電動化駆動輪を用いた航空機における 片輪着陸時の駆動力制御によるヨーレート抑制法

新實 敏樹*, 藤本 博志, 渡邉 保真(東京大学), 西沢 啓, 小林 宙(宇宙航空研究開発機構)

Aircraft Yaw-rate Suppression Method Using Driving Force Control by Electrically Driven Wheel for One-wheel Landing Toshiki Niinomi^{*}, Hiroshi Fujimoto, Yasumasa Watanabe (The University of Tokyo) Akira Nishizawa, Hiroshi Kobayashi (Japan Aerospace Exploration Agency, JAXA)

Abstract

Most aircraft accidents occur at landing sequence. The goal is to suppress yaw-rate driven from driving resistance. In this paper, driving force control in the electric vehicle is applied to control yaw-rate. Furthermore, experiment method utilizing electric vehicle and slippery sheet is proposed. Numerical simulation and experimental results show the effectiveness.

キーワード:電気飛行機,片輪着陸,電動化駆動輪,着陸検知,駆動力制御, ヨーレート制御 (Electric Aircraft, One-wheel Landing, Electrically Driven Wheel, Driving Force Control, Yaw-rate control)

1. はじめに

〈1・1〉背 景 航空機輸送の需要がこの10年で約2 倍となっており、今後2035年まで需要はさらに増え続ける 見込みである⁽¹⁾。また近年、ボーイング787を初めとして 飛行機の電動化が徐々に始まりつつある⁽²⁾。未だに主動力 は内燃機関を用いているが、航空機の設備の電動化が部分 的に行われた機体が既に実用化されている。これら航空機 の電動化における主なモチベーションは高効率化による燃 費改善,整備性向上、及び環境問題への配慮である。

一方,電動モータの優位性を活かして航空機に従来の従 動輪ではなく電動化駆動輪を搭載することも提案されてい る⁽³⁾⁽⁴⁾。エアバス社ではタキシングを電動化駆動輪を用い て行うことで,牽引車とジェットエンジンから発生する排 気ガスの抑制を狙う技術を開発中である⁽³⁾。また,宇宙航 空研究開発機構 (JAXA) では,Fig.1 のような電動化駆動 輪を装備した模型飛行機にて実験し,離陸時の滑走距離短 縮に成功している⁽⁴⁾。

著者らの研究ではこれまでに,この電動化駆動輪を着陸 時の姿勢制御へ応用する手法を提案してきた⁽⁵⁾。2015 年度 のビジネスジェットにおける事故を参照すると,航空機の事 故は着陸時が最も多く,事故総数の56.5%を占める⁽⁶⁾⁽⁷⁾。 文献(5)では,Fig.2 に示すような,ウィングローと呼ばれ る横風着陸手法を用いた際の問題点を挙げた。また,その 問題に対して電動化駆動輪を用いて解決する手法を提案し た⁽⁵⁾。

文献(5)における著者らの手法の概略図を Fig.3 に示す。 詳細は以下の通りである。

• 速度フィードフォワード制御

図 1 JAXA 駆動輪搭載型模型飛行機 Fig. 1. JAXA model plane with electrically driven wheel

着陸前に速度制御系を電動化駆動輪に適用し,対地 速度と同じ速度で駆動させることで着陸直後にかかる 制動力を抑制させる。

• ヨーフィードバック制御

着陸後にヨーレートセンサを基にしたフィードバッ ク制御系を適用し,様々な外乱に対してコースアウト することなく航空機を滑走させる。

〈1・2〉 制御系の問題点 先行研究では着陸を検知して速度フィードフォワードからヨーフィードバックへ着陸を検知して制御器の切り替えを行っていた。しかし、この手法では誤検知による制御性能の低下などが懸念される。そこで本論文では電気自動車で用いられる、スリップ率を考慮した駆動力制御系を駆動輪に適用する。さらにヨーレートセンサによるフィードバック情報を指令値として用いることで、制御器切り替えが不要なシームレスであるヨーレー

図 2 ウィングロー 問題点 Fig. 2. Problem of sideslip

図 3 提案法:概要 Fig. 3. Proposed method: overview

図 4 従来法:駆動力オブザーバによる制御器切替 Fig. 4. Conventional method: controller switch by DFO

図 5 従来法:速度フィードフォワード制御器 Fig. 5. Conventional method : velocity feedforward controller

ト抑制制御を提案する。

機体の運動モデル

プラントモデルとして文献(5)から,入力トルクから車 輪速度,車体速度の関係を示す駆動輪モデルと,左右輪の 駆動力からヨーレートまでの機体モデルを用いる。各記号 の定義は表1に示す。

デルを用いる⁽⁹⁾。駆動輪の運動方程式は以下の式で表せる。

$$J_{w}\omega_{w} = T_{w} - rF_{d} \cdots (1)$$

$$F_{d} = \mu(\lambda)N - \operatorname{sgn}(V)\mu_{0}N \cdots (2)$$

$$V_{w} = r\omega_{w} \cdots (3)$$

ここで, J_w は駆動輪イナーシャ, ω_w は駆動輪の角速度, T_w は駆動輪のトルク, r は駆動輪半径, F_d は駆動力, N は 垂直抗力, $\mu(\lambda)$ はタイヤ-路面間の摩擦係数, V_w は車輪速 度, $\mu_0 N$ は転がり摩擦抵抗である。

車輪速度 *V_w* と機体の速度 *V* から,スリップ率は式 (4) で定義される。

ここで, *ϵ* は零割を避けるための微小定数である。動摩擦係 数 μ とスリップ率 λ の関係を表す式として Magic Formula が広く知られている⁽¹¹⁾。

また,ドライビングスティフネス *Ds* は以下の式で表される。

ここで,機体の進行方向に対する運動方程式は(7)で表 される。

 $M\dot{V} = F_d \cdots (6)$ = $\mu(\lambda)N - \operatorname{sgn}(V)\mu_0N \cdots (7)$

ここで, M は機体の質量である。

〈2・2〉 ヨー方向のプラントモデル 左輪駆動力,右輪駆動力をそれぞれ F_{dl} , F_{dr} , 回転中心からタイヤ接地面までの距離を l, 重心からタイヤ駆動力作用点までのベクトルと, 駆動力 F_d 方向となす角を θ , ヨー方向のイナーシャを I_{yaw} , ヨーレートを γ と置くと, ヨー方向の運動方程式は式 (8) で表される。

$$I_{yaw}\dot{\gamma} = l\sin\theta(F_{dl} - F_{dr}) \tag{8}$$

3. 提案手法:駆動力制御系を用いた制御器切替不要なヨー レート抑制制御

本節では,駆動力制御を用いた着陸検知による制御器切 り替え不要なヨーレート抑制制御について述べる。

表 1	各パラン	メータ 定義
	_	

 Table 1.
 Parameter definition

Definition	Symbo
Torque	Т
Wheel Inertia	J_u
Wheel Radius	1
Wheel Velocity	V_u
Landing Velocity	V
Friction Coefficient	ŀ
Normal Force	Ν
Driving Force	F_{a}
The Rolling Friction Coefficient	μ_0
Distance from tire to center of gravity	
Total Mass	M
Yaw Inertia	Inan

〈3·1〉 駆動力制御器について⁽⁸⁾ ここでは提案法にて 主に用いられている, 駆動力制御器について述べる⁽⁸⁾。

Magic Formula として知られている μ - λ 曲線を Fig.7 に 示す⁽¹¹⁾。 μ が最小-最大となる領域においては、 λ が大きく なればなるほど μ が大きくなる。したがって、スリップ率 をこの領域の範囲で操作することで μ を操作することがで き、駆動力を表す式 (2) より、駆動力の制御が可能となる。 一方、スリップ率の定義は以下のように駆動時 ($V_w \ge V$)

は

$$\lambda = \frac{V_w - V}{Vw} \tag{9}$$

で表され, 制動時 (*V*_w < *V*) は

$$\lambda = \frac{V_w - V}{V} \tag{10}$$

で表される。したがって,両式が異なるため,車輪速度制 御によるスリップ率制御を構成した場合はその定義から指 令値の切り替えを行う必要がある。

そこで参考文献より,以下の式で表される状態変数 *y* を 用い,操作することで駆動力制御を行う。

$$y = \frac{V_w}{V} - 1 \tag{11}$$

さらにこの y に対して上限値,下限値を設けることでス リップ率を制限することができる。更に駆動力オブザーバ による駆動力推定値 \hat{F}_d を用いたフィードバック制御,及 びフィードフォワード制御を構成することで駆動力制御系 とする。ブロック線図を Fig.8 に示す。

図 8 駆動力制御器 (DFC)⁽⁸⁾ Fig. 8. Driving force controller (DFC)⁽⁸⁾

図 9 提案法:駆動力制御系を含めたヨーレート制御器 Fig. 9. Proposed method: yaw-rate controller with DFC

〈3・2〉 提案手法 ここで、本論文における提案手法について述べる。先述した、Fig.8 に示すような駆動力制御系を左右輪に適用する。さらに駆動力指令値として、Fig.9 に示すようにヨーレートセンサからのフィードバック値を与える。このような制御系を構成することで、以下のようなことが起こる。なお、両輪とも着陸していない時はヨーレートの値をゼロと仮定する。

- (1) 両輪着陸前かつ制御開始時 Fig.8 より,駆動力制御系にはスリップ率制御をイ ンナーループとして含んでいる。両輪が着陸してい ない時に駆動力制御系を適用すると,スリップ率が ゼロすなわち車輪速度と車体速度の差がゼロになる ように駆動輪ヘトルク入力が加えられる。これによ り,両輪着陸前では副次的に車輪速度が車体速度と 一致するようになる。
- (2) 片輪着陸時 着陸輪側に摩擦力や制動力が発生することにより, 機体にヨーレートが発生する。しかし Fig.9 の通り, アウターループとしてヨーレートセンサによるフィー ドバックを駆動力制御系の入力として加えているた め,発生したヨーレートを抑制するように入力が加 えられる。これにより,片輪着陸時でもヨーレート の抑制が可能となる。
- (3) 両輪着陸時 片輪着陸時と同様に,提案法ではヨーレートセン サによるフィードバック制御系を構成している。そ のため,様々な外乱などに対してヨーレートを抑制 することができる。

〈3・3〉 シミュレーション条件 本論文ではセスナ 172 ス カイホークを想定したシミュレーションを行う。スカイホー クの失速速度である 83 km/h の約 1.2 倍となる 100 km/h を着陸速度とし、その速度で滑走路に突入するケースとし た。スカイホークの性能については表 2 に示す^{(12) (13) (14)}。

表 2 セスナ 172 スカイホーク 諸元 Table 2. Performance of Cessna 172 skyhawk

Definition	Value	Unit
Total Mass M	1000	kg
Yaw Inertia I_{yaw}	2667	$\rm kg~m^2$
Stall Velocity	83.00	$\rm km/h$
Landing Velocity V	100.0	$\rm km/h$
Wheel Radius r	0.1520	m
Torque Limit of Wheel	± 100.0	Ν
Wheel Inertia J_w	0.1810	$\rm kg~m^2$
The Rolling Friction Coefficient μ_0	1.000×10^{-4}	-

表 3 実験機: FPEV-2 Kanon 諸元

Table 3. Performance of FPEV-2 Kanon

Definition	Value	Unit
Total Mass M	803	kg
Yaw inertia ${\cal I}_{yaw}$	607	$\rm kg~m^2$
Wheel radius r	0.302	m
Wheel inertia J_w	1.24	${ m kg}~{ m m}^2$
Maximum torque	$\pm~200$	N m $$

また、シミュレーション開始から3秒後に左輪のみ着陸、 5秒後に両輪が着陸する想定で行う。また、従来法である 速度フィードフォワードはシミュレーション開始から2.5 秒後に左輪に、4.5秒後に両輪に作用させることとする。

ただし従来法では誤検知を想定し、従来法の速度フィードフォワードは 40 km/h の時点でヨーフィードバックへと切り替わるものとする。

シミュレーション結果を Fig.10 及び Fig.11 に示す。 Fig.10 が従来法である着陸検知を用いた制御器切り替え によるヨーレート抑制制御を, Fig.11 が提案法による制御 器切り替え不要なヨーレート抑制制御の結果である。Fig.11 に示す通り,着陸検知による制御器切り替え無しでヨーレー トの抑制が達成されている。

4. 実 験

本節では提案手法である,駆動力制御器を用いたヨーレー ト抑制制御の実験手法,及びその結果について述べる。

〈4・1〉実験条件 本論文では機体を飛行させる代わりとして、著者らの研究室が保有する電気自動車である FPEV-2 Kanon を用いて実験を行った。本車両は4輪全てにインホイールモータを搭載し、前後輪、左右輪の独立駆動が可能となっている。本車両のパラメータを表3に示す。また、低µ路シートを用いて着陸の模擬を行った。実験の様子をFig.13に示す。

文献(5)より, 駆動力 F_d は摩擦係数 µ と垂直抗力 N の 積で表される。航空機が着陸する時, 垂直抗力が増加し, そ の結果駆動力が上昇する。

本論文では垂直抗力 N の増大の代わりに,摩擦係数 μ を増大することによってこれを模擬する。実験では低 μ 路 シートを用い,低 μ 路面から高 μ 路面への脱出の際に μ が 増加,着陸の模擬とした。この際の駆動力の変化を,駆動 力オブザーバを用いて推定を行う。

一方,実際の着陸においては垂直抗力は連続的に変化す る。上記の手法のみでは垂直抗力の模擬となる摩擦係数が

図 12 スリップ率制御⁽⁸⁾ Fig. 12. Slip-ratio control⁽⁸⁾

図 13 実験:概要 Fig.13. Experiment: overview

ステップ上に変化してしまう。従って,駆動力オブザーバ を用いて推定された値に対してローパスフィルタを適用す ることで,実際の着陸を模擬する。

また,低μ路シート上では着陸前の模擬として小さい制 動力が,高μ路シート上では着陸後の模擬として無視でき ないほどの大きさの制動力を模擬するために,シート上か ら脱出する直前に Fig.12 に示す制御器を用いて十分小さい 負のスリップ率指令値を加えた。

よって,本実験の手順は以下の通りである。なお,本実 験においては前輪を降着装置の模擬とする。

従来法

- (1) 後輪駆動により 20 km/h で低 µ 路シートに進入 する。
- (2) 低μ路シートから前輪が脱出する寸前に前輪駆動
 に切替,前輪を Fig.12 や文献 (8) に示すスリップ率
 制御系とし、λ = -0.05 を入力する。
- (3) ローパスフィルタが適用された駆動力オブザーバ による駆動力検知から、ヨーフィードバックに切り 替えられた場合を従来法とする。

提案法

- (1) 後輪駆動により 20 km/h で低 μ 路シートに進入 する。
- (2) 低 µ 路シートから前輪が脱出する寸前に前輪駆動 に切替,前輪を Fig.9 に示す駆動力制御系とする。
- (3) 駆動力制御系を用いた制御によってヨーレートを 抑制した手法を提案法とする。

ただし, 左輪着陸の場合を想定しているため, 制御系は 左輪のみに構成する。また,本実験においては Fig.8 にお いてフィードバックに用いる駆動力推定値の過渡値に強く 影響を受けたため,本論文では簡易的にオープンループと して実験を行った。

<4·2> 実験結果 実験結果を Fig.14, Fig.15, Fig.16 に 示す。それぞれ, Fig.14 が参考として従来法におけるヨー

フィードバックを用いなかった場合を, Fig.15 が従来法を, Fig.16 が提案法における実験結果を表す。また,各実験デー タは1秒後の地点が低μ路から高μ路へ脱出するタイミン グとなるように調整した。すなわち,実際の航空機におい ての着陸タイミングをこの地点とする。

Fig.14(c) より,高μ路上では無視できないほどの制動力 が発生することにより,大きなヨーレートが生じている。 Fig.15(c) では,およそ1.5秒後の時点でヨーレート抑制制 御が働くことによりヨーレートの値が小さくなっており, Fig.14(c) と比較して発生したヨーレートの積分値は約半分 程度となっている。しかし,検知遅れのために大きなヨー レートが発生してしまっている。Fig.16(c) では制御器の切 替なしでヨーレートの抑制に成功している。以上より,提 案法の有効性が示された。

5. 今後の課題

今回の実験では,駆動力オブザーバの過渡値に影響を強 く受けたため,Fig.8における駆動力推定値をフィードバッ クしないオープンループの駆動力制御を用いた。そのため, 駆動力推定値をフィードバックした際に制御性や安定性が 向上するか比較検討の余地があると考えれられる。

また本手法は,文献(8)にて提案されている駆動力制御 器において,入力値としてヨーレートセンサによるフィー ドバック制御を行うものであった。今回の実験でオープン ループの駆動力制御でも十分な制御性能を示すことができ たため,今回用いた制御器よりも簡単な構造でヨーレート を抑制できる可能性がある。制御器の更なる信頼性向上の ためにも,これらを今後の課題とする。

6. 総 括

航空機の需要が今後より高まっていく一方で,航空機の 更なる安全性の向上が必須となる。航空機の事故のうち最 も多い瞬間は着陸時であり,著者らのグループではこれに 電動化駆動輪を用いて安全性を高める手法を提案した。し かし従来の手法では着陸を航空機が認識し,制御器の切替 を行う必要があった。本論文では提案手法として,着陸検 知などによる制御器の切替が不要な,駆動力制御系を用い たヨーレート抑制制御について述べた。本手法に対して, シミュレーション及び基礎実験による結果からその有効性 について検証した。

7. 謝辞

最後に本研究の一部は NEDO 産業技術研究助成(プロ ジェクト ID:05A48701d)及び,文部科学省科学研究費補助 金(基盤研究A課題番号:26249061)によって行われたこと を付記する。

参考文献

- (1) Airbus S.A.S: "Global Market Forecast 2016-2035, " http://www.airbus.com/company/market/globalmarket-forecast-2016-2035 [retieved 1st December 2016]
- (2) Bulent Sarlioglu, Casey T.Morris, "More Electric Aircraft: Review, Challenges, and Opportunities for Commercial Transport Aircraft", IEEE Transactions on transportation electrification, Vol.1, No.1, June (2015)
- (3) AIRBUS, "FAST #51 AIRBUS TECHNICAL MAG-AZINE", January (2013)
- (4) Hiroshi Kobayashi and Akira Nishizawa: "Decrease in Ground-Run Distance of Small Airplanes by applying Electrically Driven Wheels," J. Japan Soc. Aeronaut. Sp. Sci., vlo. 56, no. 656, pp. 416-424, (2008)
- (5) Toshiki Niinomi, Hiroshi Fujimoto, Akira Nishizawa, et al: "Aircraft Yaw-rate Control by Electrically Driven Wheel for Crosswind Landing, " IEEJ interna-

Fig. 15. Experimental result : conventional method

tional workshop on Sensing, Actuation, Motion Control, and Optimization, SAMCON (2017)

- (6) International Business Aviation Council: "Business aviation safety brief, "International Business Aviation Council, No. 14 (2015).
- (7) Aviation Safety: "Statistical Summary of Commercial Jet Airplane Accidents, "Statistical summery, Boeing Commercial Airplanes (2015)
- (8) Hiroshi Fujimoto, Masataka Yoshimura: "Driving Force Control for Electric Vehicle Based on Slip Ratio Control," 2011 JSAE Annual Congress (Spring), No.20115122, pp. 8-11, 2011 (in Japanese) 藤本博志, 吉村雅貴,「電気自動車におけるスリップ率制 御に基づく駆動力制御法」,自動車技術会 2011 年春季 学術講演会, No. 20115122, pp.8–11, (2011)
- (9) 安倍正人: "自動車の運動と制御,"山海堂 (2003).
- (10) 公共社団法人 日本航空技術協会, 航空工学講座 2 飛行機 構造 (2007)
- (11) Hans B. Pacejka and Egbert Bakker: "The Magic Formula Tyre Model," In Proceedings of the 1st Interna-

tional Colloquim on Tyre Models for Vehicle Dynamics Analysis, Supplement to Vehicle System Dynamics, Vol. 21, pp.1–18 (1991)

- (12) Cessna 172 Linear Model http://doc.gnu-darwin. org/cessna172/linear.html [retrieved 15th November 2016]
- (13) Abraham K. Ishihara, Yoo Hsiu Yeh, Parth Kumar, et al: "Adaptive Feedforward Aircraft Control," American Institute of Aeronautics and Astronautics, 20 - 22 April (2010)
- (14) Leonard Bridgman: "Jane's All the World's Aircraft 1953-1954," Jane's All the World's Aircraft Publishing Co Ltd. (1953) -Product-Sheet_v1.pdf[retrieved 18th May 2017]