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Vibration Suppression Using Single Neuron-Based
PI Fuzzy Controller and Fractional-Order

Disturbance Observer
Wen Li and Yoichi Hori, Fellow, IEEE

Abstract—An approach is proposed for vibration suppression in
a two-inertia system using an integration of a fractional-order dis-
turbance observer and a single neuron-based PI fuzzy controller.
The former is used to obtain disturbance estimate and generate
compensation signal, and the latter is utilized to realize outer loop
control. Fractional-order disturbance observer has a wider range
to select a suitable tradeoff between robustness and vibration sup-
pression, because introduction of fractional calculus makes uni-
verse of relative degree of -filter is expanded from integer domain
to real-number domain. For the single neuron-based PI fuzzy con-
troller, a single neuron makes up a PI controller and such a con-
troller is embedded in each cell of the fuzzy control table. Thus, the
fuzzy control table is changed into a controller matrix and it con-
structs a nonlinear adaptive controller with parameter self-tuning
property. Experimental results illustrate that the integration of
fractional-order disturbance observer and single neuron-based PI
fuzzy controller can improve the performance of disturbance at-
tenuation and system robustness.

Index Terms—Fuzzy neural controller, fractional-order ob-
server, vibration suppression.

I. INTRODUCTION

VIBRATION, the repetitive motion of objects relative to a
stationary frame of reference or nominal position, occurs

in most machines, structures, and dynamic systems. Vibration
can be found in daily life, as well as in engineering, which
causes noise, reduces accuracy, and reliability of equipments.
Thus, vibration suppression and disturbance rejection is an im-
portant problem.

It is well known that, in practice, a physical motion control
system will not be exactly the same as any mathematical
model, no matter how the model is obtained. Although all
models cannot describe practice systems precisely, some of
them might be useful. Disturbance observers (DOBs) just use
the difference between the actual output and the output of the
nominal model to compensate the output of the controller. In
the absence of large modeling errors, DOBs are able to improve
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disturbance rejection characteristics and command following
characteristics. The filter in DOB usually is a low-pass filter,
called -filter. There are three parameters, order, relative
degree, and the bandwidth of -filter. Thus, comparing with
integral action, DOB has more flexibility[1], [2]. Although by
appending disturbance states to a traditional state estimator,
the disturbance compensation can be realized, using the dis-
turbance observer structure allows simple and intuitive tuning
of disturbance observer loop gains independent of the state
feedback gains [3]. It is the reason why to use disturbance
observer is a more common practice in many high precision
motion control systems [4].

It is well known that an industrial servo system generally is a
multi-inertia system with several inertia moments and springs,
and it can be analyzed by an approximate two-inertia system.
This two-inertia system can be seen as a simplest vibration
model of typical mechatronic system. Thus, in this paper, the
problem of vibration suppression in the two-inertia system is
discussed. Because a torque transmission system is composed
of several gears and couplings, it is flexible. For such a system,
the torsion vibration occurs when the motor speed abruptly
changes. In order to improve response and accuracy of the
system, there are many contributions to the study of vibration
suppression of the two-inertia system. More usual methods
are typically simulator following control [5], speed differential
feedback control [6], disturbance observer-based control [7],
[8], and state feedback control [9], [10], etc. Several disturbance
observer-based approaches were investigated and simulated
with Matlab/Simulink to find out a suitable solution for the
industrial application in [11] for the main drive system of
cycloconverter-fed 1450 rolling mill in a steel works. Recently,
applications of fractional calculus theory in practical control
field have increased significantly, e.g., the fractional-order
disturbance observer (FO-DOB) was proposed [12], in order
to solve the tradeoff between the phase margin loss and the
strength of the low-frequency vibration suppression for a
traditional DOB [12].

In order to make the system have better robust stability
against variation of mechanical parameters and obtain a desired
steady-state precision, this paper presents an approach for vibra-
tion suppression in the two-inertia system using a combination
of a FO-DOB and a single neuron-based PI fuzzy controller
(NPIFC). A FO-DOB and a NPIFC establish an active vibra-
tion suspension unit in the two-inertia torsional experimental
system. The FO-DOB is used to estimate disturbance and to
generate compensation signal, and the NPIFC is used to realize
outer loop control. Three parts are contained in this paper. In
first part, the two-inertia torsional experimental system used for
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Fig. 1. Torsional experimental system.

the research of vibration suppression is introduced first. Then,
the relation between robustness and parameters of -filter is
discussed by giving an instance of continuous-time disturbance
observer. Next, it is analyzed why FO-DOB has more flexibility
than DOB for vibration suppression. Finally, the FO-DOB de-
sign of the two-inertia torsional experimental system is given.
The second part of this paper gives the design idea, structure,
and design method of NPIFC. The basic framework of NPIFC
is a control table-based fuzzy controller. It has fast real-time
property and better robust stability. However, it is difficult to get
good steady-state precision. To improve steady-state precision,
a PI controller realized by a single neuron is embedded in each
cell of the control table, it is called NPI for short. Because
of the introduction of neurons, the fuzzy control table has
learning property. Because the control table is transformed into
a PI controller matrix, the fuzzy controller is actually changed
into a nonlinear adaptive controller. Specific design steps of
NPIFC are given in this part later. The third part shows some
experiments of FO-DOB robustness in such cases of different
backlash. The comparison experiments of different controllers
also are presented to illustrate the validity of the proposed
vibration suppression approach in a two-inertia system. Finally,
some conclusions are given.

II. FRACTIONAL-ORDER DISTURBANCE OBSERVER DESIGN

A. Mathematical Model of the Two-Inertia Torsional
Experiment System

Before discussing disturbance observer, a torsional experi-
mental system used for the research of vibration suppression
is introduced first. The system is depicted in Fig. 1, which il-
lustrates a typical configuration of an industrial servo system.
Corresponding to the experimental system shown in Fig. 1, a
simplified two-inertia model can be drawn, as shown in Fig. 2.
From Fig. 1, it can be found that two flywheels of the system
are connected with a long and thin torsional shaft, and the con-

Fig. 2. Simplified two-inertia model.

nection between driving shaft and slave shaft by a pair of gears
with gear ratio 2:1. Therefore, the torsion vibration will occur
because of torsional elasticity of shaft and imperfect rigidity of
gears when torque is transmitted. A block diagram of the two-in-
ertial model is given in Fig. 3 and parameters of the two-inertia
model are listed in Table I. In addition, the backlash between
two gears can be adjusted and an additional friction can be put
on the shaft.

According to Fig. 3, without considering the backlash, the
transfer function from input torque to driving motor angular
speed , can be derived, as shown in (1) at the bottom of the
page. When the viscous friction in the two-inertia model are
neglected, i.e., and are zero, (1) will become

(2)

where resonant frequency

(3)

antiresonant frequency

(4)

(1)
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Fig. 3. Block diagram of the two-inertial model.

TABLE I
PARAMETERS OF THE TWO-INERTIA MODEL

Rearranging the following expression:

and let

(5)

where and are called resonance ratio and the inertia ratio,
respectively. and are important parameters in the system
[13]. The Bode curves of the transfer function described by (1)
with different viscous friction coefficients are given in Fig. 4.

B. Continuous-Time Disturbance Observer Analysis

This section discusses the basic mechanism of disturbance
observer and relations between robustness and parameters of

-filter.
In order to realize disturbance suppression, the basic idea of

disturbance observer is to use a nominal model of the plant to es-
timate the disturbance caused by outer interference torque and
parameter variation, and an equivalent compensation action is
generated from the estimate. A basic architecture of conven-
tional disturbance observer is shown in Fig. 5, where is
plant transfer function, is equivalent disturbance, is the ob-
serving value (estimate) of , and is the output of the outer
loop controller. The estimate of equivalent disturbance can be
calculated from Fig. 5 by

(6)

However, three problems are encountered for this disturbance
observer in a practice physical system [14] as follows.

Fig. 4. Bode curve of different B and B .

Fig. 5. Basic architecture of DOB.

Fig. 6. Block diagram of DOB.

1) In a usual case, the relative order of is not equal to
zero, so that the inverse cannot be realized physically.

2) It is difficult to built an accurate plant model, .
3) If measurement noise is considered, control performance

will be deteriorated.
A -filter and a nominal model instead of

are introduced to solve the above problems also shown as Fig. 6.
Fig. 6 is a conventional disturbance observer, where and are
the output and noise, respectively. Usually, the -filter is a
low-pass filter to restrict the effective bandwidth of the DOB.
Signals and are the disturbance estimate before and after
filtering by the -filter. The following three expressions are
derived from Fig. 6:

(7)

(8)
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Fig. 7. Equivalent block diagram of DOB.

(9)

Suppose the cutoff frequency of low-pass -filter is ,
then when , , there are relations

, , and ; and when ,
, there are relations ,

, and . From these relations, it can be found
that the outer disturbance can be suppressed by designing a low-
pass -filter design. That is to say, the design of -filter
is an important step in DOB design. First, the number of relative
orders of the -filter should not be less than that of to
maintain being a regular rational transfer function,
and then the selection of bandwidth should be a compromise
between robust stability and disturbance suppressing force of
DOB.

The relation between real-model and nominal model
may be expressed by

(10)

where is a variable transfer function, which describes un-
certainty of the plant. According to the theorem of robust sta-
bility, the sufficiency criterion of robust stability for [14]
is

(11)

Equation (11) is a foundation of designing .
In order to analyze the relation between robustness and fre-

quency bandwidth (described by ) of -filter, an equiva-
lent block diagram of the DOB, as shown in Fig. 6, is given in
Fig. 7.

To simplify the analysis, assume that is the only source
of unmodeled dynamics, that is

(12)

From (10) and (12), the variable transfer function can be ex-
pressed as follows:

(13)

Furthermore, from the block in Fig. 7, it is shown
clearly that the disturbance observer is a high gain technique as

is a low-frequency domain. However, the unmodeled
dynamics limits the allowable loop gain to assure the robustness.
The variations of robust stability with respect to and relative
degree of -filter are illustrated in Figs. 8 and 9,

Fig. 8. Q-filter bandwidth limitation.

Fig. 9. The effect of n in DOB.

respectively. Suppose low-pass -filters have the following
form:

(14)

where . Three -filters, , , and
are considered and their cutoff frequencies are 500, 100, and 50.
Here, the value is used in (13).

Fig. 8 illustrates that, when the cutoff frequency is 500 rad/s,
the robust stability criteria of (11) is clearly violated; for the
100 rad/s case, the magnitude response of filter is close
to, but remains below the curve of . Since other sources of
model error invariably exist in a real system and still the gain
of outer loop feedback compensation should be considered, the
cutoff frequency of -filter should not be more than 100
rad/s. Fig. 9 shows three curves, , , and with
different relative degrees, ,2,3, and the same cutoff fre-
quency of 100 rad/s. Fig. 9 also shows that the higher the rela-
tive degree of -filter, the better the robust stability for a
fixed . Literature [3] and [12] discuss the issue of the loss of
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Fig. 10. Block diagram of FO-DOB in a system.

Fig. 11. An equivalent block diagram of Fig. 10.

Fig. 12. Digital realization of system.

phase margin with DOB in details, and give a figure ([3, Fig. 6])
to guide the right selection of and . However, usually
is determined according to the disturbance attenuation require-
ment in advance. In fact, is the only knob to tune the tradeoff.
Consequently, if can be selected in real-number domain in-
stead of integer domain , the selecting range will be increased
greatly. When belongs to , accordingly, the disturbance ob-
server is a FO-DOB.

C. Fractional-Order Disturbance Observer Design

From the above analysis, it can be clearly seen that FO-DOB
has more flexibility than DOB for disturbance rejection, just be-
cause relative degree of -filter in FO-DOB can be selected
in a real-number domain instead of the original integer domain.
Here, is denoted by and -filter has become a frac-
tional-order filter, denoted by . In other words, can be
continuously tuned to select a suitable tradeoff between robust
stability and disturbance attenuation.

Figs. 10 and 11 show the block diagram of a FO-DOB in a
system and its equivalent block diagram. A FO-DOB is usually
realized in the form of digital type. Fig. 12 is the digital im-
plementation. Figs. 11 and 12 are the equivalent block diagram
and the digital form of Fig. 10, respectively, where is
called as equivalent compensator; is the discrete form
of nominal model ; is the discrete expression
of ; and is the number of pure time delay steps of the
control signal . In fact, it is an estimate of pure delay steps
of [4].

Fig. 13. Bode curve with Td = 0:2 ms.

Next, is an analysis about equivalent compensator .
The expression of can be derived from Figs. 10 and 11

(15)

From (1), a nominal model can be descried by

(16)

and (14) is rewritten as

(17)

As previously mentioned, the relative degree should not be
less than 1 to keep regular.

From (12) and (15)–(17), it can be seen that is a frac-
tional-order transfer function and its numerator is equal to the
denominator of . It is propitious to reject the low-fre-
quency vibration. Figs. 13 and 14 show Bode curves of ,

, and when and
, respectively. The low-frequency vibration suppres-

sion action of equivalent compensator in inner loop can be seen
from them clearly. Also, it can be found that time delay causes
high-frequency performance to be worse, but if increasing , the
affect will be weakened. By using FO-DOB, a rational tradeoff
among the strength of low-frequency vibration suppression, ro-
bust stability, and high-frequency property can be made easier
than by using DOB, because can be tuned in real-number do-
main continuously.

According to the above analysis, parameters of the FO-DOB
are selected for the two-inernial torsional experimental system,
frequency bandwidth , as in [1] and [2]. One
of the realization methods of fractional-order -filter is to
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Fig. 14. Bode curve with Td = 0 ms.

Fig. 15. Bode curves of Q (s) with different �.

use a continuous integer-order filter in a selected fre-
quency bandwidth to approximate the fractional-order

-filter [15]. General form of is given as follows:

(18)

Mechanism and steps of this approximation method are ex-
plained in [15]. Bode curves of -filter with different

, , and approximation bandwidth , are

Fig. 16. FC for two-inertial system.

TABLE II
FUZZY CONTROL RULE TABLE U (E;CE)

depicted in Fig. 15. Here, -filter is approximated by a
five-order filter . That is

(19)

Equation (20) is an example when , as shown in (20) at
the bottom of the page.

III. DESIGN OF SINGLE NEURON-BASED

PI FUZZY CONTROLLER

In order to provide an appropriate control input strength, to
enhance the robust stability against variation of mechanical pa-
rameters and to obtain a desired steady precision, a NPIFC is
proposed in this section. The basic framework of this controller
is a fuzzy controller (FC) based on the control table, and it is
put in the outer loop. Because of the control table-based FC, the
input–output space of the system is divided into several parti-
tions by the control table. In order to improve the control preci-
sion and to introduce the learning function for the FC, a PI con-
troller constructed by a single neuron is embedded in each cell
of the control table. Therefore, the fuzzy control table becomes a
matrix of PI controllers with self-tuning parameter performance.
This matrix constructs a nonlinear adaptive controller.

A. Introduction of Classical Fuzzy Controller (FC)

Generally speaking, there are three steps for designing a
simple FC, as shown in Fig. 16: 1) choosing appropriate input,
output variables, and defining them; 2) defining linguistic
variables to form a data base; and 3) establishing a control rule

(20)
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TABLE III
FUZZY CONTROL TABLE

base. In this paper, the error of driver angular speed denoted
by and its change-in-error denoted by are taken as input
variables of the FC, the control torque of the driver is the
output variable. Corresponding fuzzy variables are denoted
by , , and , respectively, and each has seven linguistic
values. Table II is the control rule table designed for the
two-inertial torsional experimental system. For convenience,
triangular and trapezoidal functions are used as membership
functions for inputs and output. When using singleton fuzzifi-
cation and Zadeh’s compositional rule of inference, which uses
the max/min operators, the fuzzy control table can be acquired
by offline calculation, as shown in Table III.

Scaling gains, , , and , play an important role on the
effect of system response. Here, the changing range of error
is , and the changing range of change-in-error is

. Applying formula (21), the two universes of
discourse can be transformed into the range considered
in FC

(21)

Substituting , with , and , , respec-
tively, the input scaling gains , can
be obtained easily. The process of getting is the
opposite process of getting and because control output
should be transformed from fuzzy universe [-6, 6] to crisp uni-
verse . , and should be decided according
to system parameters and control requirement. For the two-in-
ertial torsional experimental system, , (set-
ting angular speed of driver), , ,

, ( is the maximum torque value of
driver). These scaling gains can be tuned by selecting different

, , . The tuning of scaling gains for fuzzy systems is often
referred to as scaling a fuzzy system. In fact, the tuning results
in the effect of contracting or spreading membership functions
of input or output. Fig. 17 shows the control surface of this FC.

Fig. 17. Control surface of FC.

B. NPIFC Design

It is well-known that fuzzy systems have lower sensitivity
for parameter change and satisfy the “universal approximation
property” [16]. In other words, fuzzy systems actually have very
strong functional capabilities. That is, if properly constructed,
they can perform very complex operations. However, fuzzy sys-
tems also lack the following, such as no learning ability and
lower precision of steady-state. Therefore, a NPIFC is proposed,
it is the main contribution of this paper. Construction of this
NPIFC is based on the following consideration.

1) Introduce a single neuron into each cell of the control
table to make the FC have a learning function.

2) Construct a PI controller using a single neuron in each
cell to improve steady-state precision.

From Fig. 16, it can be clearly seen that a basic FC is a PD
controller, and from the increment expression of PI controller

(22)

an important relation can be found, that is, the same input vari-
ables as that of the FC are used in (22). This makes it very nat-
ural and rational to embed NPI in each cell of the fuzzy con-
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Fig. 18. Control surfaces of PI controller.

Fig. 19. Single neuron.

trol table. For a traditional PI controller, its control surface is a
spacial plane. Fig. 18 gives two control surfaces with different
PI parameters. However, according to Table III, for the NPIFC,
the control space is composed of 169 subspacial planes. Each
subspacial plane can be changed with the parameter change of
NPI. Therefore, they make up a nonlinear special surface in the
three-dimension space based on the fuzzy control table.

The process and steps of designing NPIFC are given as
follows.

Step 1) Constructing NPI. The controller structure should
express (22). Fig. 19 gives the structure of a NPI,
where and denote the row label and column label
of Table III. Notation denotes the summing op-
eration, that is

(23)

Step 2) Constructing algorithm of adjusting weight coef-
ficients. In (22), the NPI parameters and

are expressed using two weight coeffi-
cients. They can be updated online. Because each
NPI manages a small subpartition, convergence of
learning algorithm becomes easier than neural net-

Fig. 20. Response with big backlash.

works. Thus, a least square formula and a gradient
descend method are used as optimization index and
optimization algorithm in this paper. The iterative
formulas of and can be derived as
follows:

(24)

(25)

where and are the learning ratio of and
, is the inertial coefficient.

Step 3) Assigning initial weight values. The control output
value of the control table can be utilized to
set the initial weights of neural cell, and assignment
formula is derived from

(26)

and is rewritten as

(27)

Alternatively, some random numbers can be used as
initial weight values.

Step 4) Selecting switching value between FC and NPIFC.
The switching value is decided by selecting proper
error and change-in-error. For instance, these cells
outlined in Table III form an area. When error and
change-in-error move into this area, NPI controller
is switched.

Step 5) Updating the fuzzy control table. These cells out-
lined in Table III will be update by

(28)
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Fig. 21. Response with small backlash.

From the above design, it is can be seen that this NPIFC has
some features.

1) Because only these NPI selected in the control table are
able to be modified, a suitable compromise can be re-
alized between the robust property of FC and higher
steady-state precision of the PI controller.

2) Because PI is based on a single neuron, the controller
has simplest iterative algorithm as well as learning
performance.

3) Because the controller is composed of 169 NPI with dif-
ferent parameters, the controller becomes a distributing
parameter controller with adaptive function. For each
control step, control operation comes from a simple
linear controller. But for the whole control process,
control action is generated from a complex nonlinear
controller.

IV. EXPERIMENTAL VERIFICATIONS OF

VIBRATION SUPPRESSION

In the experimental verifications, three groups of vibration
suppression experiments were conducted on the experimental
system, as shown in Fig. 1. System parameters are given in
Table I. In addition, the backlash of experimental system can be
adjusted with a knob. Here, three kinds of cases, biggest, middle,
and smallest backlashes were considered. In the following ex-
periments, the sampling period was 0.001 s and the target an-
gular speed of driver was 30 rad/s.

• Group 1: Biggest backlash was set. First, traditional PI con-
troller was adopted to test control effect. Then, parameters
of the PI controller, and , were
maintained, and FO-DOB was embedded into the inner
loop. The -filter is approximated by (19) in the fre-
quency bandwidth . The same test was done
repeatedly when let fractional-order , 1.4, 1.6, 1.8,
2.0, respectively.

• Group 2: Smallest backlash was set. The same process as
Group 1 was carried out.

Fig. 22. Responses of using PI and NPIFC.

Fig. 23. Parameter self-tuning curves.

• Group 3: Middle backlash was set and FO-DOB was em-
bedded into the inner loop. First, traditional PI controller
was used with and . Then, the NPIFC
was used. Let fractional-order , 1.4, 1.6, 1.8 and
tested the control effect, respectively.

For experiments of Groups 1 and 2, related test curves are
given in Figs. 20 and 21. From Figs. 20 and 21, it can be seen
that when pure PI controller is used, vibration attenuation is
not good no matter how the backlash is, biggest or smallest. In
contrast, when FO-DOB is added in and , the effect of
vibration attenuation is better than the effect only using pure PI
obviously. Thus, experiment results show that when FO-DOB is
introduced, the system has better robust stability than if the PI
controller is used alone, and it also can be found that the relative
degree of should be selected in this system.

For the experiments of Group 3, Fig. 22 gives time response
of using PI controller and NPIFC, respectively. Fig. 23 shows
parameter self-tuning curves of the NPI. It can be found that
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TABLE IV
ERRORS COMPARISON

when time is about 0.14 s, NPI was switched. After that, through
several times of self-tuning, Kp and Ki were maintained at 0.248
and 0.156, respectively. Table IV shows the error analysis of
Fig. 22.

V. CONCLUSION

Fractional-order disturbance observer has attractive flex-
ibility than the classical disturbance observer, because the
introduction of fractional calculus makes universe of rela-
tive degree of -filter expanded from integer domain to
real-number domain. Therefore, the system has a more wide
range to acquire a more suitable synthesis between robust
stability and vibration suppression. The NPIFC makes use
of properties of fuzzy control, neural control, and PI control
synthetically, to realize vibration suppression effectively. The
above design and experiments illustrate that this combination
of FO-DOB and NPIFC can improve the performance of dis-
turbance suppression and robustness of system.
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