling sequence. As the measurements at (i-1)·Tl +Td_i 
represent the information at (i-1)·Tl, and corresponding 
modification of residual is necessary. 

After the above re-arrangement, the delays are removed 
from the measurements. However, the visual updates are still 
uneven and the sampling time is much longer than that of the 
yaw rate. The problem of this study is then transformed into 
designing a multi-rate Kalman filter for a discrete system with 
random multi-rate ratio. Two points need to be considered in 
this case: 1) residual modification at every (i-1)·Tl +Td_i time; 
2) residual estimation between every neighbouring visual 
samples. 
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Fig. 3. Measurement reconstruction. 

 

B. Residual Estimation Methodology 
  Remember that the vision model is free of uncertainty, i.e., 

the vision model can be trusted, it is possible to derive the 
propagation equations of the residual using the vision 
kinematic model. The definition of residual and estimation 
error are shown in equations (9) and (10), respectively. The 
two equations play important roles in the residual calculation. 
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      The overall algorithm can be summarized as: first consider 
the idea case when measurements are available at every Ts 
without delay, and derive the residual propagation equations. 
Then apply them to the multi-rate and delayed case. 

       In the idea case, from the definition of the estimation 
error, the estimation dynamics at step k+j can be propagated 
using (11). 
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      The residual at step k+j is given by equation (12), and it 
can be updated using equation (11). 
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      Combine equations (13) and (14) together, the propagation 
equation of residual is formulated as 

1
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     Then, apply the residual calculation equation to the 
reconstructed measurements. The algorithm can be 
generalized in three situations as follows: 

1) Initial nd_1 steps: 

At step k in [0, nd_1), the residual εk is 0 due to the delay 
of measurement, i.e., the measurements are not 
available for initial residual calculation. 

2) Reconstructed residual at each (i-1)·n + nd_i step: 

The measurement at each (i-1)·n + nd_i step represents 
information at step (i-1)·n, and the correct residual at 
that step is given as 

 ( ) ( ) ( )1 1 1 (14)vis vis
i n i n i nCy xε −
− ⋅ − ⋅ − ⋅= − ⋅

 

Based on the propagation equation in (13), the residual 
at step (i-1)·n + nd_i  can be calculated as 
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This can be interpreted as: prepare the correct residual   
propagation matrix, and then calculate the final 
residual when measurements are available. 

3) Inter-sample residual: 

The basic idea of the inter-sample residual estimation 
is to utilize the residual of the step 2) that is available 
and propagate it to the following inter-measurement 
steps. After n-nd_i 1+nd i steps (delayed steps), the 
residual is recalculated when “new measurement” 
come in. However, it should be noticed that the so-
called “new measurement” is not new because it is the 
delayed information. Between every two neighbouring 



sampling times of the camera, the residual εk can be 
expressed as 
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V. INTEGRATED LATERAL CONTROL FOR ELECTRIC 
VEHICLES 

As aforementioned, independent yaw control or lane 
keeping control has limitations. Therefore, controlling yaw 
motion and vehicle lateral position at the same time is 
desirable. As shown in Fig. 4, two controllers are incorporated 
in the system. The upper controller is designed for vehicle 
lateral position manipulation, i.e., if the vehicle is deviated 
from the desired path, the controller generates a steering 
control command for path correction. The lower controller is 
implemented for yaw motion stabilization based on the well-
known two-degree-of-freedom controller and yaw moment 
observer (YMO) [1]. The steering input for vehicle position 
control generates a desired yaw rate (it is simplified as a first 
order transfer function in this simulation), and the differential 
torque of EVs can correct yaw motion in case of undesired 
vehicle movement. Obviously, there are two feedback loops: 
yaw rate feedback and lateral position feedback loops. Due to 
the sampling restriction of vision system, the two loops have 
different sampling rates. That is, yaw rate has higher sampling 
frequency than the visual information; moreover, the vision 
signals are contaminated by time-varying delays. Thus, the 
multi-rate Kalman filter considering measurable random delay 
proposed in the previous section can be employed to generate 
the lateral position signal at the same updating rate as yaw rate. 
Then, the sampling time of the overall system can be unified. 
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Fig. 4. Integrated lateral controller for EVs. 

VI. SIMULATIONS AND EXPERIMENTS 
A. Performance of the proposed multi-rate Kalman filter 

with random delay compensation  

The performance of the proposed multi-rate Kalman filter 
was compared with the other methods in simulation. The 
vehicle was assumed to run at a speed of 25 km/h, and a 
sinusoidal steering input was given. To simulate real 
conditions, the vehicle model and the Kalman filter model 
were made different from each other. The random delay 
pattern was repeated as {20ms, 15ms, 10ms, 25ms}. The 
performance of the proposed method is shown in Fig. 5. For 
comparison, a method that assumes a constant delay is also 
provided. As can be observed, the measurement is random 
delayed and held; if a constant delay is assumed, the 
estimation performance is not satisfying. Meanwhile, the 
proposed multi-rate Kalman filter with measurement 
reconstruction and inter-sample compensation provided the 
best estimation result compared with the other methods. Field 
tests were conducted with our experimental vehicle. A 
sinusoidal steering input was provided by the driver, and the 
vehicle speed varied from 0 km/h to 30 km/h during the 
operation. Similar to the simulation settings, the Cf and Cr of 
the Kalman filter model were made different from those of the 
real vehicle. In fact, the true vehicle model can not be exactly 
known in all driving conditions. The proposed multi-rate 
Kalman filter with measurement reconstruction and residual 
compensation was compared with the constant delay method 
in Fig. 6. The multi-rate Kalman filter with constant delay 
compensation could not provide delay-free estimate as the 
proposed approach. 
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Fig. 5. Estimation methods comparison in simulation. 
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Fig. 6. Estimation methods comparison based on experimental data. 
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Fig. 7. Control performance comparison (yaw rate). 
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Fig. 8. Control performance comparison (heading angle). 
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Fig. 9. Control performance comparison (lateral position). 

 

B. Performance of the proposed controller  

The proposed controller was verified by simulations, and 
traditional methods were also applied in the simulations for 
comparison. Fig. 7 shows the yaw rate control performance 
comparison. In case of lane keeping control only, the yaw rate 
in two traditional cases were very large. With the proposed 
integrated controller, yaw rate was suppressed effectively. Fig. 
8 and Fig. 9 are the heading angle comparison and lateral 
position comparison, respectively. In case of position control 
only, yaw moment is zero, i.e., no control is applied, and a 

yaw moment is generated for the integrated vehicle lateral 
control. If a 33ms control period is assumed, both the heading 
angle and lateral position control performance were poor. In 
case of 1ms control period, the performances were improved, 
and the integrated controller can had the same performance as 
the 1ms lane keeping controller. In summary, if the vehicle is 
only controlled by a position controller, the yaw rate differs 
from the desired value and, the yaw rate in case of the 
integrated controller can make the vehicle track the desired 
value. 

 

VII. CONCLUSIONS 
  In this paper, considering the importance of vehicle lateral 

control, a methodology for vehicle lateral position estimation 
was proposed. Then an integrated vehicle lateral controller to 
address both vehicle position and motion was developed. First 
of all, the combined vehicle and vision model was derived. 
Then, the multi-rate and measurable uneven time-delay issues 
were explained and formulated. Aimed at solving the uneven 
and multi-rate sampling issues, multi-rate Kalman filter is 
designed. Finally, simulation and experiment results were 
demonstrated to show the effectiveness of the proposed 
Kalman filter, and simulations were conducted to verify the 
integrated control system. The future work of this research is 
to apply the integrated controller to our experimental vehicle 
for realistic verification. 
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