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Abstract– This paper proposes an approximate algorithm for solving an l1- minimization problem used for
reconstructing the system output. Firstly, the equality constraints are eliminated and the problem is reduced
to be an optimization problem with only linear inequality constraints. Then, the non-differentiability of the
objective function is relaxed using a regularization parameter. Finally, the solution is determined by taking
advantage of the characteristic of constraints. The algorithm can remarkably reduce the calculation time
compared with conventional solvers.
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1 Introduction
Quantization in I/O signals is an inherent fea-

ture in many control systems including digital sys-
tems, networked ones, low resolution sensor/actuator
systems, and so on. In some cases, the quantization
error is substantially small compared to system noise
and the desired control accuracy. However, this is not
always the case in various systems such as the com-
puter storage systems, NC machine tools, industrial
robots and ultra-precision positioning systems where
the required accuracy is nano order. In these sys-
tems, the quantization error caused by low-resolution
sensors could significantly degrade the control perfor-
mance and may cause limit cycle oscillations [1].

In order to cope with the quantization effects,
various methods were proposed in the literature to
reconstruct the real system output. One strategy is
to utilize the system model information. For instance,
some observer-based methods were proposed to esti-
mate the system state, and a reconstruction output
can be obtained by utilizing the estimated state and
the model information [4, 5]. Hirata et al. proposed
a method to estimate the quantization error directly
via the least square method in the presence of con-
stant disturbance [6]. However, since these methods
strongly depend on the system models, the accuracy
of the reconstructed output could be degraded dras-
tically when the models are not precise.

There is another line of research on reconstruct-
ing the real system output from the noise-corrupted
output by curve fitting methods. For instance, poly-
nomial filtering approaches were proposed to recover
the non-uniformly sampled signals [7], and position
signals obtained from incremental encoders [8]. The
methods can work well if the output signal can be lo-
cally approximated by low-degree polynomials. How-
ever, if this is not the case, higher-degree polynomials
are required. Hence, it would be difficult to adopt the
methods.

Based on the above observation, Zhu et al. pro-
posed a method to reconstruct the position and esti-
mate the velocity of motion systems based on low-
resolution encoders [2]. The methods transformed
the reconstruction problem into a convex optimiza-
tion problem combining a curve fitting approach with
the observer-based ones. The methods can achieve the
smooth position/velocity estimation with high preci-
sion even if the encoder resolution is extremely low.
However, the conventional solvers, such as the barrier
method, may take too much processing time to solve
the optimization problem in real time.

The purpose of this paper is to develop an al-
gorithm for efficiently solving the optimization prob-
lem proposed in [2]. Firstly, the equality constraints
are eliminated so that the optimization problem is
reduced to be a minimization problem with linear in-
equality constraints. Then, the non-differentiability
of the objective function is relaxed by applying the
approximation ‖x‖1 ≈

∑n

i=1

√

x2
i + µ (x ∈ R

n) where
µ > 0 is a regularization parameter. Finally, the op-
timal solution is achieved by seeking for the shortest
distance between the solution of the non-constraint
problem and the feasible set.

This paper is organized as follows. In Section
2, the system model is introduced, and the problem
setting is described. Section 2.2 presents the polyno-
mial fitting approach based on convex optimization
that consists of the ℓ1-norm regularization method
and some constraint conditions. A numerical exam-
ple is given in Section 4 to illustrate the advantages
of the proposed approach. In Sections 5, the pro-
posed algorithm is implemented in DSP, and its effec-
tiveness is demonstrated through experiments using a
high-precision positioning stage. The conclusions are
summarized in Section 6.

2 Problem formulation
2.1 System description

Consider the linear time-invariant SISO system
with quantized output given by

x[k + 1] = Ax[k] + Bu[k] + w[k], (1)

y[k] = Cx[k], (2)

yq[k] = Q(y[k]), (3)

where x ∈ R
n, y ∈ R, and yq ∈ R are the system

state, the system output, the corrupted output and
the quantized output, respectively. v ∈ R is the mea-
surement noise and w ∈ R is the unknown input dis-
turbance. A, B, C are constant system matrices of
appropriate dimensions. Q(·) denotes the quantiza-
tion. For simplicity, w is assumed to be white noise in
this study. If this is not the case, augmented system
can be constructed by properly modeled the distur-
bance [2].

The function Q(·) in (3) is assumed as the uni-
form quantization defined by

Q(y) = i ·∆, y ∈ ((i− 0.5)∆ , (i + 0.5)∆] (4)

where i ∈ Z, ∆ > 0 denotes the quantization step.
The quantizer (4) could represent low-resolution op-



tical encoders or analog-to-digital converters in real
systems, where ∆ is referred to as the resolution.

The difference between the system output y and
the measured quantized output yq, denoted by ξ :=
y − yq, is bounded by

|ξ| ≤ ∆

2
. (5)

2.2 Output reconstruction

In this subsection, the output reconstruction ap-
proach proposed in [2] is introduced. Then, a conven-
tional algorithm for solving the optimization problem
is presented.

2.2.1 Polynomial fitting formulation

A polynomial for fitting p + 1 quantized mea-
surements ({yq[k − i]}i=0,1,··· ,p) is considered. Here,
k denotes the current time instant. In order to do so,
first, choose the time interval [a b] in advance, and
introduce the virtual time indices {τi}i=0,1,··· ,p, which
are defined by

τ0 = a, τ1 = a + h, · · · , τi = a + ih, · · · , τp = b,

where h = (b−a)/p, to equally divide [a b]. Then the
data (τi, yq[k − p + i])

i=0,1,··· ,p
are fitted in Euclidean

space with the polynomial:

gk(t) = α0 + α1τ + α2τ
2 + · · ·+ αmτm, (6)

where τ ∈ [a b], α0, α1, · · · αm are the polynomial
coefficients, and m is the degree of the polynomial.
Without loss of generality, m is assumed to be m ≤
p + 1. The fitting problem is formulated by

min
α

:
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2

+ η‖α‖1, (7)

with variable α := [α0 α1 · · · αm]T . Here, η is the
weighting factor. This is an ℓ1-norm regularization
problem, and can be expressed by

min
α

:
1

2
‖Tα− β‖22 + η‖α‖1, (8)

where T =
[

τ j
i

]

and β =
[

yq[k − p + i]
]

(i =
0, 1, · · · , p and j = 0, 1, · · · , m).

Note that (8) becomes a normal least-square
polynomial fitting problem if η = 0. In this way,
the unnecessary terms of the polynomial (6) can be
removed automatically if a high-degree polynomial is
used to fit a simple signal. In practical situation, m
can be relative large so that simple signals as well as
complex signals could be properly fitted. According
to the recommendation in [2], [a b] is chosen as [−1 1]
in this study.

2.2.2 Moving horizon manner

Once the convex optimization problem (8) is
solved, the polynomial (6) is determined. Hence, the
quantity ȳ[k] is given by

ȳ[k] := gk(τp) = τT
p α, (9)

where τp = [1 τp τ2
p · · · τm

p ]T , which is regarded
as the reconstruction value of the true output y[k].
When the time instant k is updated, say, from k to
k + 1, a new quantized measurement yq[k + 1] is sam-
pled. Then, a new polynomial gk+1(τ) can be deter-
mined by fitting the new data {yq[k − p + 1], yq[k −
p + 2], · · · , yq[k + 1]}. The updated quantity ȳ[k + 1]
is calculated by

ȳ[k + 1] = gk+1(τp).

Figure 1 shows the updating strategy. As shown
above, ȳ[k] is determined from the data {yq[k −
p], yq[k−p+2], · · · , yq[k]} in the moving horizon man-
ner. In the case of k ≤ p, yq[k− i] (i = k, k+1, · · · , p)
is set as yq[k − i] := 0.

2.2.3 Constraint conditions

In order to improve the reconstruction accuracy,
some constraint conditions are added in the optimiza-
tion problem (8) by taking advantage of the model
information.

First, since the discrepancy between the system
output y[k] and the corresponding quantized output
yq[k] is bounded by (5), the quantity ȳ[k] should be
bounded by

|ȳ[k]− yq[k]| ≤ ∆

2
. (10)

According to (6) and (9), this condition can be ex-
pressed by

∣

∣τT
p α− yq[k]

∣

∣ ≤ ∆

2
. (11)

Note that the left hand side of (11) is convex with
respect to α.

Second, the fitting curve gk(t) (at time instant k)
should take ȳ[k-1] into account as well as the quan-
tized output sequence yq[i] (i = k, k−1, · · · , k−p). In
addition, the system information (including the dis-
turbance model) should be taken into account. Let
ŷ[k] be the output of the observer for the system
(1)∼(3). Namely,

x̂[k + 1] = Ax̂[k] + Bu[k] + L(ȳ[k]− ŷ[k]), (12)

ŷ[k] = Cx̂[k], (13)

where L ∈ R
n×1 is the observer gain to stabilize A−

LC. Then, the following two constraints are added.

gk(τp−1) = ŷ[k − 1], (14)

ġk(τp− 1

2

) =
1

h
(ŷ[k]− ŷ[k − 1]). (15)

where τp− 1

2

is the mid-point in the internal [τp−1, τp],

and ġk(τ) is the first derivative of the polynomial (6),
which is given by

ġk(τ) = α1 + 2α2τ + · · ·+ mαmτm−1. (16)

Equation (14) indicates that ŷ[k − 1] and ȳ[k] belong
to gk(τ), and equation (15) is a slope condition for ob-
taining smooth reconstruction. Conditions (14) and
(15) can be expressed by

Γα = γ, (17)
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Fig. 1: Updating strategy. A new polynomial is calculated when the time instant is updated.

where

Γ =

[

1 τp−1 τ2
p−1 · · · τm

p−1

0 1 2× τp− 1

2

· · · m× τm−1
p− 1

2

]

,

γ =

[

ŷ[k − 1]
1
h
(ŷ[k]− ŷ[k − 1])

]

.

Note that Γ is full row rank. For the implementation
of real-time calculation, ŷ[k] is computed via

ŷ[k] = C
[

Ax̂[k − 1] + Bu[k − 1] +

L
(

ȳ[k − 1]− ŷ[k − 1]
)

]

. (18)

2.2.4 System output reconstruction

The quantized output reconstruction algorithm
is summarized as follows:

Algorithm for output reconstruction:

1. Choose proper values for p, m, η; set initial
value for β as β = 0, assign the values for ∆;

2. repeat

(a) Sample the position measurement yq[k], up-
date the vector β;

(b) solve the problem

min
α

:
1

2
‖Tα− β‖22 + η‖α‖1 (19)

subject to : (11), (17)

to obtain α;

(c) calculate ȳ[k], x̂[k] by (9), (12) and (13);

(d) set k ← k + 1.

The optimization problem (19) is a convex opti-
mization problem and can be solved efficiently. Note
that the constraint conditions are independent with
each other, the problem is therefore feasible if the
polynomial (6) has a degree not less than 2 (m ≥ 2).

The optimization problem (19) can be rewritten
by

min
α, ρ

:
1

2
‖Tα− β‖22 + η

m+1
∑

i=1

ρi, (20)

subject to :

Γα = γ
∣

∣τT
p α− yq[k]

∣

∣ ≤ ∆
2

− ρi ≤ αi ≤ ρi, i = 1, · · · ,m + 1.

The minimization problem (20) is a quadratic pro-
gram (QP), and a considerable number of approaches
have been proposed in the recent years including
interior-point methods [9]. However, solving the prob-
lem in real-time for field applications, such as DSP, is
a remaining issue [2]. In the next section, a novel
approach is proposed to solve the problem efficiently.

3 Algorithm
3.1 Eliminating Equality Constraints

Suppose F ∈ R
(m+1)×(m−1) is a matrix whose

range is the nullspace of Γ (ΓF = 0) and α0 is a
particular solution of (17), the the affine feasible set
is given by

{α |Γα = γ} = {Fz + α0 |z ∈ R
m−1}. (21)

The eliminated optimization problem of (19) becomes

min
z

:
1

2
‖Mz + ζ‖22 + η‖Fz + α0‖1, (22)

subject to : |λT z + ξ| ≤ ∆

2

where M = TF , ζ = Tα0 − β, λT = τT
p F and

ξ = τT
p α0 − yq.

3.2 Convex Relaxation

In order to overcome the non-differentiability of
the second term in the objective function of (22), we
consider the homotopic principle used in [3] which

consists in approximating ‖ω‖1 by
∑m+1

i=1

√

ω2
i + µ,

where µ > 0 is a regularization parameter tending
to zero. The objective function of the optimization
problem (22) is expressed by

f(z) =
1

2
‖Mz+ζ‖22+η

m+1
∑

i=1

√

(Fz + α0)2i + µ, (23)

where (·)i denotes the ith element. The function (23)
is strictly convex since

∇2f(z) = MT M + η
m+1
∑

i=1

µF T
i Fi

[(Fiz + α0i
)2 + µ]

3

2

is positive definite. Here, Fi is the ith row of F and
α0i

is the ith element of α0.

3.3 Approximation algorithm

Note that a) the objective function of (22) is
strictly convex and b) the feasible set is a polyhedral
set bounded by two parallel hyperplanes, as shown
in Fig. 2. In the figure, α∗ is the optimal solution
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Fig. 2: Feasible set of the problem (22). The solu-
tion α∗ is the optimal solution without considering
the inequality constraints. The solution α⋆

1,2,3 are the
potential optimal solutions.

of (22) without inequality constraints (calculated by
α∗ = Fz∗ +α0 where z∗ is the solution of (22) with-
out constraints), and α⋆

j (j = 1, 2, 3) are the potential
optimal solutions explained in the following. α⋆

2 is the
nearest point from α∗, and α⋆

1,3 are the solutions to
maintain the sparse characteristics of the optimization
problem (19). In the following, an algorithm is pro-
posed to find out the solution α⋆

2 for the optimization
problem (19).

Algorithm for solving the problem (22)

1. Solve the problem (22) without considering the
constraint conditions to obtain z∗;

2. Calculate α∗ by α∗ = Fz∗ + α0;

3. If

α∗ ∈ {α | |τT
p α−yq[k]| ≤ ∆

2 }, then α⋆
2 = α∗,

else
Apply the orthogonal projection of α∗ to the

hyperplanes τT
p α−yq[k] = −∆

2 and τT
p α−yq[k] =

∆
2 to obtain the pedal points α1 and α2, then

if ‖α∗ − α1‖2 < ‖α∗ − α2‖2, α⋆
2 = α1, else

α⋆
2 = α2.

The concept is shown in Fig. 2. Step 1 in the
algorithm is realized by solving the extremum of the
objective function of (22), as shown in the following.

The gradient of f(z) is

∇f(z) =

(

MT M+η
m+1
∑

i=1

F T
i Fi

√

(Fiz+α0i
)2+µ

)

z

+MT ζ+η
m+1
∑

i=1

α0i
F T

i
√

(Fiz+α0i
)2+µ

(24)

The optimal solution z∗ is obtained by solving the
following system of nonlinear equations

(

MT M+η
m+1
∑

i=1

F T
i Fi

√

(Fiz+α0i
)2+µ

)

z

=−MT ζ − η
m+1
∑

i=1

α0i
F T

i
√

(Fiz+α0i
)2+µ

. (25)

Table 1: Comparison of different algorithms
solver calculation time average error er

CVX 46.1 min 4.44e−6

fmincon 351 sec 7.95e−6

proposed 6.19 sec 4.06e−6

Since

(

MT M+η
∑m+1

i=1
F T

i
Fi√

(Fiz+α0i
)2+µ

)

is positive

definite, (25) can be cast as a fixed point problem of
the form

z = φ(z), (26)

where

φ(z) =

(

MT M+η
m+1
∑

i=1

F T
i Fi

√

(Fiz+α0i
)2+µ

)−1

×
(

−MT ζ − η
m+1
∑

i=1

α0i
F T

i
√

(Fiz+α0i
)2+µ

)

.

In order to solve (26), we proceed by taking an initial
solution z−, and iteratively, compute z = φ(z−) until
two consecutive solutions z and z− are sufficiently
close.

The calculation of pedals in step 3 of the algo-
rithm is obtained by

α1,2 = α∗ +
δ − τT

p α∗

τT
p τp

τp, (27)

where δ = yq[k]− ∆
2 for α1 or δ = yq[k] + ∆

2 for α2.

4 Illustrative examples
In this section, one numerical example is given

to illustrate the effectiveness of the proposed method.
Consider the motion system given by

G(s) =
26.5

14.7s2 + 24s
, (28)

and the quantization step is set as ∆ = 50 µm. For
implementation, the system is discretized by the sam-
pling period Ts = 1 ms. In the setup, the order of the
polynomial in (6) is set as m = 6, the number of
quantized output used for fitting is p + 1 = 30, and
the weight factor is η = 7× 10−6. The observer gain
L in (12) (13) is properly given as [0.1083 2.8111]T so
that the bandwidth is 8 Hz.

The input u is set as u = 0.3 sin(πt), and the
initial output is 0.1 m. For comparison, a widely
used software CVX [13] and the function “fmincon”
in Matlabr using the algorithm of “sqp” are imple-
mented. The reconstruction error used for evaluation
are defined by

er := ȳ − y. (29)

The comparison of the calculation time and the accu-
racy of reconstruction error evaluated via Root-Mean-
Square (RMS) is shown in Table 1. The results show
that the proposed algorithm can remarkably reduce
the calculation time while maintaining the comput-
ing accuracy.

The numerical simulations for comparing
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(a) quantized output yq,

(b) an observer-based output estimate ŷ,

(c) the reconstructed output ȳ using the proposed
algorithm,

are also performed. The block diagram is shown in
Figure 3. For comparison, the errors of different meth-
ods are defined:

eq := yq − y, (30)

eo := ŷ − y, (31)

The numerical results are shown in Figures 4∼6. Fig-
ure 4 shows the outputs of yq, ŷ and ȳ. The recon-
struction error er is much smaller compared to the
quantization error eq and the estimation error eo. Fig-
ure 6 illustrates the effectiveness of the proposed ap-
proach clearly.

5 Experimental validation
In this section, the effectiveness of the proposed

algorithm will be validated through experiments using
a high precision stage.

5.1 Description of the experiment system

The high precision stage is shown in Figure 7.
The stage is a simplified model of the scanner in ex-
posure systems used for the fabrication of integrated
circuits, which is required to achieve extremely pre-
cise motion control. Two linear motors located at
the both sides of the carriage are applied to drive
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Fig. 7: Experimental setup.

the stage. An air guide system is introduced to re-
duce the friction between the stator and the slider of
the motors. DSP(TMS320C6713, 225MHz) is used
as the processor to implement the controllers and the
proposed fitting approach. The nominal model is ex-
pressed as (28).

5.2 Control system

A two-degree-of-freedom controller is exploited to
control the stage. The feed forward controller, de-
signed by perfect tracking control (PTC) method [12],
is the stable inverse system of the nominal plant so
that the perfect tracking at every sampling instant can
be guaranteed. The feedback controller is designed as
the PID compensator given by

K = kp + kd

s

0.004s + 1
+ ki

1

s
, (32)

where kp = 2065.6, ki = 34624, kd = 43.45, the
bandwidth of the close-loop system is 10Hz. The
control system is discretized with the sampling period
Ts = 1 ms.

Though a linear encoder with the resolution of 1
nm is available for the position measurement in this
system, we do not use it for control purpose. Instead,
a software quantizer is introduced, whose resolution
(i.e., quantization step) is ∆ = 20 µm in order to eval-
uate the effectiveness of the proposed method. The
quantized output yq (with the resolution 20 µm) is
supposed to be used for control. The high-resolution
encoder is used only for monitoring the performance
precisely. In this way, the measurements from the lin-
ear encoder is regarded as the actual output y, and
the signal from the software quantizer is treated as
the quantized output yq.

5.3 Implementation of the algorithm

According to Section 3.3, we implement the pro-
posed algorithm to yield ȳ based on u and yq. The
number of data used for polynomial fitting is set as
p + 1 = 15, and the degree of polynomial is set as
m = 4. The weight factor η is properly chosen as
η = 7 × 10−6. The gain L of the state estimator
is given as same as the gain in Section 4. By this
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Fig. 8: Comparison of position estimation and posi-
tion estimation errors.

setting, the average computational time of the algo-
rithm is about 160 µs, which implies the problem can
be solved safely during the sampling period Ts = 1
ms.

5.4 Experimental results

Figure 8 shows the comparison of position esti-
mation between observer and reconstruction method
using proposed algorithm. The upper graph shows
the comparison of real output, estimated position by
observer and reconstructed position ȳ. The middle
graph shows the comparison of estimation error by
observer and the reconstruction error by reconstruc-
tion method. And the lower graph shows the con-
trol input. Due to the friction and the control input
is not zero even the stage is in motionless, the esti-
mation/reconstruction errors cannot converge to zero
when stage is in steady state. However, from the re-
sults, it is observed that the output reconstruction er-
ror is far small than the estimation error by observer.

6 Conclusion

This paper has presented an algorithm to recon-
struct the smooth output based on the quantized mea-
surement in the presence of system disturbances. By
fitting the quantized measurements with polynomi-
als in a moving horizon manner, a smooth signal is
reconstructed via solving an ℓ1 minimization prob-
lem with some equality and inequality constraints.
Firstly, the equality constraints are eliminated so that
the problem is reduced to be an optimization prob-
lem with linear inequality constraints only. Then,
the non-differentiability of the objective function is
relaxed using a regularization parameter. Its perfor-
mance has been illustrated through numerical simula-
tion. Furthermore, the proposed method has been im-
plemented in a real high-precision linear stage through
DSP, and its effectiveness is verified though the exper-
iments using a high-precision system.
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