Analysis and Experiment on Harmonic Current Distortion in Wireless Power Transfer System Using a Diode Rectifier

Katsuhiro Hata, Takehiro Imura, and Yoichi Hori
The University of Tokyo,
5–1–5, Kashiwanoha, Kashiwa, Chiba, 277–8561, Japan
Phone: +81-4-7136-3881, Fax: 81-4-7136-3881
Email: hata@hflab.k.u-tokyo.ac.jp, imura@hori.k.u-tokyo.ac.jp, hori@k.u-tokyo.ac.jp

Abstract—Wireless power transfer (WPT) via magnetic resonance coupling provides highly efficient mid-range transmission. Its transmitting power can be controlled using a diode rectifier and a DC-DC converter on the secondary side. Previous research replaces the load and the rectifier circuit with an equivalent load resistance or a fundamental harmonic sine wave voltage source to analyze the charging power of WPT. In such a case however, the effect caused by the rectifier circuit becomes unclear because the harmonic components are neglected. As a result, the theoretical charging power and its true value have an error due to the harmonic current distortion. In this paper, a novel WPT circuit model is proposed for the analysis of the harmonic current distortion on the secondary side. The proposed model uses the secondary voltage as the input variable of transfer functions and makes clear the effect caused by the rectifier circuit. Experiments demonstrate that the harmonic current distortion is increased with the increase in the secondary voltage. These results accord with the analysis using the proposed model and verify the effectiveness of the proposed model.

Keywords—Wireless power transfer, Magnetic resonance coupling, Diode rectifier, Harmonic current distortion.

I. INTRODUCTION

Electric vehicles (EVs) have environmental advantages and the capacity for advanced motion control due to the fast response time of their electric motors [1]. However, EVs need to be charged frequently due to their limited mileage per charge. Charging operations should be simplified to reduce the burden on the user.

Wireless power transfer (WPT) can mitigate complicated charging operations and apply dynamic charging to EVs in motion [2], [3]. WPT via magnetic resonance coupling provides highly efficient mid-range transmission and it has robustness to misalignment between a transmitter and a receiver [4], [5]. Its transmitting efficiency and its charging power are determined not only by the parameters of the transmitter and the receiver but also by the load [6]. The load condition can be controlled using a diode rectifier and a DC-DC converter on the secondary side [7], [8]. As a result, the transmitting efficiency can be maximized [9], [10] or the charging power can be controlled on the secondary side [11]–[13].

Many papers on the modeling of the WPT circuit use an equivalent load resistance, which includes the load and the rectifier circuit [14]–[16]. A previous study [17] has proposed a fundamental mode equivalent circuit, which replaces the load and the rectifier circuit with a fundamental harmonic sine wave voltage source. Furthermore, the WPT circuit model considering the discontinuous mode of the diode rectifier has been represented [18], [19]. However, the actual load is replaced by an equivalent load resistance or a fundamental harmonic sine wave voltage source. As a result, the effects caused by the diode rectifier cannot be made clear because the harmonic components are neglected. This causes an error in the theoretical charging power of WPT.

This paper proposes a novel WPT circuit model, which is expressed by multi-input, multi-output (MIMO) transfer functions using the secondary voltage as the input variable. The proposed model can analyze the harmonic current distortion caused by the secondary voltage as the input variable. The proposed model can analyze the harmonic current distortion caused by the secondary voltage as the input variable. The proposed model can analyze the harmonic current distortion caused by the secondary voltage as the input variable. The proposed model can analyze the harmonic current distortion caused by the secondary voltage as the input variable. The proposed model can analyze the harmonic current distortion caused by the secondary voltage as the input variable.
II. WIRELESS POWER TRANSFER VIA MAGNETIC RESONANCE COUPLING

A. Characteristics at resonance frequency

A series-series circuit topology is used for the wireless power transfer circuit and its equivalent circuit is shown in Fig. 1 [20]. The transmitter and the receiver are characterized by the inductances \(L_1, L_2 \), the series-resonance capacitors \(C_1, C_2 \), and the internal resistances \(R_1, R_2 \), respectively. \(L_m \) is the mutual inductance between the transmitter and the receiver. \(V_1 \) is the RMS voltage of a power source and its angular frequency is expressed as \(\omega_0 \). The transmitter and the receiver are designed to satisfy the following equation.

\[
\omega_0 = \frac{1}{\sqrt{L_1 C_1}} = \frac{1}{\sqrt{L_2 C_2}} \quad (1)
\]

When the load resistance is \(R_L \), the voltage ratio \(A_V \) and the current ratio \(A_I \) between the secondary-side and the primary-side are expressed as follows:

\[
A_V = \frac{V_2}{V_1} = \frac{j \frac{\omega_0 L_m}{R_L}}{R_1 R_2 + R_1 R_L + (\omega_0 L_m)^2} \quad (2)
\]

\[
A_I = \frac{I_2}{I_1} = \frac{j \frac{\omega_0 L_m}{R_2}}{R_2 + R_L} \quad (3)
\]

where \(V_2, I_1, \) and \(I_2 \) are the RMS values of the secondary voltage, the primary current, and the secondary current, respectively. Then, the transmitting efficiency \(\eta \) is expressed as follows:

\[
\eta = \frac{(\omega_0 L_m)^2 R_L}{(R_2 + R_L)(R_1 R_2 + R_1 R_L + (\omega_0 L_m)^2)} \quad (4)
\]

and the charging power \(P \) is described as follows:

\[
P = \frac{(\omega_0 L_m)^2 R_L}{(R_1 R_2 + R_1 R_L + (\omega_0 L_m)^2)^2} V_1^2. \quad (5)
\]

Fig. 2 shows the load resistance \(R_L \) versus the transmitting efficiency \(\eta \) and the charging power \(P \). The parameters of the transmitter and the receiver, which are used in this work, are given in TABLE I. The amplitude of \(V_1 \) is equal to 100 V. \(\eta \) is maximized if \(R_L \) is given as follows:

\[
R_{L\eta\text{max}} = \sqrt{\frac{R_2}{R_1}} \left(\frac{(\omega_0 L_m)^2}{R_1} + R_2 \right). \quad (6)
\]

B. Charging power control on the secondary side

The load resistance \(R_L \) is determined by the amplitude of the secondary voltage \(V_2 \), which can be controlled by the DC-DC converter on the secondary side. Fig. 3 shows the secondary voltage \(V_2 \) versus the transmitting efficiency \(\eta \) and the charging power \(P \). If the maximum efficiency is achieved, \(V_2 \) satisfies the following equation [9].

\[
V_{2\text{max}} = \sqrt{\frac{R_2}{R_1}} \frac{\omega_0 L_m}{\sqrt{R_1 R_2 + (\omega_0 L_m)^2} + \sqrt{R_1 R_2}} V_1 \quad (8)
\]

Charging power control can be achieved by secondary voltage control [12], [13]. However, it is effective only if \(V_2 \) is controlled below the maximum secondary voltage \(V_{2\text{max}} \), which is expressed as follows:

\[
V_{2\text{max}} = \frac{\omega_0 L_m}{R_1} V_1. \quad (9)
\]

Then, the equivalent load resistance \(R_L \) goes to infinity and the voltage ratio \(A_V \) becomes saturated [6]. The maximum power is obtained when \(V_2 \) is given as follows:

\[
V_{2P\text{max}} = \frac{\omega_0 L_m}{2R_1} V_1 = \frac{V_{2\text{max}}}{2}. \quad (10)
\]

For efficient transmission, it is important to define the operating range of \(V_2 \) to be below \(V_{2P\text{max}} \). As a result, the
reference voltage V_2^*, which obtains the desired power P^*, is given as follows [13]:

$$V_2^* = \left(\frac{\omega_0 L_m V_1}{2R_1} \right) - \sqrt{\left(\frac{\omega_0 L_m V_1}{2R_1} \right)^2 - \left(\frac{\omega_0 L_m I_1}{2R_1} \right)^2} \cdot \frac{P^*}{R_1}. \quad (11)$$

C. Effect of the diode rectifier

Fig. 4 shows a system configuration of wireless charging for an EV. Assuming that the voltage control of the DC-DC converter is designed properly, the charging power control can be achieved. The circuit diagram of the wireless charging system is shown in Fig. 5. In this paper, the motor drive system is neglected as this is a fundamental study.

The secondary voltage is generated by the diode rectifier. If the absolute value of the secondary voltage exceeds the amplitude of the DC link voltage V_{dc}, the rectifier is conducted. If the absolute value of the secondary voltage becomes the same as V_{dc}, where the forward voltage of the diode is ignored. Furthermore, if the amplitude of V_{dc} is much lower than the amplitude of $V_{2\text{max}}$, the secondary voltage can be assumed to be a square wave.

On the other hand, in the case where the absolute value of the secondary voltage cannot be larger than the amplitude of V_{dc}, the secondary current cannot flow through the rectifier. Therefore, the secondary current includes the discontinuous state and could not be strictly approximated by the sine wave.

III. Modeling of the Wireless Power Transfer Circuit

A. Conventional model using the equivalent load resistance

Previous research [16] has proposed a transfer function model of the WPT circuit using the equivalent load resistance R_L. Its block diagram is shown in Fig. 6. $Y_{c1}(s)$ and $Y_{c2}(s)$ are transfer functions from the primary voltage $V_1(s)$ to the primary current $I_1(s)$ and the secondary current $I_2(s)$. For the charging power control on the secondary side, this paper focuses on $Y_{c2}(s)$. This is given as follows:

$$Y_{c2}(s) = \frac{I_2(s)}{V_1(s)} = \frac{b_{c3} s^3}{s^4 + a_{c3} s^3 + a_{c2} s^2 + a_{c1} s + a_{c0}} \quad (12)$$

where each coefficient is defined as follows:

$$a_{c3} = \frac{R_1 L_2 + (R_2 + R_L) L_1}{L_1 L_2 - L_m^2}$$ \quad (13)

$$a_{c2} = \frac{R_1 (R_2 + R_L) + (L_1/C_2) + (L_2/C_1)}{L_1 L_2 - L_m^2}$$ \quad (14)

$$a_{c1} = \frac{(R_1/C_2) + (R_2 + R_L)/C_1}{L_1 L_2 - L_m^2}$$ \quad (15)

$$a_{c0} = \frac{1}{L_1 L_2 - L_m^2}$$ \quad (16)

$$b_{c3} = \frac{L_m}{L_1 L_2 - L_m^2}.$$ \quad (17)

The bode diagram of $Y_{c2}(s)$ is shown in Fig. 7. In this model, it is difficult to analyze the harmonic current distor-
tion because the bode diagram is changed by \(R_L \), which is controlled to achieve the desired charging power.

B. Proposed model using the secondary voltage as an input variable

This paper proposes a transfer function model of the WPT circuit using the secondary voltage \(V_2(s) \) as the input variable instead of using the equivalent load resistance \(R_L \). The dynamics of the T-type equivalent circuit in Fig. 1 can be expressed as follows:

\[
\begin{bmatrix}
I_1(s) \\
I_2(s)
\end{bmatrix} = \begin{bmatrix}
Y_{11}(s) & Y_{12}(s) \\
Y_{21}(s) & Y_{22}(s)
\end{bmatrix} \begin{bmatrix}
V_1(s) \\
V_2(s)
\end{bmatrix}
\tag{18}
\]

where \(Y_{11}(s), Y_{12}(s), Y_{21}(s), \) and \(Y_{22}(s) \) are transfer functions from \(V_1(s) \) and \(V_2(s) \) to \(I_1(s) \) and \(I_2(s) \). The block diagram of the proposed model is shown in Fig. 8. Then, \(I_2(s) \) is expressed as follows:

\[
I_2(s) = Y_{21}(s)V_1(s) + Y_{22}(s)V_2(s).
\tag{19}
\]

From the circuit equations, \(Y_{21}(s) \) and \(Y_{22}(s) \) are described as follows:

\[
Y_{21}(s) = \frac{I_2(s)}{V_1(s)} = \frac{b_3s^3}{s^4 + a_3s^3 + a_2s^2 + a_1s + a_0}
\tag{20}
\]

\[
Y_{22}(s) = \frac{I_2(s)}{V_2(s)} = \frac{d_3s^3 + d_2s^2 + d_1s}{s^4 + a_3s^3 + a_2s^2 + a_1s + a_0}
\tag{21}
\]

where each coefficient is defined as follows:

\[
a_3 = \frac{R_1L_2 + R_2L_1}{L_1L_2 - L_m^2}
\tag{22}
\]

\[
a_2 = \frac{R_1R_2 + (L_1/C_2) + (L_2/C_1)}{L_1L_2 - L_m^2}
\tag{23}
\]

\[
a_1 = \frac{(R_1/C_2) + (R_2/C_1)}{L_1L_2 - L_m^2}
\tag{24}
\]

\[
a_0 = \frac{C_1C_2(L_1L_2 - L_m^2)}{1}
\tag{25}
\]

\[
b_3 = \frac{-L_m}{L_1L_2 - L_m^2}
\tag{26}
\]

\[
d_3 = \frac{L_1}{L_1L_2 - L_m^2}
\tag{27}
\]

\[
d_2 = \frac{R_1}{L_1L_2 - L_m^2}
\tag{28}
\]

\[
d_1 = \frac{1}{C_1(L_1L_2 - L_m^2)}
\tag{29}
\]

The bode diagram of \(Y_{21}(s) \) and \(Y_{22}(s) \) is shown in Fig. 9. Since two out of three zeros of \(Y_{22}(s) \) exist at the resonance frequency, the gain of \(Y_{22}(s) \) is decreased at the resonance frequency. As a result, the harmonic components of \(V_2(s) \) are not suppressed and have an effect on the harmonic distortion of \(I_2(s) \).
IV. EXPERIMENTS

A. Experimental setup

The wireless power transfer system, which is indicated in Fig. 10, was built and tested. In order to eliminate the harmonic components caused by the primary voltage, a sine wave voltage source was used. Therefore, the harmonic current distortion is caused by only the diode rectifier, which generates the secondary voltage. In addition, the DC-DC converter was replaced by an electronic load, which simulated a constant voltage load.

The experimental equipment is shown in Fig. 11. The power source was composed of a function generator (AFG3021B, Tektronix) and a high speed bipolar amplifier (HSA4014, NF Corporation). The amplitude of the primary voltage \(V_1 \) was tuned to 10 V and the operating frequency was set to 99.6 kHz. The diode rectifier consisted of Schottky barrier diodes (SB560, Fairchild semiconductor). The amplitude of the DC link voltage \(V_{dc} \) was regulated by the electronic load (PLZ1004W, KIKUSUI). Waveforms of the secondary voltage and the secondary current were measured by a mixed signal oscilloscope (MSO3034, Tektronix) and their harmonics were analyzed by a power analyzer (PPA5530, Newtons4th Ltd.).

The measured waveforms are shown in Fig. 12. When the amplitude of \(V_{dc} \) is equal to 10 V, the waveform of the secondary current is close to a sine wave. On the other hand, when the amplitude of \(V_{dc} \) is set to 50 V, it is seen that the secondary current is distorted slightly at the zero-crossing because of the discontinuous state. Additionally, the secondary voltage and the secondary current are not in phase. This is caused by the harmonic components of the secondary voltage.

The total harmonic distortion (THD) of the secondary current is indicated in Fig. 13. As the amplitude of \(V_{dc} \) is increased, the secondary current has a higher proportion of the harmonic components. This result can be analyzed using the proposed model. When the amplitude of \(V_{dc} \) is larger than the amplitude of \(V_1 \), the secondary current is dominantly affected by \(Y_{22}(s) \) due to eq. (19). Since \(Y_{22}(s) \) cannot suppress the harmonic components of the secondary voltage, the harmonic components of the secondary current is increased.

In the case where the desired charging power is larger, the amplitude of \(V_{dc} \) has to be increased. Therefore, the charging power control should be designed considering the harmonic current distortion to achieve the desired charging power.
Fig. 13. Total harmonic distortion of the secondary current.

V. CONCLUSION

This paper proposed a novel WPT circuit model using the secondary voltage as the input variable of transfer functions and analyzed the harmonic current distortion caused by the diode rectifier on the secondary side. Experiments demonstrated that the harmonic current distortion is increased with the increase in the ratio of the secondary voltage divided by the primary voltage. These results indicate that the charging power control should be designed with consideration for the harmonic current distortion.

In future works, the charging power control considering the harmonic current distortion will be proposed. In addition, the behavior of transfer functions, which are determined by the parameters of the transmitter and the receiver, will be analyzed.

REFERENCES

