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Abstract— Plant with unstable zeros is known as difficult to
be controlled because of initial undershoot of step response
and unstable poles of its inversion system. There are two
reasons why plant has unstable zeros in discrete time domain:
1) non-collocation of actuators and sensors, 2) discretization
by zero-order-hold. Problem 2) has been solved by multirate
feedforward control proposed by our research group. This
paper extends this method to solve problem 1) by the state
trajectory generation based on time axis reversal. The validity
of the proposed methods is demonstrated by simulations.

I. Introduction

Plant with unstable zeros is known as difficult to be con-
trolled because of unstable poles of its inversion system for a
feedforward controller and initial undershoot of step response
shown in Fig. 1. Zeros of the discretized transfer function
can be classified as two types [1][2]: 1) intrinsic zeros, and
2) discretization zeros [3]. Intrinsic zeros correspond to zeros
of its continuous time transfer function. The others are called
discretization zeros.

The poles of the continuous time domain transfer function
are determined by the plant dynamics such as the mass,
damping, and stiffness. On the other hand, zeros of the con-
tinuous time domain are determined by not only dynamics
but also the characteristics of the actuators and sensors [4].
Therefore, “integrated design of mechanism and control” is
conducted to place zeros to desired position [5][6][7][8].

However, in most cases, it is difficult to change the
characteristics of the actuators and sensors to allocate zeros
at the desired position. For instance, zeros of wafer stages
are position dependent [9] because wafer stages are need to
be controlled for the lens coordinate. Other examples are
hard disk drives [10], atomic force microscopes [11], bust
converters [12], and interior permanent magnet synchronous
motors [13].

In practice, controllers are need to be discretized for im-
plementation. In single rate control scheme, perfect tracking
[14] is not achievable because the discretization zero(s) are
unstable when the plant relative order is greater than two
even without intrinsic unstable zero(s). To deal with this
problem, the approximate inverse based feedforward control
approaches such as nonminimum-phase zeros ignore (NPZI)
[15], zero-phase-error tracking controller (ZPETC) [14], and
zero-magnitude-error tracking controller (ZMETC) [16] are
proposed. Other approaches are FIR filter based combined
input shaping and feedforward methods [17][18][19]. These
methods deal with the problem 1) and 2) in the same time
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Fig. 1. Step response comparison. P1 is 1st order transfer function without
unstable zero . P2, P3, P4 have one, two, three unstable zero(s) as shown in
the legend of the figure. Step responses of the system with unstable zero(s)
make undershoot.

because these controllers are designed by discretized transfer
functions.

Unstable intrinsic and discretization zeros compensation
methods by the preactuation and preview are proposed
in [10][20]. These methods also compensate for intrinsic
and discretization zeros in the same time. Continuous time
domain approach is proposed in [21]. This method solves
the differential equation in continuous time domain. In this
method, however, the reference trajectory has to be defined
by one equation in the positive time domain.

This paper proposes Preactuation Perfect Tracking Control
method based on multirate feedforward and state trajectory
generation by time axis reversal. This method solves problem
1) and 2) separately. The unstable zeros in the continuous
time transfer function are managed by a state trajectory
generation based on time axis reversal and preactuation
commands. This method can be applied for any kind of
reference position trajectory as long as n − 1 th derivative
of the trajectory is given. Here, n denotes the order of the
plant in the continuous time transfer function. Next, the plant
discretization problem is solved by the multirate feedforward
control [22]. Finally, the relationship between the pre/post
actuation and the continuous time domain unstable/stable
zero(s) is clearly described. The effectiveness of the proposed
method is verified by simulations.

II. Perfect Tracking Control method based on multirate
feedforward (conventional)

There are two types of zeros in discretized transfer func-
tions called intrinsic zeros and discretization zeros [1][2].



In the case of the plant with stable zeros in the continuous
time domain, the intrinsic zeros are stable in the discretized
domain. However, the discretized zeros are unstable when the
relative degree of the continuous time plant is greater than
two [3]. Because of this reason, in the single rate control
scheme, the perfect tracking control (PTC) defined in [14]
is impossible even without modeling error and disturbance.

In the multirate control scheme, the perfect tracking
control can be achieved [22] for the plant with unstable
discretized zeros. Perfect tracking control method based on
multirate feedforward has been applied for high-precision
stages [23][24], hard disk drives [25], atomic force mi-
croscopes [26], machining tools [27] etc. However, this
method cannot be applied for the plant with continuous time
domain unstable zeros without approximation because the
state trajectory diverges. This problem is solved by the state
trajectory generation based on time axis reversal proposed in
the section III.

A. Plant definition

Nominal plant in continuous time domain is defined as a
control canonical form:

Pc(s) =
B(s)
A(s)

=
bmsm + bm−1sm−1 + · · · + b0

sn + an−1sn−1 · · · + a0
(1)

ẋ(t) = Acx(t) + bcu(t) (2)
y(t) = ccx(t) (3)

where

x =



x1

x2

...

xn


, Ac =



0 1 0 · · · 0

0 0 1 · · · 0

. . .

−a0 −a1 −a2 · · · −an−1


bc =

[
0 0 · · · 1

]T
cc =
[
b0 b1 · · · bm 0 · · · 0

]
(4)

B(s) and A(s) denotes the irreducible numerator and denomi-
nator of Pc(s). n and m(< n) denotes the nominal plant order
and the number of the zeros, respectively. Discretized plant
of (2) and (3) by zero-order-hold with sampling time Tu is
defined as

x[k + 1] = Asx[k] + bsu[k] (5)
y[k] = csx[k], (6)

where

As = eAcTu , bs =

∫ Tu

0
eAcτbcdτ, cs = cc. (7)

B. State trajectory xd generation

According to (3), in order to track the reference position
trajectory r(t), the desired state trajectory xd should satisfy

r(t) = ccxd(t). (8)

In plant without continuous time zeros cases, the state
trajectory xd = [x1d x2d · · · xnd]T becomes 1

b0
[r sr · · · sn−1r]T

Fig. 2. Multirate sampling period.

considering cc = [b0 0 · · · 0] in (8). For instance, in the
case of a second order rigid body plant, the state trajectory
coincides the position and velocity references.

Generally, in the plant with continuous time zeros case,
the state trajectory is obtained by [25]

xd(t) =
∫ t

0
f (t − τ)r(τ)dτ, (9)

where

f (t) = L̄−1
[

1
B(s)

]
, (10)

r(t) =
[
r1(t) r2(t) · · · rn(t)

]T
=
[
1 s · · · sn−1

]T
r(t)

. (11)

Here, L̄ denotes one-sided Laplace transform.
In the case of plant with continuous time unstable zeros,

xd(t) in (9) diverges because 1
B(s) is unstable. This problem

is solved by the time axis reversal proposed in the section
III.

C. Feedforward output uo generation from xd

Effect of unstable discretization zeros can be avoided by
multirate feedforward control [22]. Here, as shown in Fig.
2, there are three time periods Ty, Tu, and Tr which denote
the period for y(t), u(t), and r(t). These periods are set as
Tr = nTu = nTy.

The multirate system of (5) and (6) are written as

x[i + 1] = Ax[i] + Bu[i], y[i] = cx[i], (12)

where

A = An
s , B =

[
An−1

s bs An−2
s bs · · · Asbs bs

]
c = cs, x[i] = x(iTr)

(13)

by calculating the state transition from t = iTr = kTu to
t = (i + 1)Tr = (k + n)Tu. Here, the input vector u[i] is
defined in the lifting form:

u[i] =
[
u1[i] u2[i] · · · un[i]

]T
=
[
u(kTu) u((k + 1)Tu) · · · u((k + n − 1)Tu)

]T
(14)

According to (12), the feedforward output uo[i] is obtained
from the previewed state trajectory xd[i + 1] as following

uo[i] = B−1(I − z−1 A)xd[i + 1], (15)

where z denotes esTr .
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Fig. 4. Proposed Preactuation Perfect Tracking Control method based on multirate feedforward and state trajectory generation by time axis reversal.

III. Preactuation Perfect Tracking Control method based
on multirate feedforward (proposed)

A. Design steps

In the case of plant with continuous time unstable zeros,
the state trajectory diverges according to (9). In this section,
a stable variable reference generation method for the plant
with continuous time domain is formulated.

1) Separation to a stable and unstable part:

B(s)−1 = Fst(s) + Fust(s) (16)
f st(t) = L̄−1

[
Fst(s)

]
, f̄ ust(t) = L̄−1

[
(−1)lFust(−s)

]
(17)

where Fst(s) and Fust(s) have the stable and unstable pole(s),
respectively. l denotes the order of Fust(s). Note that Fust(−s)
is stable.

2) Stable part state trajectory generation: As for the
stable part, the desired state trajectory xst

d (t) is generated
forwardly.

xst
d (t) =

[
xst

1d(t) xst
2d(t) · · · xst

nd(t)
]T

=

∫ t

−∞
f st(t − τ)r(τ)dτ (18)

3) Unstable part state trajectory generation: As for the
unstable part, the desired state trajectory xust

d (t) is generated
by

xust
d (t) =

[
xust

1d (t) xust
2d (t) · · · xust

nd (t)
]T

=

∫ t̄

−∞
f̄ ust(t̄ − τ̄)r(−τ̄)dτ̄

∣∣∣∣
t̄=−t

(19)

xust
d (t) is calculated by two steps. First, a convolution of

the time reversed reference position trajectory r(−t̄) and
the stable signal f̄ ust(t̄) is calculated. Second, time axis is
reversed. This method is based on the two-sided Laplace
transform [28][29].

4) State trajectory generation:

xd(t) = xst
d (t) + xust

d (t) (20)

5) Multirate feedforward:

uo[i] = B−1(I − z−1 A)xd[i + 1] (21)

B. Preactuation and postactuation

The proposed method shown in the section III-A clearly
shows the relationship between the pre/post actuation and the
continuous time domain unstable/stable zero(s). The stable
zeros in the continuous time domain result in postactuation
according to (18). In contrast, the unstable zeros in the
continuous time domain result in the preactuation according
to (19).

On the other hand, the discretization zeros are compen-
sated by the multirate feedforward with preview formulated
in (21).

IV. Simulation results

A. Simulation condition

In this section, simulations are performed by the model
illustrated in Fig. 5(b). This model assumes a high-precision
stage shown in Fig. 5(a) with a current feedback. Here, the
continuous time domain transfer function from the current
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Fig. 5. Experimental high-precision stage and its model for simulation[24],
[6], [30].

reference of x axis actuator which generates force fx to the
measured stage position x is defined as

Pc(s) = 3.048 × 1010 (0.1228 − Lm)s2 + 0.4102s + 3476
s(s + 10000)(s + 1.846)(s2 + 5.623s + 4.078 × 104)

, (22)

where Lm denotes the height of the measurement point
illustrated in Fig. 5(b). From (22), in the case of 0.1228 < Lm,
Pc(s) has a continuous time unstable zero. In this paper,
Lm = 0.300 is considered:

Pc(s) =
−1599(s − 141.2)(s + 138.9)

s(s + 10000)(s + 1.846)(s2 + 5.623s + 4.078 × 104)
(23)

Discretized transfer function of (23) by zero-order-hold with
100 µs sampling is obtained as

Ps[zs] =
−2.112 × 10−10(zs + 2.971)(zs − 1.014)(zs − 0.9862)(zs + 0.2045)

(zs − 1)(zs − 0.9998)(zs − 0.3679)(z2
s − 1.999zs + 0.9994)

, (24)

where zs denotes esTu . Bode diagram of Pc(s) and pole-
zero map of Pc(s) and Ps[zs] are shown in Fig. 6 and 7.
In the continuous time domain, Pc(s) has one stable zero
(s = −138.9) and one unstable zero (s = +141.2). In the
discrete time domain, Ps[zs] has the intrinsic zeros at zs =

+1.014 and the discretized zeros at zs = −2.971, −0.2045.
Here, Ps[zs] has one unstable intrinsic zero and one unstable
discretized zero.

Step target trajectory r(t) is designed as Fig. 10(a) by
9th order polynomial during step motion. Step time is set
as 0.02 [s]. In Fig. 4 and 8 configurations, the feedback
controller C f b[zs] generates force only if modeling error or
disturbance exist. Simulation step is set as 1 µs. Simulations
are conducted between −1.0 [s] < t < 1.0 [s].

B. Simulation results of the proposed method

Simulation results are shown in Fig. 9 and 10. The refer-
ence position trajectory r(t) and the generated state trajectory
xd(t), xst

d (t), xust
d (t) are shown in Fig. 9. The continuous time

domain unstable zero generates the state trajectory in the
negative time domain by (18).

Fig. 10(a) and 10(c) indicate that the output trajectory
y(t) can track the reference position trajectory r(t) without
any undershoot or overshoot. Fig. 10(c) demonstrates the
perfect tracking is achieved for every Tr = 500 µs by
the proposed method. Fig. 10(e) shows the preactuation
(t < 0) and postactuation (0.02 < t). Fig. 9 and Fig. 10(e)
indicate that the preactuation and postactuation are caused
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Fig. 6. Bode diagram of Pc(s).
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(b) Pc(s) zoom.
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Fig. 7. Pole-zero map of Pc(s) and Ps[zs].

Plant
Approximated plant inverse

Fig. 8. Approximated plant inverse feedforward control configuration.
Simulation block diagram for NPZI, ZMETC, ZPETC methods.

by the xust
d (t) and xst

d (t), respectively. Note that the unstable
discretization zero (zs = −2.971) is compensated by the
multirate feedforward scheme introduced in the section II.

From the above, the effectiveness of the proposed Preac-
tuation Perfect Tracking Control method based on multirate
feedforward and state trajectory is verified.

C. Comparison of approximated inverse methods

Simulation results of the NPZI method [15], the ZPETC
method [14], and the ZMETC method [16] are also shown
in Fig. 10. Block diagram shown in Fig. 8 is used for these
methods. These three methods are designed by sampling
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Fig. 9. Generated state trajectory by time axis reversal (see equations (18), (19), and (20)).
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Fig. 10. Simulation results of the plant with continuous time unstable zero. From (c), the perfect tracking is achieved for every Tr = 500 µs.



period Tu. In the ZPETC, preview is used to achieve the
zero phase error characteristics.

These methods create the undershoot and/or overshoot to
compensate for the unstable intrinsic zero (zs = +1.014)
and the unstable discretization zero (zs = −2.971). From the
above, without the preactuation, there are trade-offs between
the undershoot and/or overshoot amplitude and settling time.

V. Conclusion

This paper proposes the Preactuation Perfect Tracking
Control method based on multirate feedforward and state
trajectory generation by time axis reversal. In the discretized
domain, there are two types of zeros: 1) the intrinsic zeros
which have counterparts in the continuous time domain, 2)
the discretization zeros generated by discretization. In the
non-collocated system, the discretized plant has unstable
intrinsic zeros. On the other hand, the discretized zeros
become unstable when the relative degree of the plant in
the continuous time domain is greater than two.

Proposed method deals with problem 1) and 2) separately.
The unstable intrinsic zeros are compensated by the preac-
tuation. The reference of the preactuation is generated by
the negative time domain state trajectory calculated by the
time axis reversal procedure. Next, the unstable discretiza-
tion zeros are compensated by the multirate feedforward
scheme with preview. The effectiveness of proposed method
is demonstrated by simulations. Comparison with other pre-
view/preactuation based methods will be performed.
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